Galloway TRAFFIC IMPACT STUDY

AMBLESIDE SCHOOL

Lone Tree, Colorado

PREPARED FOR:
Ambleside School

PREPARED BY:

Brian Horan, PE, PTOE Daniela Gonzalez

Galloway & Company, Inc. 5500 Greenwood Plaza Blvd, Suite 200 Greenwood Village, CO 80111

DATE:

December 21, 2023 Revised: March 18, 2024 Revised: May 6, 2024

TABLE OF CONTENTS

Executive Summary	4
Site Location and Study Area	4
Description of Proposed Development	4
Conclusions and Recommendations	4
Conclusions	4
Recommendations	5
I. Introduction	6
Overview	6
Site Location and Study Area	6
Site Description and Access	7
Figure 1-1 Site Location	8
Figure 1-2 Site Plan	9
Figure 1-3 Existing Zoning	10
II. Background Information	11
Study Area	11
Study Assumptions	11
Study Methodology	11
Existing Roadway Network	11
Assumed Improvements	12
Figure 2-1 Existing Lane Use and Traffic Control	13
III. Analysis of Existing Conditions	14
Traffic Volumes	14
Operational Analysis	14
Existing Intersection Queues	14
Figure 3-1 Existing Volumes	15
Figure 3-2 Existing LOS	16
Table 3-1 Existing LOS	17
Table 3-2 Existing Queues	18
IV. Analysis of Future Conditions without Site Development	19
Methodology	19
Regional Growth	19
Background Traffic Forecasts	19
Background Future Levels of Service	19
Background Future Queueing	19

Figure 4-	1 Background Growth 2025	20
Figure 4-2	2 Background Growth 2045	21
Figure 4-	3 Background Future Forecasts 2025	22
Figure 4-4	4 Background Future Forecasts 2045	23
Figure 4-	5 Background Future Levels of Service 2025	24
Figure 4-6	6 Background Future Levels of Service 2045	25
Table 4-1	Background Levels of Service	26
Table 4-2	Background Queues	27
V. Site Analysis		28
Overview		28
Proposed Site Ac	cess and Circulation	28
Trip Generation		28
Figure 5-	1 Site Trips	29
Table 5-1	Site Trip Generation	30
VI. Analysis of Future Cor	nditions with Site Development	31
Total Future Traff	ic Forecasts	31
Total Future Leve	els of Service with Proposed Development	31
Total Future Que	uing	31
Figure 6-	1 Total Future Forecasts 2025	32
Figure 6-2	2 Total Future Forecasts 2045	33
Figure 6-3	3 Total Future Levels of Service 2025	34
Figure 6-4	4 Total Future Levels of Service 2045	35
Table 6-1	Future Levels of Service	36
Table 6-2	Puture Queues	37
VII. Conclusions and Rec	ommendations	38
Conclusions		38
Recommendation	IS	38

Appendices:

- A. Full Sized Conceptual Site Plan
- B. LOS Descriptions
- C. Traffic Counts and Heat Map
- D. Existing Synchro Outputs
- E. Background (without site development) Synchro Outputs
- F. Future (with site development) Synchro Outputs
- G. Operations Plan

Executive Summary

Site Location and Study Area

The property that comprises the application area for the proposed development is approximately 7.39 acres in size and is identified as Douglas County Parcel Number 2231-162-02-164. It is located at on the southwest quadrant of the Lincoln Avenue/Lone Tree Parkway intersection in Lone Tree, Colorado. It is zoned Planned Development Districts – Centennial Ridge PD and is currently occupied by a church use.

The study area is generally bounded by Lincoln Avenue to the north, Lone Tree Parkway to the east, and property lines to the west and south. The study area for the project includes those intersections that could be affected by the proposed development:

- Lincoln Avenue/Lone Tree Parkway (W)
- Lincoln Avenue/Lone Tree Parkway (E)
- Site Access/Lone Tree Parkway

Description of Proposed Development

The Applicant, Ambleside School, seeks to redevelop the property with a Private School (K-12) use. Site access is being proposed via the existing full movement on Lone Tree Parkway.

Conclusions and Recommendations

Conclusions

Based on the results of this traffic impact study, the following may be concluded:

- Under existing traffic conditions, the signalized intersection within the study area currently operate at overall acceptable levels of service (LOS) "C" or better during the weekday AM and PM peak hours, and queues remain within their respective storage lengths.
- Under existing traffic conditions, the unsignalized intersections within the study area currently
 operate at overall acceptable levels of service (LOS) "C" or better during the weekday AM and PM
 peak hours, with the exception of the northbound movement at the Lincoln Avenue/Lone Tree
 Parkway (E) intersection. V/C ratio remains under 1.0 for this movement, and all queues remain
 within their respective storage lengths.
- Under background future 2025 and 2045 traffic conditions, without the development of the subject site, the signalized intersection within the study area would operate at overall acceptable LOS "D" or better during the weekday AM and PM peak hours.
- Under background future 2025 and 2045 traffic conditions, without the development of the subject site, the unsignalized intersections within the study area would operate at levels of service consistent with existing conditions.
- The proposed site development would generate, upon completion and full occupancy, 175 new weekday AM and 38 new weekday PM peak hour vehicle trips as well as 548 new weekday daily trips.

- Under total future 2025 and 2045 traffic conditions, with development of the site, the intersections within the study area would operate consistent with background conditions.
- All forecasted queues would be contained within their effective storage.

Recommendations

• The Applicant should provide access consistent with the site plan contained herein.

I. Introduction

Overview

This report presents the results of a Traffic Impact Study (TIS) conducted in support of a site plan to develop a private school use in the City of Lone Tree, Colorado, as requested by the City. Currently, the site is occupied by a church use.

Per the request of the City of Lone Tree, a Transportation Impact Study is required to support the proposed development.

Site Location and Study Area

The property that comprises the application area for the proposed development is approximately 7.39 acres in size and is identified as Douglas County Parcel Number 2231-162-02-164. It is located at on the southwest quadrant of the Lincoln Avenue/Lone Tree Parkway intersection in Lone Tree, Colorado, as shown on Figure 1-1. It is zoned Planned Development Districts — Centennial Ridge PD and is currently occupied by a church use. Site access is being proposed via the existing full movement access on Lone Tree Parkway.

The Applicant, Ambleside School, seeks to redevelop the property with a Private School (K-12) use. A reduction of the Applicant's proposed conceptual site plan is provided on Figure 1-2. A full-size copy of the plan is provided in Appendix A.

The study area is generally bounded by Lincoln Avenue to the north, Lone Tree Parkway to the east, and property lines to the west and south.

Tasks undertaken in the course of this study included the following:

- 1. Reviewed the Applicant's proposed development plans and other background data.
- 2. Conducted a virtual field reconnaissance of existing roadway and intersection geometries, traffic controls, and speed limits.
- 3. Conducted weekday AM/PM peak hour turning movement counts at the key intersections.
- 4. Analyzed existing levels of service at each of the key study intersections based on the methodologies set forth in the Highway Capacity Guidelines (HCM) 7th as reported by Synchro version 12.
- 5. Forecasted background future traffic volumes based on baseline traffic counts and regional traffic growth for 2025 build-out and 2045 long-range conditions.
- Calculated background levels of service at each of the key study intersections for the projected buildout and long-range years based on background future traffic forecasts, regional growth, and the existing lane use and traffic controls.
- 7. Estimated the number of AM and PM weekday peak hour trips that would be generated by the proposed use based on the Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u> 11th Edition rates/equations and methodologies.

- 8. Prepared AM and PM weekday peak hour total future traffic forecasts based on background traffic forecasts plus site traffic assignments for the 2025 buildout-year as well as 2045 long-range conditions.
- 9. Calculated total future levels of service for each of the key study intersections based on projected total future traffic forecasts, existing/future traffic controls and intersection geometries.
- 10. Identified roadway improvements required to accommodate future traffic volumes as necessary.

Sources of data for this analysis included the Institute of Transportation Engineers (ITE), Trip Generation 11th edition, the Highway Capacity Guidelines HCM 7th, Synchro 12, Ambleside School, City of Lone Tree, Colorado, and the files/library of Galloway.

Site Description and Access

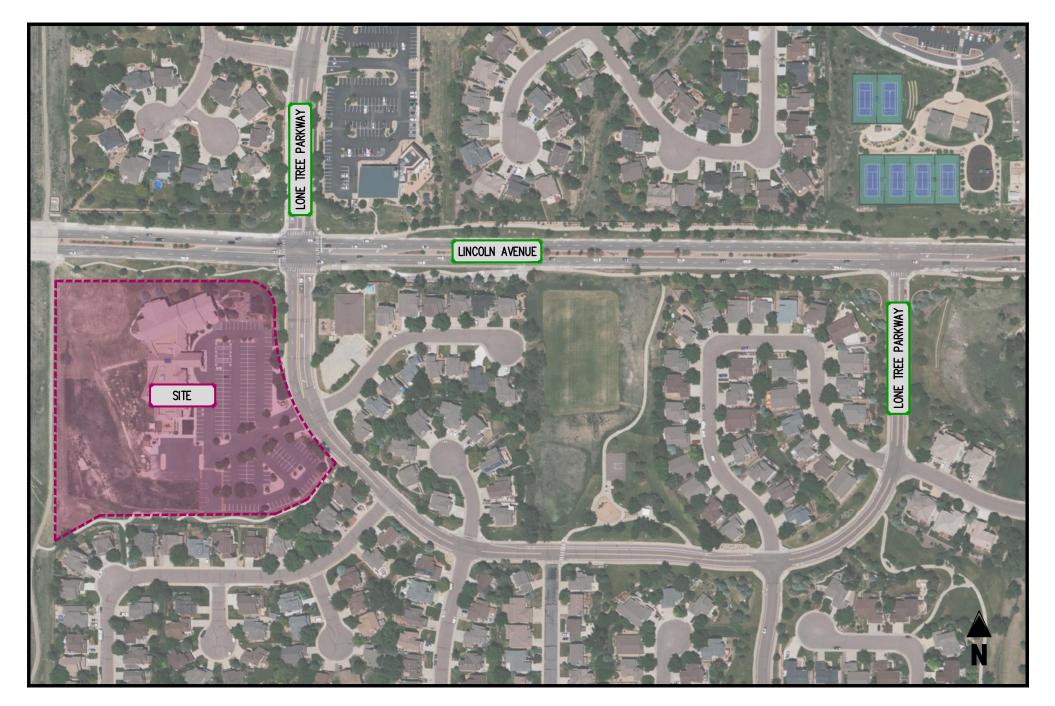
Site Conditions

The terrain proximate to and surrounding the site is generally classified as "level".

Hazardous Conditions

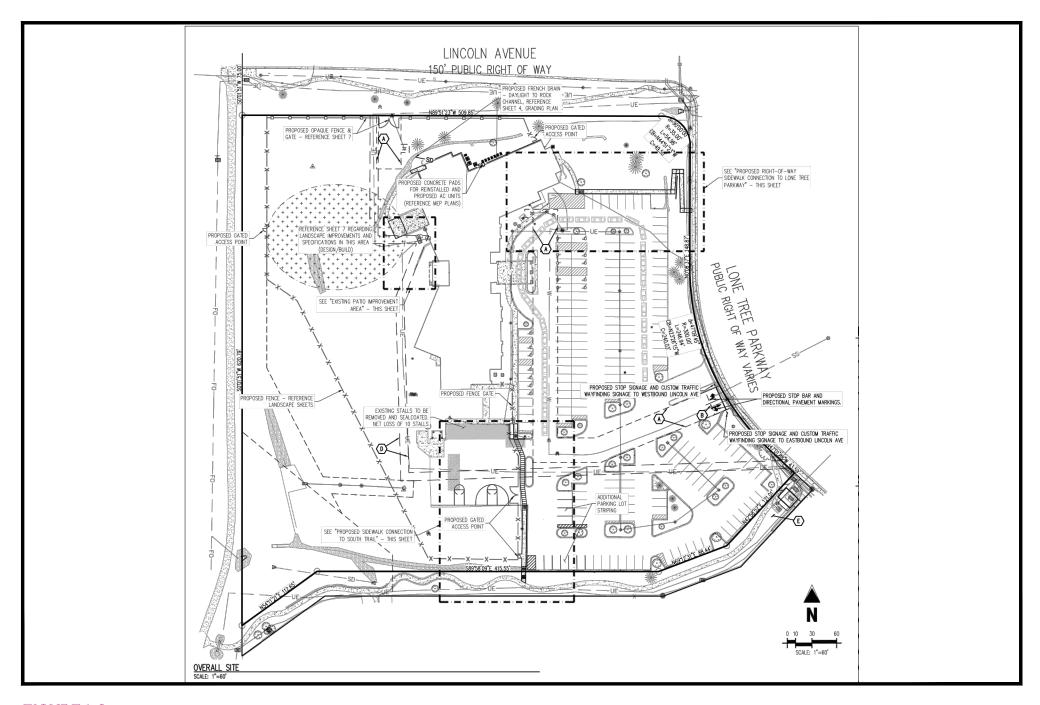
Based on the field reconnaissance in the vicinity of the subject site, no hazardous features or constraints were identified.

Proposed Site Access

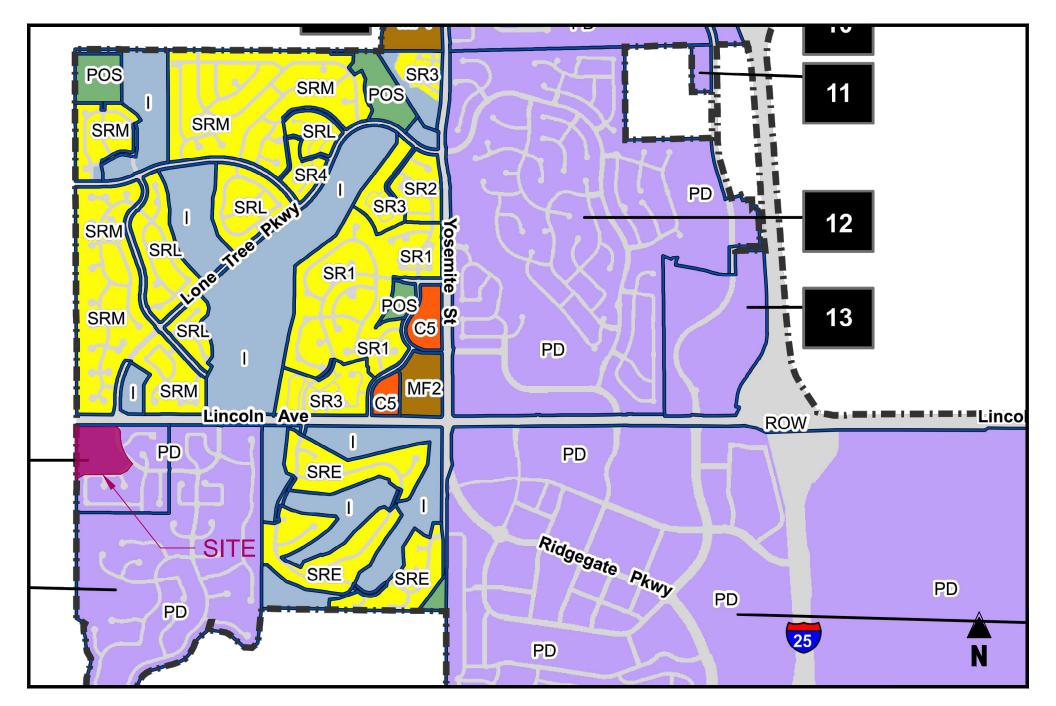

Access to the site is being proposed via the existing full movement access on Lone Tree Parkway.

Existing Zoning

The subject site is currently Planned Development Districts – Centennial Ridge PD and is currently occupied by a church use. Figure 1-3 depicts the existing zoning associated with the subject property, as well as neighboring properties as shown on the City of Lone Tree zoning map.


Nearby Uses

The properties surrounding the subject site are generally developed with residential uses.



II. Background Information

Study Area

The study area was determined by a review of intersection that would experience a significant portion of turning movement volumes generated by the site. As such, the traffic study focuses primarily on the following intersections:

Study Intersections

- Lincoln Avenue/Lone Tree Parkway (W)
- Lincoln Avenue/Lone Tree Parkway (E)
- Site Access/Lone Tree Parkway

Study Assumptions

For purposes of this analysis only, the proposed uses are assumed to be built and occupied in one distinct phase. It was assumed that the use would be built and operational in study year 2025. A long-range analysis of 2045 was also provided.

Study Methodology

Synchro software version 12 was used to evaluate levels of service at each of the study intersections during the Sunday peak hour. Synchro is a macroscopic model used for optimizing traffic signal timing and performing capacity analyses. The software can model existing traffic signal timings or optimize splits, offsets, and cycle lengths for individual intersections, an arterial, or a complete network. Synchro allows the user to evaluate the effects of changing intersection geometrics, traffic demands, traffic control, and/or traffic signal settings as well as optimize traffic signal timings.

The levels of service reported for the signalized and unsignalized intersections analyzed herein were taken from the <u>Highway Capacity Manual</u> (HCM) 7th reports generated by Synchro 12 for unsignalized and signalized intersections. Level of service descriptions are included in Appendix B. A default percent heavy vehicle (%HV) factor of 2% was used for all movements in the study area.

Existing Roadway Network

Regional access to the subject site is provided by Lincoln Avenue and local access is provided via Lone Tree Parkway. Figure 2-1 depicts existing lane use and traffic controls in the vicinity of the subject site. The following provides a description of each of the roadways within the study network.

Lincoln Avenue

Lincoln Avenue is constructed as a four-lane section with turn lanes at major intersections and a posted speed limit of 45 mph in the vicinity of the subject site. The City classifies the roadway as a Major Arterial. The intersection with Lone Tree Parkway (W) operates under SIGNALIZED control and the intersection with Lone Tree Parkway (E) operates under STOP control.

Lone Tree Parkway

Lone Tree Parkway is constructed as a two-lane section with turn lanes at major intersections and a posted speed limit of 30 mph in the vicinity of the subject site. The City classifies the roadway as a Collector. The west intersection with Lincoln Avenue operates under SIGNALIZED control and the east intersection with Lincoln Avenue operates under STOP control.

Assumed Improvements

No funded/programmed roadway improvements were identified at the study intersections.

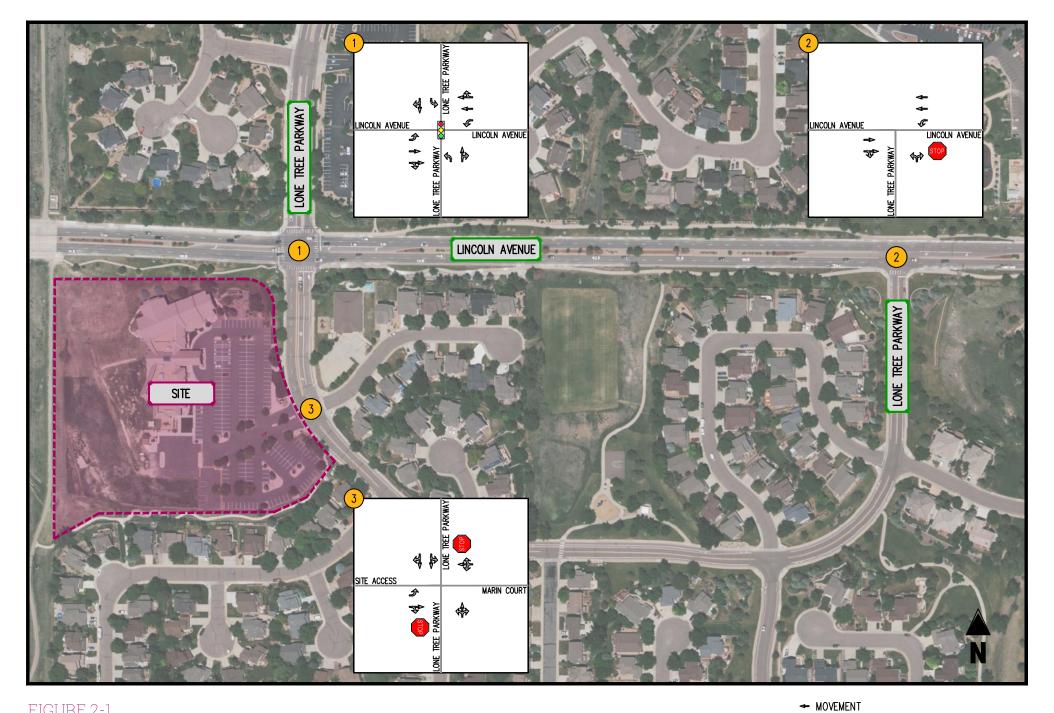


FIGURE 2-1 EXISTING LANE USE AND TRAFFIC CONTROL

SIGNALIZED INTERSECTION STOP SIGN

III. Analysis of Existing Conditions

Traffic Volumes

Weekday AM and PM peak hour traffic volumes counts were conducted on Tuesday, December 12, 2023 from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM at the study intersections by IDAX Data Solutions.

The existing volumes are summarized on Figure 3-1. Copies of traffic counts are included in Appendix C. Existing peak hour factors (PHF) were also computed by approach from the traffic counts and applied to the analysis with a minimum of 0.85 and a maximum of 0.92.

Operational Analysis

Capacity/level of service (LOS) analyses were conducted at the study intersections based on the existing lane use and traffic controls shown on Figure 2-1 and existing baseline vehicular traffic volumes shown on Figure 3-1. The capacity analysis results are presented in Appendix D and summarized in Table 3-1 and on Figure 3-2.

As shown in Table 3-1, the signalized intersection within the study area currently operates at overall acceptable LOS "C" or better during the weekday peak hours.

Unsignalized intersections within the study area currently operate at overall acceptable LOS "C" or better during the weekday peak hours with the exception of the northbound movement at the Lincoln Avenue/Lone Tree Parkway intersection which is operating at LOS "E" during the AM peak hour and LOS "F" during the PM peak hour. Further review of this intersection shows the approach has a volume to capacity ratio (V/C) of less than 1.0, suggesting additional capacity available for this movement.

Existing Intersection Queues

An analysis of intersection 95th-percentile queues was performed at key locations. The results of the queuing analysis, as reported by Synchro, are summarized in Table 3-2. As shown in the table, the existing queues are contained within the effective storage within the study area.

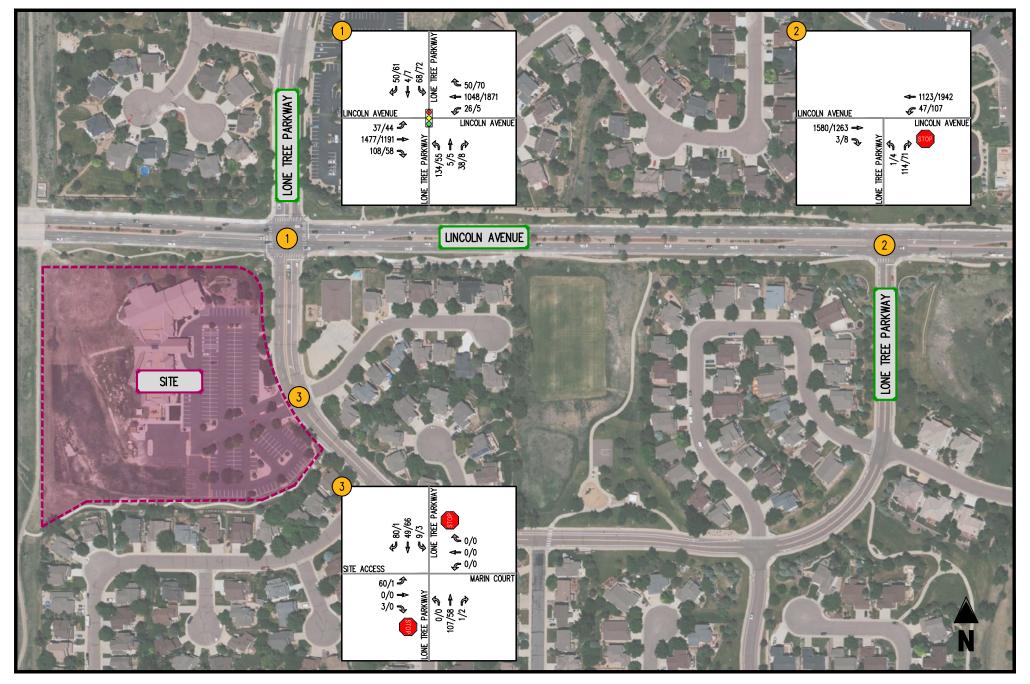


FIGURE 3-1 EXISTING VOLUMES (A/A) INTERSECTION LOS

0000/0000 (AM PEAK HOUR/PM PEAK HOUR)

◆ MOVEMENT

SIGNALIZED INTERSECTION

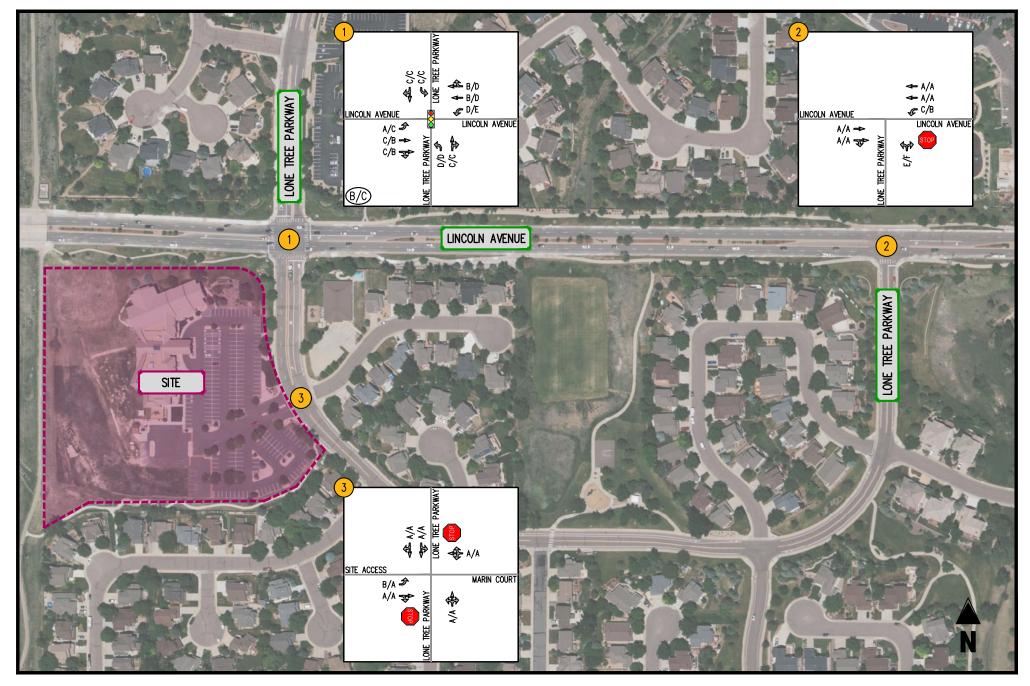


FIGURE 3-2 EXISTING LOS (A/A) INTERSECTION LOS

0000/0000 (AM PEAK HOUR/PM PEAK HOUR)

◆ MOVEMENT

SIGNALIZED INTERSECTION

Table 3-1 Ambleside School - Lone Tree, CO Existing Intersection Level of Service Summary (1) (2)

Intersection	Operating Condition		Approach/ Movement	Existir AM Peak Hour	g 2023 PM Peak Hour	
1 Lincoln Avenue/Lone Tree Parkway (W)	SIGNAL	Lincoln Avenue Lincoln Avenue Lone Tree Parkway	EBL EBTR WBL WBTR NBL	A (7.8) C (21.5) D (52.8) B (12.2) D (41.1)	C (23.0) B (11.4) E (67.7) D (35.3) D (35.1)	
		Lone Tree Parkway Overall	NBTR SBL SBTR	C (30.5) C (34.2) <u>C (31.1)</u> B (19.6)	C (29.2) C (32.6) <u>C (31.9)</u> C (25.9)	
2 Lincoln Avenue/Lone Tree Parkway (E)	STOP	Lincoln Avenue Lincoln Avenue Lone Tree Parkway	EBTR WBL WBT NBLR	A [0.0] C [18.1] A [0.0] E [36.0]	A [0.0] B [14.6] A [0.0] F [52.7]	
3 Site Access/Lone Tree Parkway	STOP	Site Access Marin Court Lone Tree Parkway Lone Tree Parkway	EBL EBTR WBLTR NBLTR SBLT SBTR	B [10.9] A [8.7] A [8.9] A [0.0] A [7.5] A [0.0]	A [9.5] A [0.0] A [8.7] A [0.0] A [7.4] A [0.0]	

Notes (1) Numbers in brackets [] represent delay at unsignalized intersections in seconds per vehicle.

⁽²⁾ Numbers in parenthesis () represent delay at signalized intersections in seconds per vehicle.

Table 3-2 Ambleside School - Lone Tree, CO Existing Intersection Queueing Summary (1)

Intersection	Operating Condition		Approach/ Movement			ng 2023 PM Peak Hour
1 Lincoln Avenue/Lone Tree Parkway (W)	SIGNAL	Lincoln Avenue Lincoln Avenue Lone Tree Parkway Lone Tree Parkway	EBL EBTR WBL WBTR NBL NBTR SBL SBTR	180 - 180 - - - 115	15 505 43 260 138 29 75	17 315 14 810 64 18 80 38
2 Lincoln Avenue/Lone Tree Parkway (E)	STOP	Lincoln Avenue Lincoln Avenue Lone Tree Parkway	EBTR WBL WBT NBLR	- 180 - -	0 12.5 0 72.5	0 22.5 0 70
3 Site Access/Lone Tree Parkway	STOP	Site Access Marin Court Lone Tree Parkway Lone Tree Parkway	EBL EBTR WBLTR NBLTR SBLT SBTR	- - - -	7.5 0 0 0 0	0 0 0 0 0

Notes: (1) Queue length, in feet, is based on the 95th percentile queue as reported by Synchro, Version 12.

IV. Analysis of Future Conditions without Site Development

Methodology

The future traffic forecasts, without the proposed new use, were developed for 2025 and 2045 conditions based on a composite of existing baseline traffic volumes and regional traffic. DRCOG traffic data were referenced to define regional growth in the vicinity of the subject site. Available data suggested a decrease in growth in the area. In order to maintain a conservative analysis, a 0.5% growth per year rate was applied to existing though traffic along Lincoln Avenue.

Regional Growth

Increases in traffic associated with regional growth were estimated at 0.5 percent per year compounded for through movements along Lincoln Avenue up to 2025 as well as to 2045. This growth accounts for increases in traffic resulting from influences outside of the immediate study area. The resulting increases in traffic within the study area are reflected on Figure 4-1 for 2025 build-out year conditions and Figure 4-2 for 2045 long-range conditions.

Background Traffic Forecasts

The existing traffic forecasts depicted on Figure 3-1 and the regional growth shown on Figure 4-1 (2025) and Figure 4-2 (2045) were added together to yield the background future traffic forecasts shown on Figure 4-3 for 2025 conditions, and Figure 4-4 for 2045 conditions.

Background Future Levels of Service

Capacity analyses of 2025 and 2045 future traffic conditions without the proposed development are provided in Appendix E and summarized in Table 4-1. The forecasted levels of service are also depicted graphically on Figure 4-5 for 2025 conditions and Figure 4-6 for 2045 conditions.

As shown in Table 4-1, the signalized intersection within the study area is forecasted to operate at overall acceptable LOS "D" or better during the weekday peak hours for all background conditions.

Unsignalized intersections within the study area are forecasted to operate consistent with existing conditions.

Background Future Queueing

An analysis of intersection queues was performed at key locations under background future traffic conditions. The results of the queuing analysis are summarized in Table 4-2.

As shown in the table, forecasted queues within the study network would be contained within their effective storage, consistent with existing conditions.

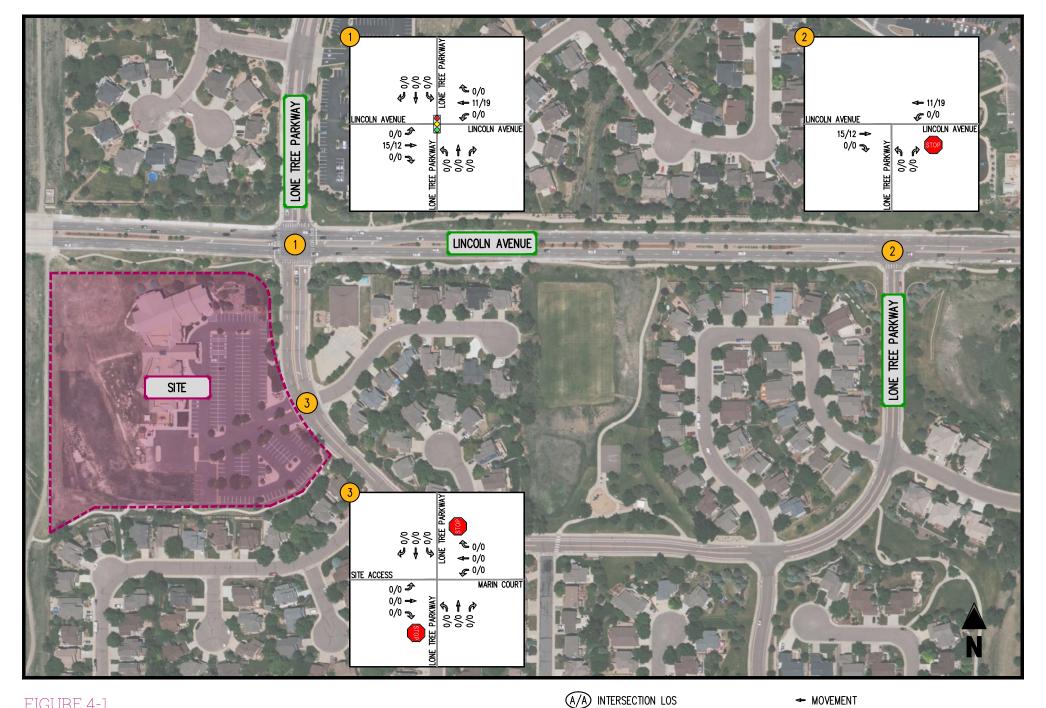
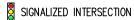



FIGURE 4-1 BACKGROUND 2025 GROWTH

◆ MOVEMENT

STOP SIGN

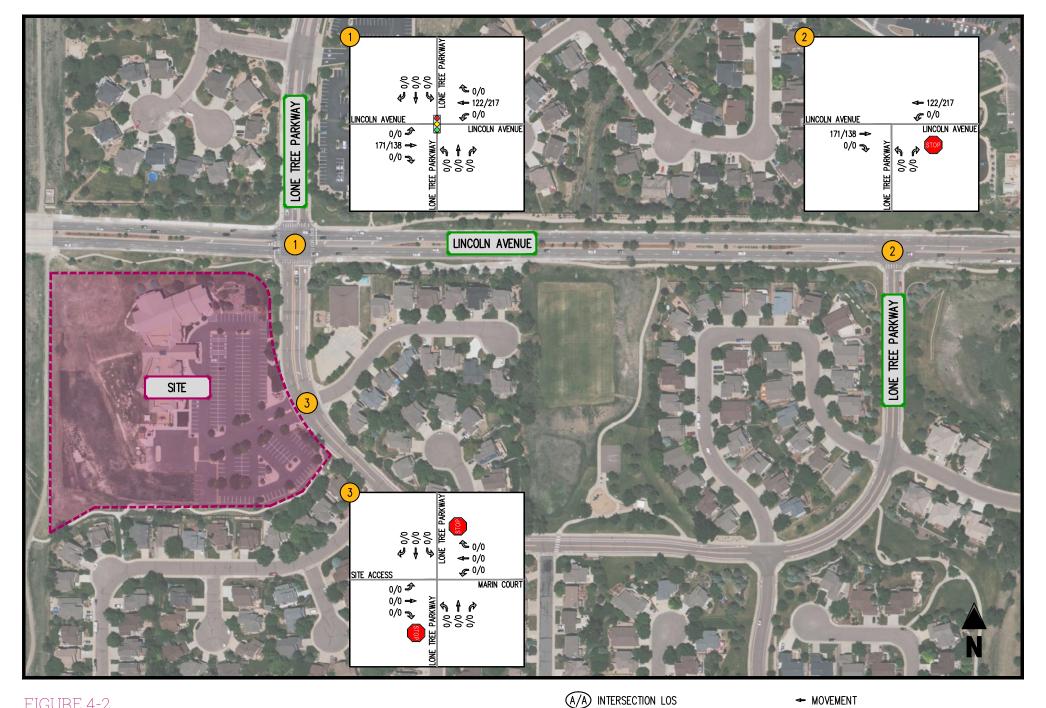
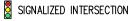



FIGURE 4-2 BACKGROUND 2045 GROWTH

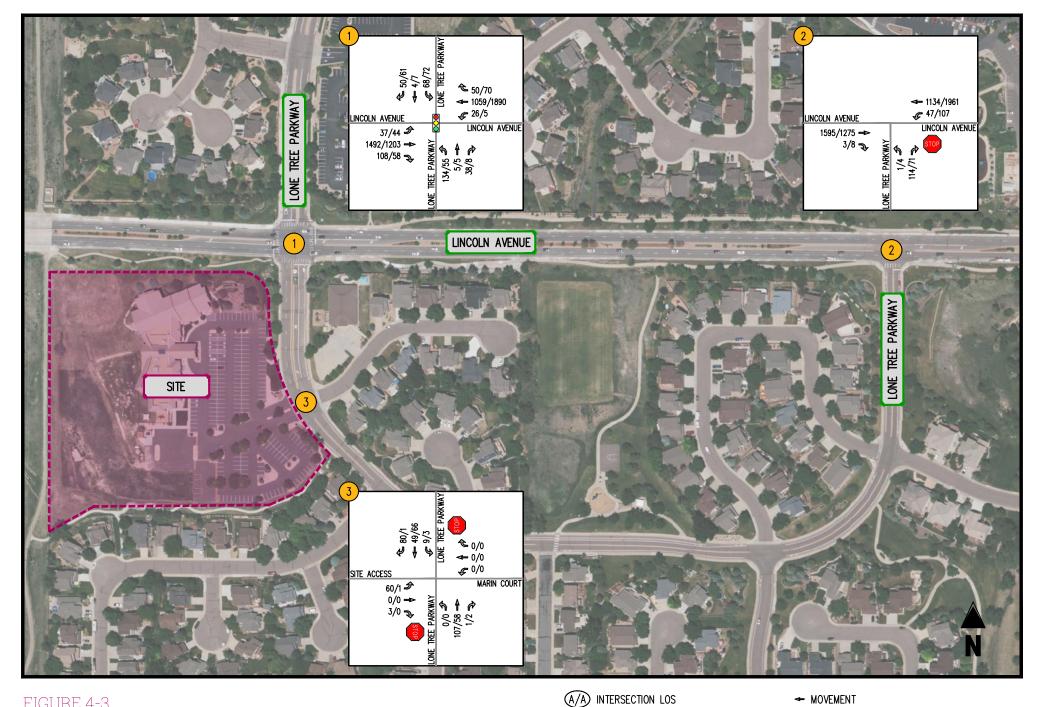
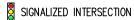



FIGURE 4-3 BACKGROUND 2025 FORECASTS

◆ MOVEMENT

STOP SIGN

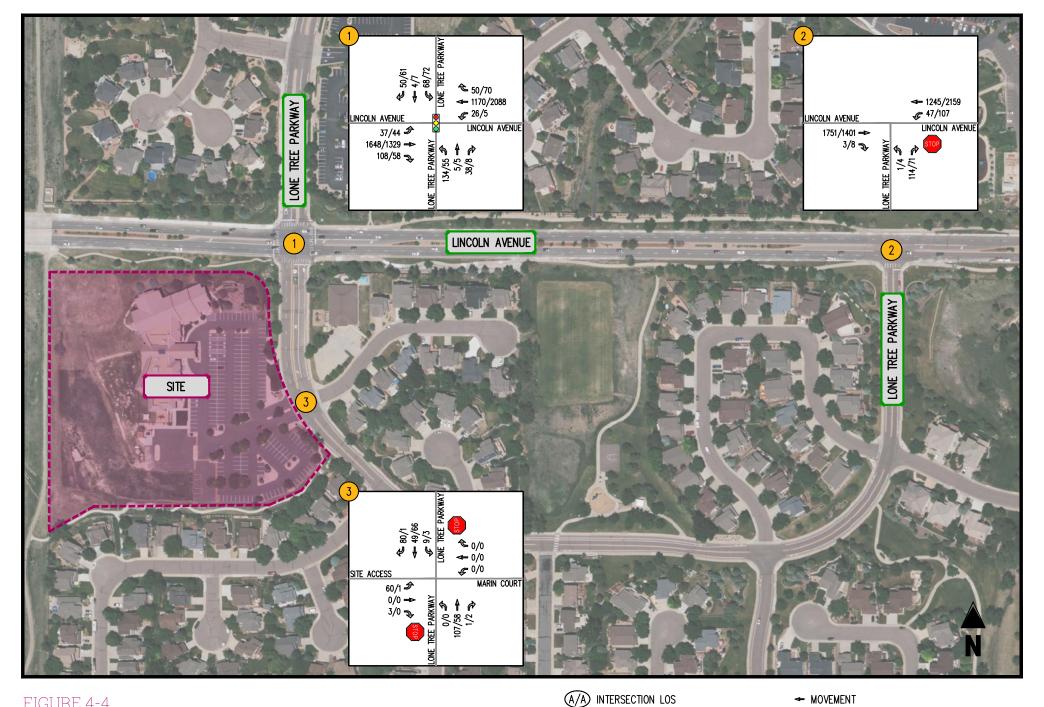
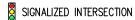



FIGURE 4-4 BACKGROUND 2045 FORECASTS

◆ MOVEMENT

STOP SIGN

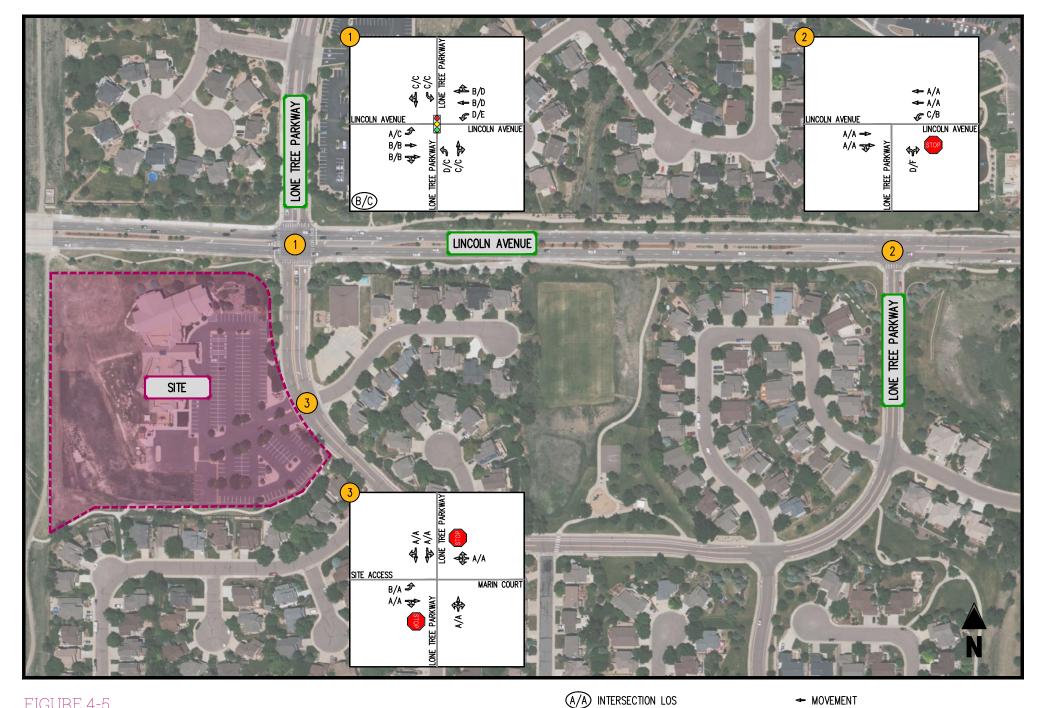
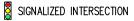



FIGURE 4-5 BACKGROUND 2025 LOS

◆ MOVEMENT

STOP SIGN

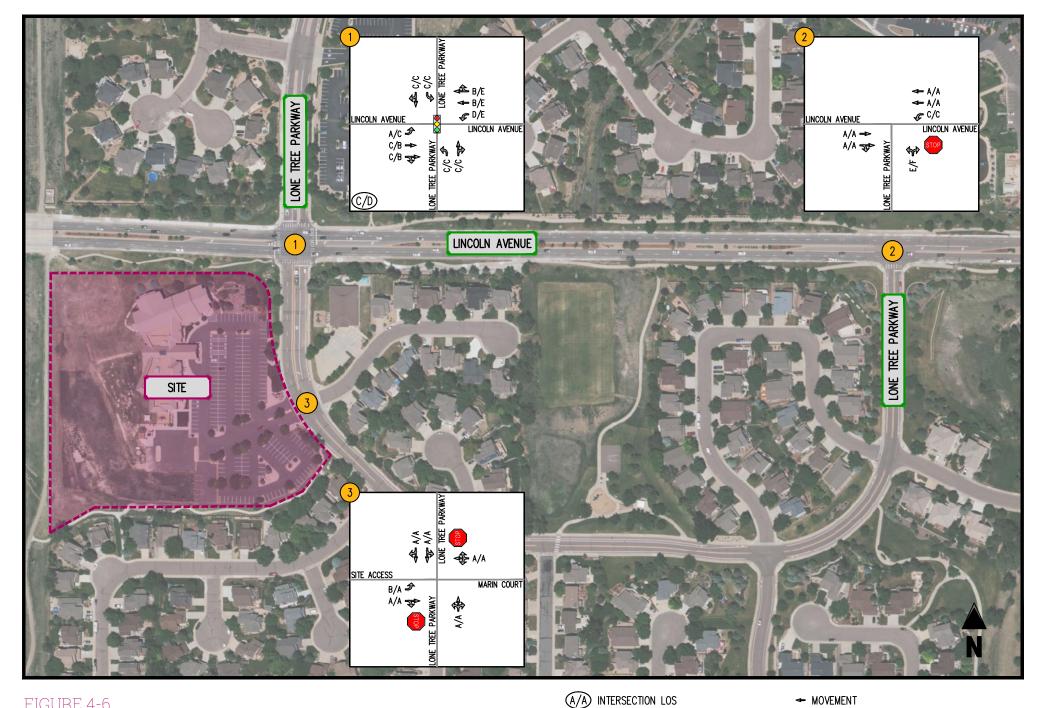
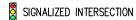



FIGURE 4-6 BACKGROUND 2045 LOS

◆ MOVEMENT

STOP SIGN

Table 4-1 Ambleside School - Lone Tree, CO Background Future Intersection Level of Service Summary (1) (2)

Intersection	Operating Condition		Approach/ Movement	Existir AM Peak Hour	ng 2023 PM Peak Hour	Backgro AM Peak Hour	und 2025 PM Peak Hour	Backgro AM Peak Hour	und 2045 PM Peak Hour
1 Lincoln Avenue/Lone Tree Parkway (W)	SIGNAL	Lincoln Avenue Lincoln Avenue Lone Tree Parkway Lone Tree Parkway	EBL EBTR WBL WBTR NBL NBTR SBL SBTR	A (7.8) C (21.5) D (52.8) B (12.2) D (41.1) C (30.5) C (34.2) C (31.1)	C (23.0) B (11.4) E (67.7) D (35.3) D (35.1) C (29.2) C (32.6) C (31.9)	A (7.9) B (18.5) D (52.8) B (12.3) D (39.1) C (30.1) C (33.4) C (30.6)	C (23.3) B (11.5) E (67.7) D (37.1) C (34.6) C (29.2) C (32.4) C (31.7)	A (8.5) C (22.8) D (52.8) B (13.1) C (29.4) C (30.3) C (33.6)	C (23.8) B (12.6) E (67.7) E (63.2) C (34.7) C (29.3) C (32.5) C (31.8)
2 Lincoln Avenue/Lone Tree Parkway (E)	STOP	Lincoln Avenue Lincoln Avenue Lone Tree Parkway	EBTR WBL WBT NBLR	A [0.0] C [18.1] A [0.0] E [36.0]	A [0.0] B [14.6] A [0.0] F [52.7]	A [0.0] C [16.7] A [0.0] D [29.9]	A [0.0] B [14.7] A [0.0] F [51.7]	C (20.2) A [0.0] C [19.0] A [0.0] E [38.8]	A [0.0] C [16.4] A [0.0] F [95.3]
3 Site Access/Lone Tree Parkway	STOP	Site Access Marin Court Lone Tree Parkway Lone Tree Parkway	EBL EBTR WBLTR NBLTR SBLT SBTR	B [10.9] A [8.7] A [8.9] A [0.0] A [7.5] A [0.0]	A [9.5] A [0.0] A [8.7] A [0.0] A [7.4] A [0.0]	B [10.7] A [8.7] A [8.9] A [0.0] A [7.5] A [0.0]	A [9.4] A [0.0] A [8.6] A [0.0] A [7.3] A [0.0]	B [10.7] A [8.7] A [8.9] A [0.0] A [7.5] A [0.0]	A [9.4] A [0.0] A [8.6] A [0.0] A [7.3] A [0.0]

Notes (1) Numbers in brackets [] represent delay at unsignalized intersections in seconds per vehicle.

⁽²⁾ Numbers in parenthesis () represent delay at signalized intersections in seconds per vehicle.

Table 4-2 Ambleside School - Lone Tree, CO Background Future Intersection Queueing Summary (1)

Intersection	Operating Condition	Street Name	Approach/ Movement		Existin AM Peak Hour	g 2023 PM Peak Hour	Backgro AM Peak Hour	und 2025 PM Peak Hour	Backgro AM Peak Hour	und 2045 PM Peak Hour
1 Lincoln Avenue/Lone Tree Parkway (W)	Lin	acoln Avenue acoln Avenue ne Tree Parkway ne Tree Parkway	EBL EBTR WBL WBTR NBL NBTR SBL SBTR	180 - 180 - - - 115	15 505 43 260 138 29 75 31	17 315 14 810 64 18 80 38	15 502 43 267 137 30 75 33	17 320 14 823 64 18 79 39	15 686 43 307 137 30 75 33	17 374 17 960 64 18 79 39
2 Lincoln Avenue/Lone Tree Parkway (E)	Lin	ncoln Avenue ncoln Avenue ne Tree Parkway	EBTR WBL WBT NBLR	- 180 - -	0 12.5 0 72.5	0 22.5 0 70	0 12.5 0 57.5	0 22.5 0 65	0 15 0 75	0 27.5 0 97.5
3 Site Access/Lone Tree Parkway	Ma Lo	e Access arin Court ne Tree Parkway ne Tree Parkway	EBL EBTR WBLTR NBLTR SBLT SBTR	- - - - -	7.5 0 0 0 0	0 0 0 0 0	7.5 0 0 0 0	0 0 0 0 0	7.5 0 0 0 0	0 0 0 0 0

Notes: (1) Queue length, in feet, is based on the 95th percentile queue as reported by Synchro, Version 12.

V. Site Analysis

Overview

The Applicant is proposing to redevelop the approximately 7.39 acre site with a private school use. For purposes of this study, the site will be developed in one phase. For analysis purposes it was assumed that the development would be complete and operational by 2025. The following use and development program was analyzed:

<u>Build Out - 2025</u> 221 STUDENTS Private School (K-12)

Proposed Site Access and Circulation

As shown on the Applicant's conceptual plan (Figure 1-2), access to the development is being proposed via the existing full movement access on Lone Tree Parkway. The Applicant has provided an operational plan within the narrative. An excerpt from the narrative describing operations is provided within Appendix A. This operation plan seeks to ensure that drop-off/pick-up operations will not spill into the public ROW. This plan is provided in Appendix G.

Trip Generation

Overview

Trip generation estimates for the weekday AM and PM peak hours, as well as the weekday average daily traffic (ADT), were derived from the standard Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u> rates/equations, as published in the 11th edition. The trip generation analysis is presented in Table 5-1.

Site Trips

The vehicle trips that would be generated by the proposed development plan are summarized in Table 5-1. As shown in Table 5-1, the site would generate upon completion and full occupancy 175 new weekday AM and 38 new weekday PM peak hour vehicle trips, as well as 548 new weekday daily trips.

Site Trip Distributions

The distribution of the anticipated trips generated by the completion of the proposed development was based on an examination of existing traffic counts and the current enrollment zip code data the school has available. The data as described provides the following distributions. A heat map of the zip code data is provided supporting the below distributions in Appendix C:

To/from the west on Lincoln Avenue: 70%
To/from the east on Lincoln Avenue: 25%

To/from the north on Lone Tree Parkway: 5%

Site Trip Assignments

The assignment of the new vehicle trips generated upon the future build-out of the development project was based on the above distribution. The trips assignments and distributions are depicted on Figure 5-1.

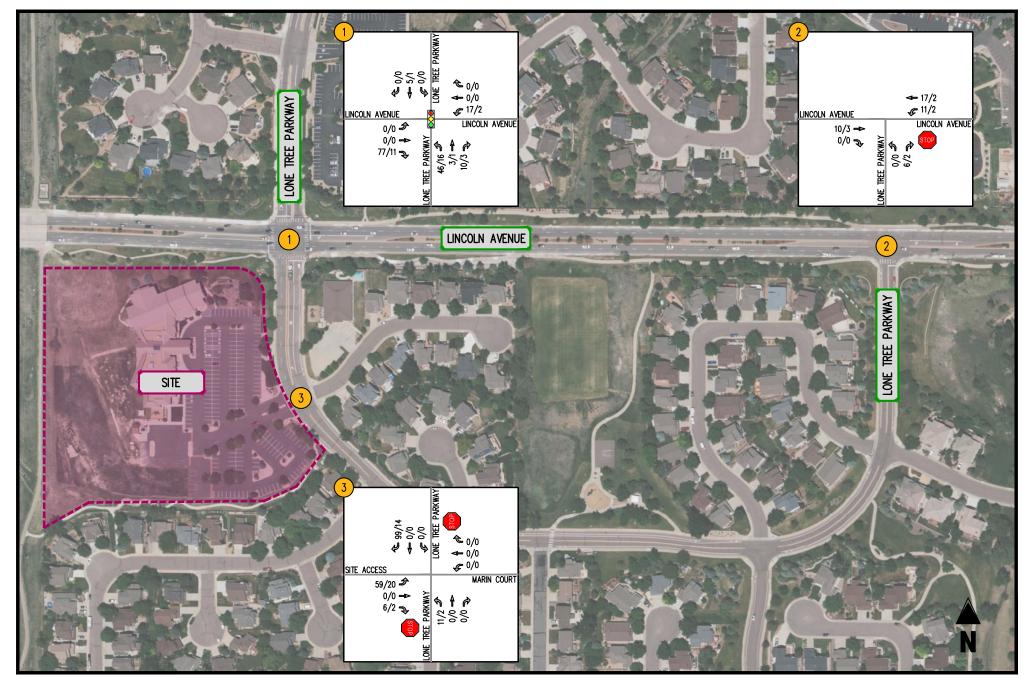
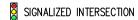



FIGURE 5-1 SITE TRIPS (A/A) INTERSECTION LOS

0000/0000 (AM PEAK HOUR/PM PEAK HOUR)

◆ MOVEMENT

STOP SIGN

Table 5-1 Ambleside School - Lone Tree, CO Site Trip Generation

Land Use	Land Use				AM Peak Hour			PM Peak Hour		
		Amount	Units	In	Out	Total	ln	Out	Total	Daily Trips
Proposed ⁽¹⁾ Private School (K-12)	532	221	Students	110	65	175	16	22	38	548

Note(s):
(1) Trip generation based on the Institute of Transportation Engineers' <u>Trip Generation Manual</u>, 11th Edition

VI. Analysis of Future Conditions with Site Development

Total Future Traffic Forecasts

The 2025 and 2045 total future traffic forecasts associated with the proposed development were developed by combining background future forecasts shown on Figure 4-3 (2025) and Figure 4-4 (2045), and the site trip assignments shown on Figure 5-1. The resulting total future traffic forecasts are provided on Figure 6-1 for 2025 conditions and Figure 6-2 for 2045 conditions.

Total Future Levels of Service with Proposed Development

Total future levels of service with the proposed development plan were estimated at key study intersections based on the future traffic volumes shown on Figures 6-1 and Figure 6-2, the lane use on Figure 5-1, and the HCM 7th methodologies for unsignalized intersections and signalized intersections. The results of these analyses are provided in Appendix F and presented in Table 6-1. Total future levels of service are also presented graphically on Figure 6-3 (2025) and Figure 6-4 (2045).

As shown in Table 6-1, levels of service under future site development conditions would remain consistent with future background conditions (i.e., without site development).

Total Future Queuing

Total future queues were forecasted using Synchro software. The results of the queuing analysis are summarized in Table 6-2. Forecasted queues at the signalized intersection would be contained within their effective storage, consistent with background conditions. Said differently, within the public ROW at the signalized intersection, the proposed use would not require the lengthening of any turn lanes at the studied intersections.



FIGURE 6-1 TOTAL FUTURE 2025 FORECASTS

(A/A) INTERSECTION LOS 0000/0000 (AM PEAK HOUR/PM PEAK HOUR) ◆ MOVEMENT

SIGNALIZED INTERSECTION

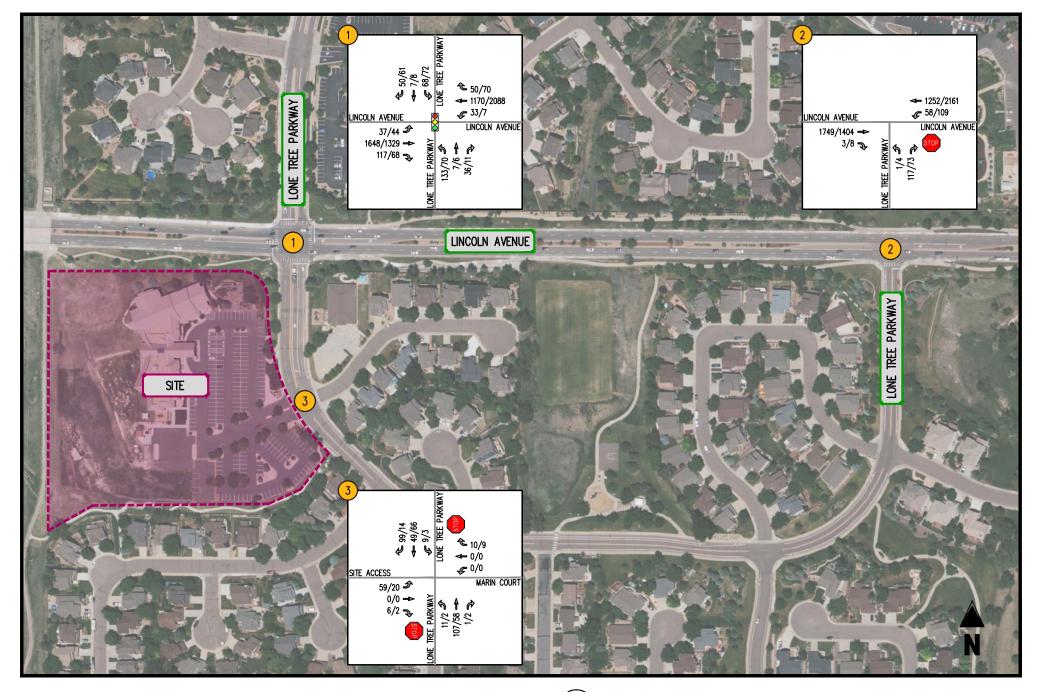


FIGURE 6-2 TOTAL FUTURE 2045 FORECASTS

(A/A) INTERSECTION LOS

0000/0000 (AM PEAK HOUR/PM PEAK HOUR)

◆ MOVEMENT

SIGNALIZED INTERSECTION

STOP SIGN

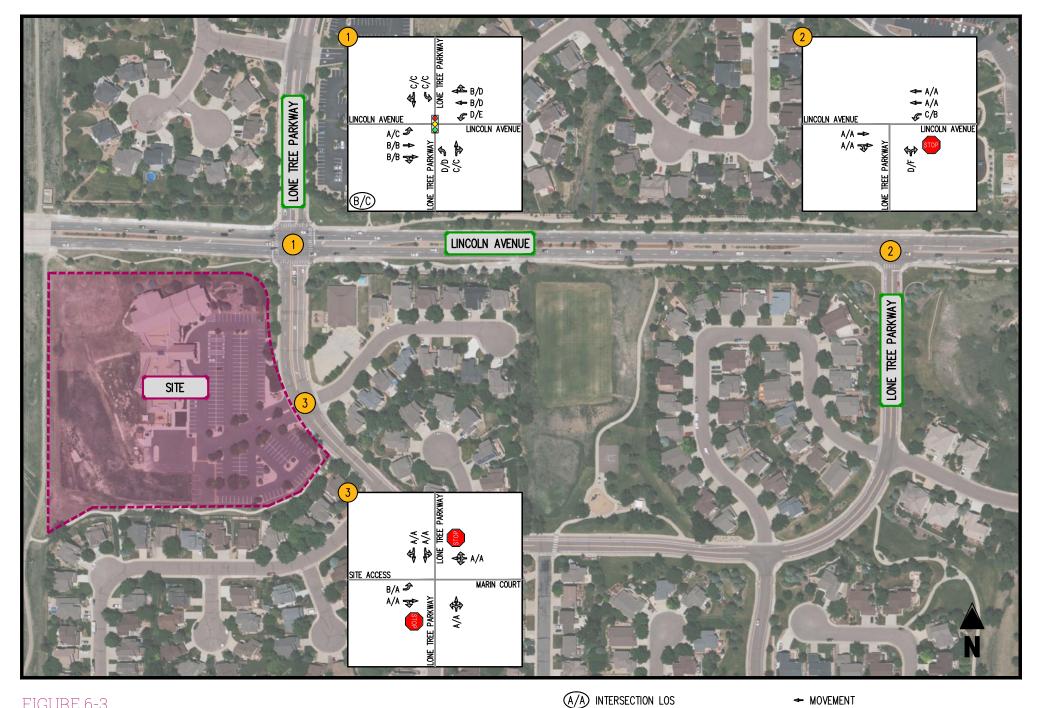
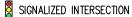



FIGURE 6-3 TOTAL FUTURE 2025 LOS

◆ MOVEMENT

STOP SIGN

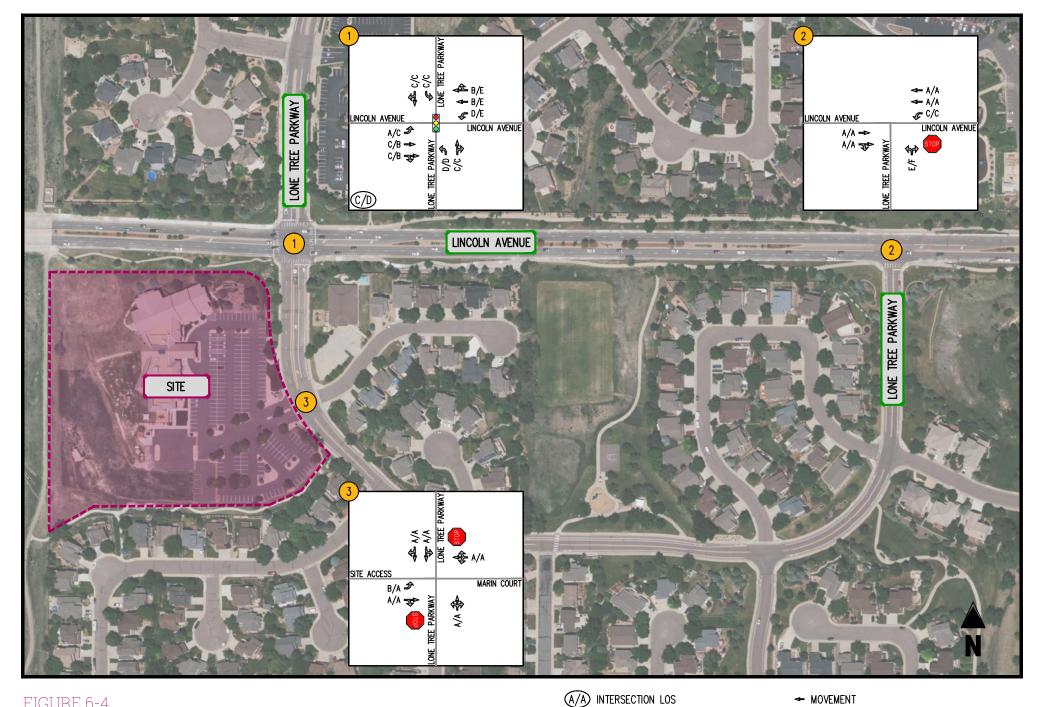
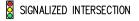



FIGURE 6-4 TOTAL FUTURE 2045 LOS

◆ MOVEMENT

STOP SIGN

Table 6-1 Ambleside School - Lone Tree, CO Total Future Intersection Level of Service Summary (1) (2)

Intersection	Operating Condition		Approach/ Movement	Backgro AM Peak Hour	und 2025 PM Peak Hour	Backgro AM Peak Hour	und 2045 PM Peak Hour	Total Fu AM Peak Hour	ture 2025 PM Peak Hour	Total Fut AM Peak Hour	ture 2045 PM Peak Hour
1 Lincoln Avenue/Lone Tree Parkway (W)	SIGNAL	Lincoln Avenue	EBL EBTR WBL	A (7.9) B (18.5) D (52.8)	C (23.3) B (11.5) E (67.7)	A (8.5) C (22.8) D (52.8)	C (23.8) B (12.6) E (67.7)	A (7.9) B (19.4) D (52.9)	C (23.2) B (11.8) E (60.7)	A (8.5) C (24.4) D (52.9)	C (23.7) B (13.0) E (60.7)
		Lincoln Avenue	WBTR	B (12.3)	D (37.1)	B (13.1)	E (63.2)	B (12.3)	D (37.1)	B (13.1)	E (63.2)
		Lone Tree Parkway	NBL NBTR	D (39.1) C (30.1)	C (34.6) C (29.2)	C (29.4) C (30.3)	C (34.7) C (29.3)	D (39.3) C (30.1)	D (35.6) C (29.4)	D (39.6) C (30.3)	D (35.7) C (29.5)
		Lone Tree Parkway	SBL SBTR	C (33.4) C (30.6)	C (32.4) C (31.7)	C (33.6) C (30.8)	C (32.5) C (31.8)	C (33.5) C (30.8)	C (32.6) C (31.8)	C (33.7) C (31.0)	C (32.7) C (31.9)
		Overal		B (17.9)	C (26.9)	C (20.2)	D (41.6)	B (18.5)	C (27.1)	C (21.0)	D (41.7)
2 Lincoln Avenue/Lone Tree Parkway (E)	STOP	Lincoln Avenue	EBTR	A [0.0]	A [0.0]						
		Lincoln Avenue	WBL WBT	C [16.7] A [0.0]	B [14.7] A [0.0]	C [19.0] A [0.0]	C [16.4] A [0.0]	C [17.1] A [0.0]	B [14.8] A [0.0]	C [19.6] A [0.0]	C [16.5] A [0.0]
		Lone Tree Parkway	NBLR	D [29.9]	F [51.7]	E [38.8]	F [95.3]	D [30.7]	F [52.7]	E [40.3]	F [98.3]
3 Site Access/Lone Tree Parkway	STOP	Site Access	EBL EBTR	B [10.7] A [8.7]	A [9.4] A [0.0]	B [10.7] A [8.7]	A [9.4] A [0.0]	B [11.1] A [8.8]	A [9.7] A [8.5]	B [11.1] A [8.8]	A [9.7] A [8.5]
		Marin Court	WBLTR	A [8.9]	A [8.6]						
		Lone Tree Parkway Lone Tree Parkway	NBLTR SBLT SBTR	A [0.0] A [7.5] A [0.0]	A [0.0] A [7.3] A [0.0]	A [0.0] A [7.5] A [0.0]	A [0.0] A [7.3] A [0.0]	A [7.6] A [7.5] A [0.0]	A [7.4] A [7.3] A [0.0]	A [7.6] A [7.5] A [0.0]	A [7.4] A [7.3] A [0.0]

Notes (1) Numbers in brackets [] represent delay at unsignalized intersections in seconds per vehicle.

⁽²⁾ Numbers in parenthesis () represent delay at signalized intersections in seconds per vehicle.

Table 6-2 Ambleside School - Lone Tree, CO Total Future Intersection Queueing Summary (1)

Intersection	Operating Condition		Approach/ Movement			und 2025 PM Peak Hour	Backgro AM Peak Hour	und 2045 PM Peak Hour	Total Fut AM Peak Hour	ture 2025 PM Peak Hour	Total Fut AM Peak Hour	ture 2045 PM Peak Hour
1 Lincoln Avenue/Lone Tree Parkway (W)	SIGNAL	Lincoln Avenue	EBL EBTR WBL	180 - 180	15 502 43	17 320 14	15 686 43	17 374 17	15 508 51	17 324 18	15 693 51	17 380 18
		Lone Tree Parkway	WBTR NBL NBTR SBL	- - - 115	267 137 30 75	823 64 18 79	307 137 30 75	960 64 18 79	267 135 32 75	823 77 22 79	307 136 32 75	960 78 22 79
		Lone Tree Parkway	SBTR	-	33	39	33	39	36	40	36	40
2 Lincoln Avenue/Lone Tree Parkway (E)	STOP	Lincoln Avenue Lincoln Avenue Lone Tree Parkway	EBTR WBL WBT NBLR	- 180 - -	0 12.5 0 57.5	0 22.5 0 65	0 15 0 75	0 27.5 0 97.5	0 15 0 62.5	0 25 0 67.5	0 20 0 80	0 27.5 0 102.5
3 Site Access/Lone Tree Parkway	STOP		EBL	_	7.5	0	7.5	0	7.5	2.5	7.5	2.5
o one Access/Lone Tree I aikway		Site Access Marin Court	EBTR WBLTR	-	0	0	0	0	0 0	0	0	0
		Lone Tree Parkway Lone Tree Parkway	NBLTR SBLT SBTR	- - -	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

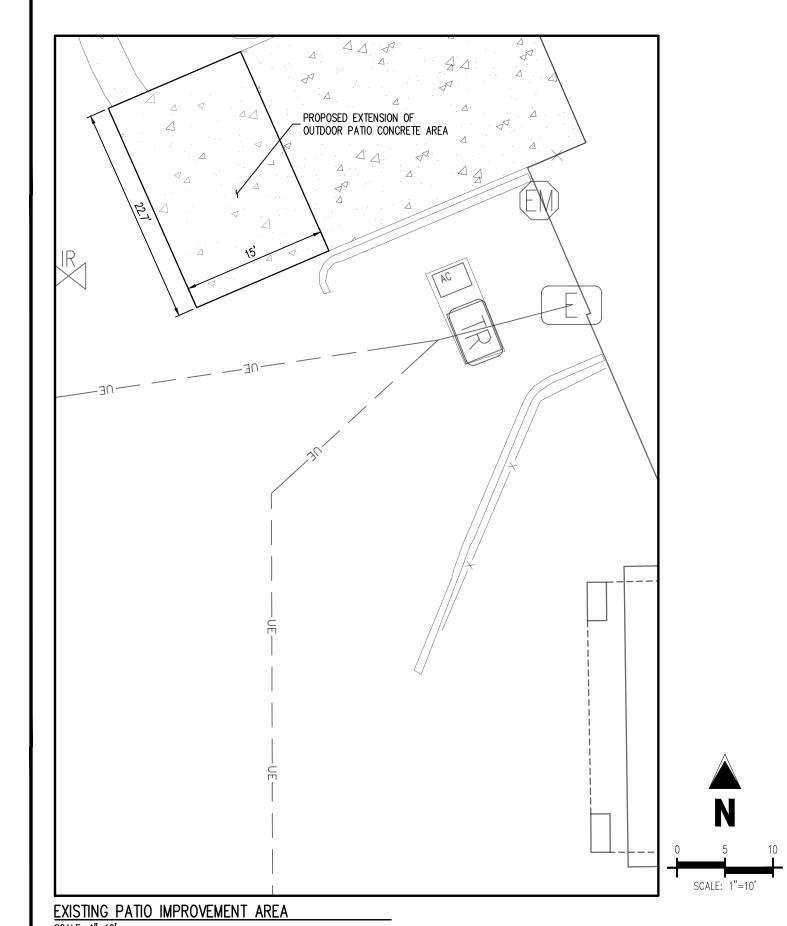
Notes: (1) Queue length, in feet, is based on the 95th percentile queue as reported by Synchro, Version 12.

VII. Conclusions and Recommendations

Conclusions

Based on the results of this traffic impact study, the following may be concluded:

- Under existing traffic conditions, the signalized intersection within the study area currently operate
 at overall acceptable levels of service (LOS) "C" or better during the weekday AM and PM peak
 hours, and queues remain within their respective storage lengths.
- Under existing traffic conditions, the unsignalized intersections within the study area currently
 operate at overall acceptable levels of service (LOS) "C" or better during the weekday AM and PM
 peak hours, with the exception of the northbound movement at the Lincoln Avenue/Lone Tree
 Parkway (E) intersection. V/C ratio remains under 1.0 for this movement, and all queues remain
 within their respective storage lengths.
- Under background future 2025 and 2045 traffic conditions, without the development of the subject site, the signalized intersection within the study area would operate at overall acceptable LOS "D" or better during the weekday AM and PM peak hours.
- Under background future 2025 and 2045 traffic conditions, without the development of the subject site, the unsignalized intersections within the study area would operate at levels of service consistent with existing conditions.
- The proposed site development would generate, upon completion and full occupancy, 175 new weekday AM and 38 new weekday PM peak hour vehicle trips as well as 548 new weekday daily trips.
- Under total future 2025 and 2045 traffic conditions, with development of the site, the intersections within the study area would operate consistent with background conditions.
- All forecasted gueues would be contained within their effective storage.


Recommendations

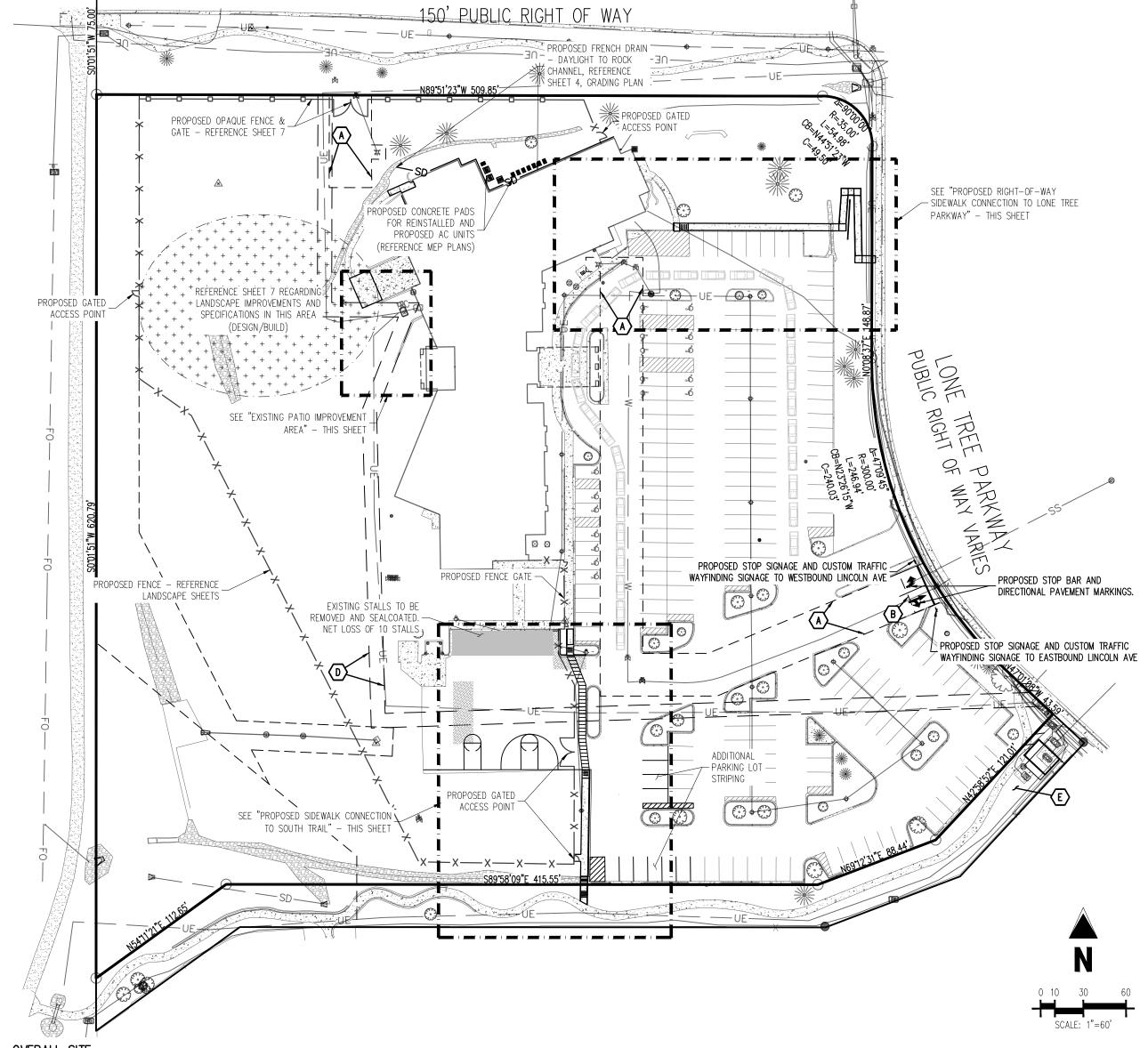
• The Applicant should provide access consistent with the site plan contained herein.

APPENDIX A – Full Sized Conceptual Plan

CENTENNIAL RIDGE AMBLESIDE SCHOOL

SITE IMPROVEMENT PLAN - SP24-0003 JANUARY 2024

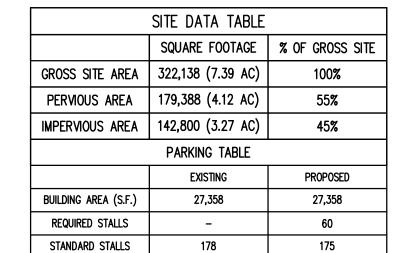
PROPOSED RIGHT-OF-WAY SIDEWALK CONNECTION TO LONE TREE PARKWAY


EXTEND EXISTING STORM

105.93

PIPE AS NEEDED

EXISTING 12" STORM


PIPE TO REMAIN

PROPOSED SIDEWALK CONNECTION TO SOUTH TRAIL

LINCOLN AVENUE

	SCALE: 1"=60' PROPOSED CONCRETE LANDING (REFERENCE SITE DETAILS) PROPOSED BIKE RACK 13 PROPOSED CROSSWALK
₩ ₩ ₩ 10°	
3 1 6' VIII VIE X X X X X X X X X X X X X X X X X X X	EXISTING SITE LIGHT POLE AND LIGHT POLE BASE TO BE ADJUSTED AS NECESSARY PER PROPOSED SIDEWALK
	-X - X - X - X - X - X - X - X - X - X

17

195

17

188

BICYCLE SPACES CITY PARKING CODE REQUIRES PARKING PER THE FOLLOWING: PER CODE, BICYCLE PARKING IS 2% OF TOTAL SITE PARKING .2 SPACES PER STUDENT (ELEMENTARY SCHOOL)

.16 SPACES PER STUDENT (MIDDLE SCHOOL) .46 SPACES PER STUDENT (HIGH SCHOOL) PROPOSED PARKING CONDITIONS ARE AS FOLLOWS: ELEMENTARY SCHOOL (K-5): 102 STUDENTS - 20.4 PARKING SPACES MIDDLE SCHOOL (6-8): 51 STUDENTS - 8.16 PARKING SPACES

HIGH SCHOOL (9-12): 68 STUDENTS - 31.28 PARKING SPACES PER CITY REQUIREMENTS, 60 TOTAL STALLS NEEDED

EASEMENT SCHEDULE

ADA STALLS

TOTAL PARKING STALLS

- A 30' WATER LINE EASEMENT. BOOK 1373, PAGE 1334
- B SEWER LINE EASEMENT. BOOK 1773, PAGE 1334
- C DRAINAGE EASEMENT. BOOK 330, PAGE 319
- (D) 10' PUBLIC SERVICE COMPANY OF COLORADO EASEMENT. REC. NO. 2004126614
- PAVED TRAIL EASEMENT AT RECEPTION NO. 2007052048 UNDER SCHEDULE B, PART 2 ITEM 21 IN THE TITLE COMMITMENT, REFERENCED ON THIS SURVEY, APPEARS TO BE INTENDED FOR THE CONCRETE WALK AT THE SOUTHEAST CORNER OF THE PROPERTY. THE EASEMENT IN "EXHIBIT A" DOES NOT HAVE THE INFORMATION TO ACCURATELY

SITE SCHEDULE

- 1) PROPOSED CONCRETE RAMP (REFERENCE SITE DETAILS)
- 2) PROPOSED RETAINING WALL (REFERENCE SITE DETAILS)
- 3) PROPOSED CONCRETE SIDEWALK (REFERENCE SITE DETAILS)
- (4) PROPOSED YELLOW PAINTED STRIPING AT 45° AT 2'-0" O.C.
- 5) PROPOSED 2' SIDEWALK CHASE (REFERENCE SITE DETAILS)
- 6 PROPOSED 6" CURB AND GUTTER (REFERENCE SITE DETAILS)
- 7) PROPOSED HANDRAIL
- 8 PROPOSED ASPHALT PATCHBACK (IN PLACE OF EXISTING LANDSCAPE ISLAND)
- (9) PROPOSED BASKETBALL COURT STRIPING
- (10) PROPOSED CONCRETE STAIRCASE (REFERENCE SITE DETAILS)

NOTE: CONTRACTOR MUST COORDINATE WORK WITH UTILITY COMPANY AND CITY PRIOR TO BEGINNING WORK AND IS RESPONSIBLE FOR ALL MATERIALS, LABOR, REPAIRS, ETC. TO COMPLETE WORK AND RESTORE AREA TO SAME STATE PRIOR TO STARTING WORK

NOTE: EXISTING SURFACE PIPE FOR ROOF DRAIN CONNECTION SHALL BE TRENCHED AND PLACED WITH A MINIMUM OF 1% SLOP AT A MINIMUM BURIAL DEPTH OF 12" AND DAYLIGHTED O NEAREST HILLSIDE TO PROMOTE POSITIVE DRAINAGE AND REDUCE SAFETY HAZARD.

LEGAL DESCRIPTION

DISTRICTS OR ANY OTHER GOVERNING AGENCY.

EXISTING PATIO AREA

PROPERTY BOUNDARY LINE

EXISTING TO REMAIN

EXISTING FENCE TO REMAIN

PROPOSED CURB AND GUTTER

EXISTING CURB AND GUTTER

PROPOSED ASPHALT PATCHBACK

PROPOSED SIDEWALK

PROPOSED SEALCOAT

EXISTING SIGN

PROPOSED SIGNAGE

SURVEYOR TO OBTAIN AUTOCAD FILE FROM ENGINEER AND VERIFY ALL HORIZONTAL CONTROL DIMENSIONING PRIOR TO CONSTRUCTION STAKING. SURVEYOR MUST VERIFY ALL BENCHMARK, BASIS OF BEARING AND DATUM INFORMATION TO ENSURE IMPROVEMENTS WILL BE AT THE

SAME HORIZONTAL AND VERTICAL LOCATIONS SHOWN ON THE DESIGN CONSTRUCTION DRAWINGS. PRIOR TO CONSTRUCTION STAKING ANY DISCREPANCY MUST BE REPORTED TO

CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL INFORMATION FOR FINAL ACCEPTANCE OF

IS NOT LIMITED TO, AS-BUILT PLANS, CERTIFICATIONS, INSPECTIONS AND REPORTS.

OR DISTRICT HAVING APPROVAL AUTHORITY OVER WORK. THIS INFORMATION MAY INCLUDE, BUT

CONTRACTOR IS RESPONSIBLE FOR AS-BUILT DRAWINGS, TESTS, REPORTS AND/OR ANY OTHER

CERTIFICATES OR INFORMATION AS REQUIRED FOR ACCEPTANCE OF WORK FROM CITY, UTILITY

NOTE: CONTRACTOR SHALL PROTECT ALL EXISTING SURVEY MONUMENTATION. CONTRACTOR

SHALL HAVE LICENSED SURVEYOR REPLACE ANY DAMAGED OR DISTURBED MONUMENTATION A

PROPOSED NEW

—— — — RIGHT OF WAY BOUNDARY LINE

EXISTING WATER LINE TO REMAIN

ADJACENT PROPERTY BOUNDARY LINE

EXISTING FIBER OPTIC LINE TO REMAIN

EXISTING UNDERGROUND ELECTRIC TO REMAIN

KEY MAP SCALE: 1"=200'

SITE LEGEND

A PARCEL OF LAND LOCATED IN THE NORTHWEST $\frac{1}{4}$ OF THE NORTHWEST $\frac{1}{4}$ OF THE SECTION 16, TOWNSHIP 6 SOUTH, RANGE 67 WEST OF THE 6TH PRINCIPAL MERIDIAN, DOUGLAS COUNTY, COLORADO, MORE PARTICULARLY

DESCRIBED AS FOLLOWS: COMMENCING AT THE NORTHWEST CORNER OF SAID SECTION 16 AND CONSIDERING THE WEST LINE OF SAID SECTION 16 TO BEAR NO114'50"E WITH ALL BEARINGS CONTAINED HEREIN RELATIVE THERETO:

THENCE S01°14'50"W ALONG SAID SECTION 16, 75.00 FEET TO THE SOUTH LINE OF LINCOLN AVENUE AND THE POINT OF BEGINNING: THENCE CONTINUING S01"14'50W" ALONG THE SAID WEST LINE. 657.80 FEET TO A POINT ON THE NORTH LINE OF CENTENNIAL RIDGE SUBDIVISION FILING

THENCE ALONG SAID NORTH LINE THE FOLLOWING FOUR (4) COURSES:

- 1. N55°24'20"E, 124.62 FEET;
- 2. S88°45'10"E, 411.36 FEET;
- 3. N70°25'30"E, 100.94 FEET; 4. N4411'51"E, 128.00 FEET TO A POINT ON THE WEST LINE OF LONE TREE PARKWAY;
- THENCE ALONG SAID WEST LINE THE FOLLOWING FOUR (4) COURSES: THENCE N45°48'09"W, 73.59 FEET TO A POINT OF CURVE; THENCE ALONG SAID CURVE TO THE RIGHT HAVING A RADIUS OF 300.00 FEET, A CENTRAL ANGLE OF N01°21'36", 246.94 FEET TO A
- POINT OF TANGENT; 3. THENCE ALONG SAID CURVE TO THE LEFT HAVING A RADIUS OF 35.00 FEET, A CENTRAL ANGLE OF 90°00'00", 54.98 FEET TO A LINE OF 75.00 FEET SOUTH OF AND PARALLEL TO THE NORTH LINE OF SAID NORTHWEST 1/4 OF THE NORTHWEST $\frac{1}{4}$;

THENCE N88°38'24"W ALONG SAID LINE 509.85 FEET TO THE POINT OF BEGINNING. EXCEPT THE REAL PROPERTY DESCRIBED IN THAT CERTAIN PARTIAL RELEASE OF DEED OF TRUST RECORDED AUGUST 14, 1985 IN BOOK 590, AT PAGE 392X, COUNTY OF DOUGLAS, STATE OF COLORADO.

CAUTION - NOTICE TO CONTRACTOR

ENGINEER PRIOR TO CONSTRUCTION.

I. ALL UTILITY LOCATIONS SHOWN ARE BASED ON MAPS PROVIDED BY THE APPROPRIATE UTILITY COMPANY AND FIELD SURFACE EVIDENCE AT THE TIME OF SURVEY AND IS TO BE CONSIDERED AN APPROXIMATE LOCATION ONLY. IT IS THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY THE LOCATION OF ALL UTILITIES, PUBLIC OR PRIVATE, WHETHER SHOWN ON THE PLANS OR NOT, PRIOR TO CONSTRUCTION. REPORT ANY DISCREPANCIES TO THE Know what's Delow.

Call before you dig. 2. WHERE A PROPOSED UTILITY CROSSES AN EXISTING UTILITY, IT IS THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY THE HORIZONTAL AND VERTICAL LOCATION OF SUCH EXISTING UTILITY, EITHER THROUGH POTHOLING OR ALTERNATIVE METHOD. REPORT INFORMATION TO THE ENGINEER PRIOR TO CONSTRUCTION.

Greenwood Village, CO 80111 303.770.8884 GallowayUS.com

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.

Date Issue / Description 1 01/19/24 1ST SUBMITTAL 03/13/24 2ND SUBMITTAL 3 04/24/24 3RD SUBMITTAL

AMC000002 Checked By: JANUARY 2024

SITE PLAN

APPENDIX B – LOS Descriptions

Level of Service for Signalized Intersections

Level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and lost travel time. Specifically, level-of-service (LOS) criteria are stated in terms of the average stopped delay per vehicle for a 15-min analysis period. The criteria are given in Exhibit 16-2. Delay may be measured in the field or estimated using procedures presented later in this chapter. Delay is a complex measure and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the *v/c* ratio for the lane group in question.

LOS A describes operations with very low delay, up to 10 sec per vehicle. This level of service occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.

LOS B describes operations with delay greater than 10 and up to 20 sec per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of average delay.

Exhibit 16-2. Level-of-Service Criteria for Signalized Intersections

LEVEL OF SERVICE	STOPPED DELAY PER VEHICLE (SEC)
А	≤10.0
В	> 10.0 and <u><</u> 20.0
С	> 20.0 and <u><</u> 35.0
D	> 35.0 and <u><</u> 55.0
E	> 55.0 and <u><</u> 80.0
F	>80.0

LOS C describes operations with delay greater than 20 and up to 35 sec per vehicle. These higher delays may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

LOS D describes operations with delay greater than 35 and up to 55 sec per vehicle. At level D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high *v/c* ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LOS E describes operations with delay greater than 55 and up to 80 sec per vehicle. This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent occurrences.

LOS F describes operations with delay in excess of 80 sec per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection. It may also occur at high *v/c* ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

Source: Highway Capacity Manual, 2000. Transportation Research Board, National Research Council

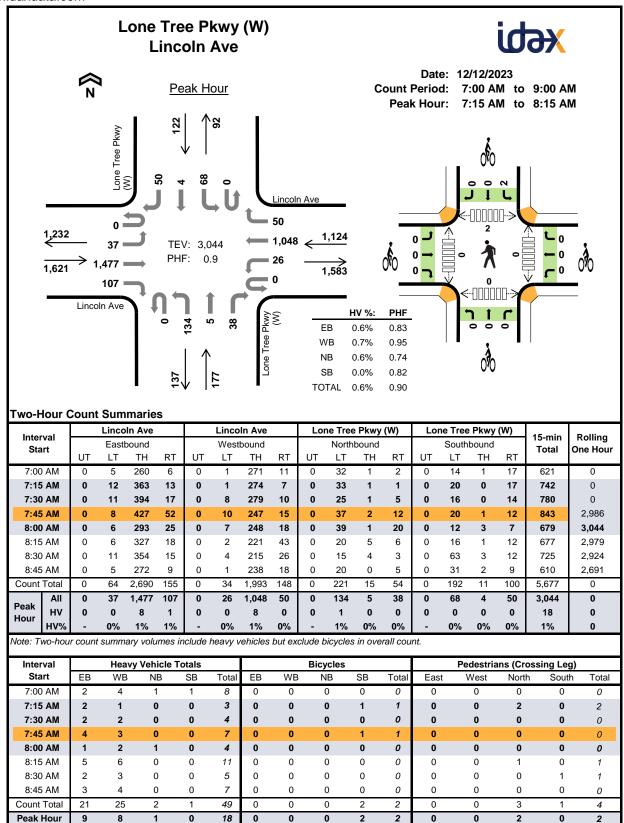
Level of Service Criteria for Stop Sign Controlled Intersections

The level of service criteria are given in Table 17-2. As used here, control delay is defined as the total elapsed time from the time a vehicle stops at the end of the queue until the vehicle departs from the stop line; this time includes the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position, including deceleration of vehicles from free-flow speed to the speed of vehicles in queue.

The average total delay for any particular minor movement is a function of the service rate or capacity of the approach and the degree of saturation. . . .

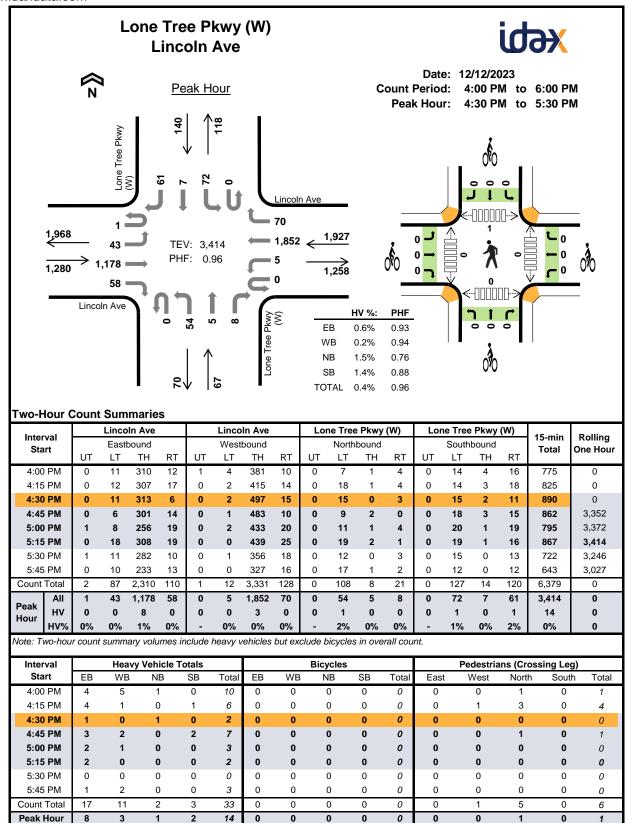
Table 17-2. Level of Service Criteria for TWSC Intersections

LEVEL OF SERVICE	AVERAGE CONTROL DELAY (sec/veh)
A	≤ 10
В	> 10 and <u><</u> 15
С	> 15 and <u><</u> 25
D	> 25 and <u><</u> 35
E	> 35 and <u><</u> 50
F	> 50

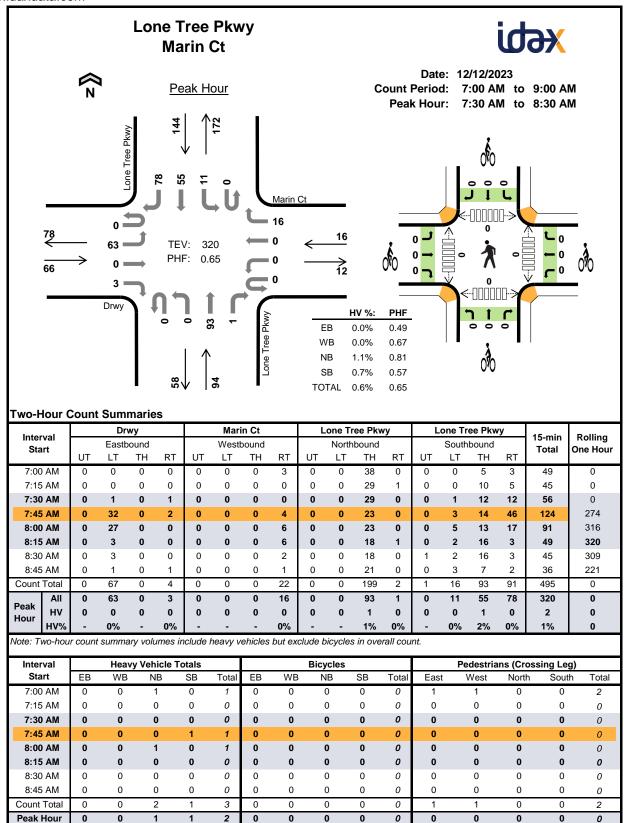

Average total delay less than 10 sec/veh is defined as Level of Service (LOS) A. Follow-up times of less than 5 sec have been measured when there is no conflicting traffic for a minor street movement, so control delays of less than 10 sec/veh are appropriate for low flow conditions. To remain consistent with the AWSC intersection analysis procedure described later in this chapter, a total delay of 50 sec/veh is assumed as the break point between LOS E and F.

The proposed level of service criteria for TWSC intersections are somewhat different from the criteria used in Chapter 16 for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from different kinds of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an unsignalized intersection. Additionally, several driver behavior considerations combine to make delays at signalized intersections less onerous than at unsignalized intersections. For example, drivers at signalized intersections are able to relax during the red interval, where drivers on the minor approaches to unsignalized intersections must remain attentive to the task of identifying acceptable gaps and vehicle conflicts. Also, there is often much more variability in the amount of delay experienced by individual drivers at unsignalized than signalized intersections. For these reasons, it is considered that the total delay threshold for any given level of service is less for an unsignalized intersection than for a signalized intersection. . . .

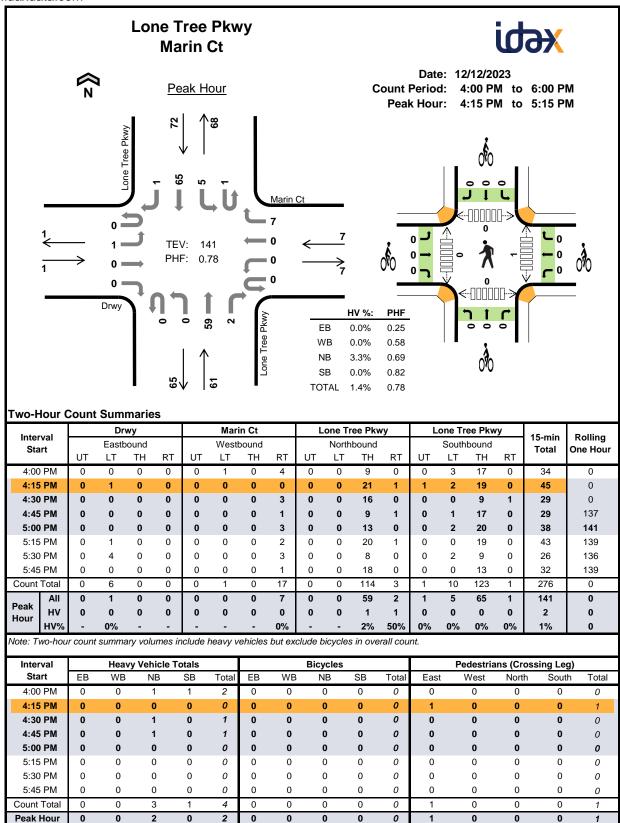
LOS F exists when there are insufficient gaps of suitable size to allow a side street demand to cross safely through a major street traffic stream. This level of service is generally evident from extremely long total delays experienced by side street traffic and by queueing on the minor approaches. The method, however, is based on a constant critical gap size - that is, the critical gap remains constant, no matter how long the side street motorist waits. LOS F may also appear in the form of side street vehicles' selecting smaller-than-usual gaps. In such cases, safety may be a problem and some disruption to the major traffic stream may result. It is important to note that LOS F may not always result in long queues but may result in adjustments to normal gap acceptance behavior. The latter is more difficult to observe on the field than queueing, which is more obvious.


Source: Highway Capacity Manual, 2000. Transportation Research Board, National Research Council

APPENDIX C –Traffic Counts and Heat Map


Interval		Linco	In Ave			Linco	In Ave		Lor	ne Tree	Pkwy	(W)	Lor	ne Tree	Pkwy	(W)	15-min	Palling
Start		Eastb	ound			West	bound			North	bound			South	bound		Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One nour
7:00 AM	0	0	2	0	0	0	3	1	0	1	0	0	0	0	0	1	8	0
7:15 AM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	3	0
7:30 AM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	4	0
7:45 AM	0	0	3	1	0	0	3	0	0	0	0	0	0	0	0	0	7	22
8:00 AM	0	0	1	0	0	0	2	0	0	1	0	0	0	0	0	0	4	18
8:15 AM	0	0	5	0	0	0	6	0	0	0	0	0	0	0	0	0	11	26
8:30 AM	0	0	2	0	0	0	3	0	0	0	0	0	0	0	0	0	5	27
8:45 AM	0	0	3	0	0	0	4	0	0	0	0	0	0	0	0	0	7	27
Count Total	0	0	20	1	0	0	24	1	0	2	0	0	0	0	0	1	49	0
Peak Hour	0	0	8	1	0	0	8	0	0	1	0	0	0	0	0	0	18	0

Interval	Li	incoln A	ve	L	incoln A	ve	Lone	Tree Pk	wy (W)	Lone	Tree Pkv	vy (W)	15-min	Rolling
Start	Е	astboun	d	٧	Vestbour	nd	N	lorthbour	nd	S	outhbour	nd	Total	One Hour
3. 5	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		0.10 1.10
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	1	0	0	1	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	1	0	0	1	2
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	2	0	0	2	0
Peak Hour	0	0	0	0	0	0	0	0	0	2	0	0	2	0


Interval		Linco	In Ave			Linco	In Ave		Loi	ne Tree	Pkwy	(W)	Loi	ne Tree	Pkwy	(W)	15-min	Dalling
Start		Eastb	ound			West	bound			North	bound			South	bound		Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One mean
4:00 PM	0	0	3	1	0	0	5	0	0	1	0	0	0	0	0	0	10	0
4:15 PM	0	1	3	0	0	0	1	0	0	0	0	0	0	1	0	0	6	0
4:30 PM	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0
4:45 PM	0	0	3	0	0	0	2	0	0	0	0	0	0	1	0	1	7	25
5:00 PM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	3	18
5:15 PM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	14
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
5:45 PM	0	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	3	8
Count Total	0	1	15	1	0	0	11	0	0	2	0	0	0	2	0	1	33	0
Peak Hour	0	0	8	0	0	0	3	0	0	1	0	0	0	1	0	1	14	0

Interval	Li	incoln A	ve	L	incoln A	ve	Lone	Tree Pk	wy (W)	Lone	Tree Pkv	vy (W)	15-min	Rolling
Start	Е	Eastboun	d	٧	Vestbour	nd	N	lorthbour	nd	S	outhbour	nd	Total	One Hour
O.a	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	. • • • • •	0.101.104.1
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

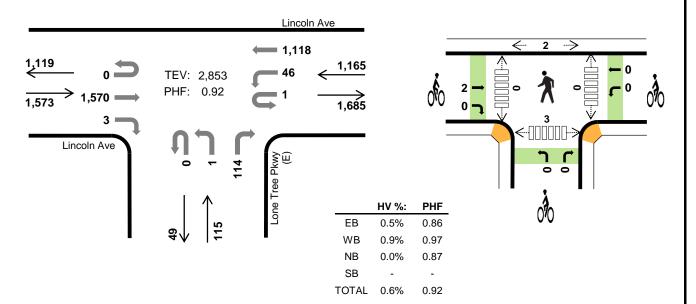
Interval		Dr	wy			Mar	in Ct		L	one Tr	ee Pkv	/y	L	one Tr	ee Pkw	ry	45	Dalling
Start		Eastb	ound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One moun
7:00 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	2
8:00 AM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Count Total	0	0	0	0	0	0	0	0	0	0	2	0	0	0	1	0	3	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0

Interval		Drwy			Marin Ct	t	Lon	e Tree P	kwy	Lon	e Tree P	kwy	15-min	Rolling
Interval Start	E	Eastboun	d	٧	Vestboun	ıd	N	lorthbour	nd	S	outhbour	nd	Total	One Hour
J.a	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		0.101.104.1
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Interval		Dr	wy			Mar	in Ct		L	one Tr	ee Pkw	/y	L	one Tr	ee Pkw	ry	45	Dalling
Start		Eastb	ound			Westl	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One mean
4:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
4:45 PM	0	0	0	0	0 0 0 0			0	0	0	1	0	0	0	0	1	4	
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	2	1	0	0	1	0	4	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0

Interval		Drwy			Marin C	t	Lon	e Tree P	kwy	Lon	e Tree P	kwy	15-min	Rolling
Start	Е	astboun	d	V	Vestbour	nd	١	lorthbour	nd	S	outhbour	nd	Total	One Hour
5.	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	. • • • •	0.101.104.1
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Lone Tree Pkwy (E) Lincoln Ave



 $\stackrel{\textstyle \sim}{\sim}$

Peak Hour

Date: 12/12/2023

Count Period: 7:00 AM to 9:00 AM Peak Hour: 7:15 AM to 8:15 AM

Two-Hour Count Summaries

Inter	n al		Linco	oln Ave			Linco	In Ave		Lo	ne Tree	Pkwy	(E)		N	/A		15-min	Rolling
Sta			East	bound			West	bound			North	bound			South	bound		Total	One Hour
Ota		UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One flour
7:00	AM (0	0	282	2	0	4	290	0	0	1	0	14	0	0	0	0	593	0
7:15	AM	0	0	399	1	1	9	283	0	0	0	0	25	0	0	0	0	718	0
7:30	AM	0	0	381	1	0	9	291	0	0	1	0	29	0	0	0	0	712	0
7:45	AM	0	0	456	1	0	12	279	0	0	0	0	27	0	0	0	0	775	2,798
8:00	AM	0	0	334	0	0	16	265	0	0	0	0	33	0	0	0	0	648	2,853
8:15	5 AM	0	0	337	3	0	15	269	0	0	0	0	33	0	0	0	0	657	2,792
8:30	AM	0	0	426	1	1	13	242	0	0	0	0	28	0	0	0	0	711	2,791
8:45	AM	0	0	312	2	0	23	256	0	0	0	0	27	0	0	0	0	620	2,636
Count	Total	0	0	2,927	11	2	101	2,175	0	0	2	0	216	0	0	0	0	5,434	0
D.	All	0	0	1,570	3	1	46	1,118	0	0	1	0	114	0	0	0	0	2,853	0
Peak Hour	HV	0	0	8	0	0	1	9	0	0	0	0	0	0	0	0	0	18	0
Hour	HV%	-	-	1%	0%	0%	2%	1%	-	-	0%	-	0%	-	-	-	-	1%	0

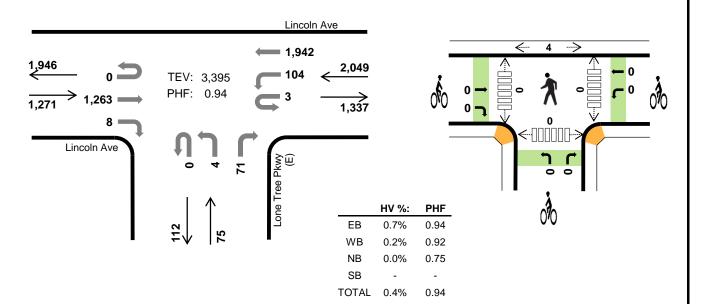
Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals	-			Bicycles				Pedestria	ıns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	2	4	0	0	6	0	0	0	0	0	0	0	1	0	1
7:15 AM	2	1	0	0	3	1	0	0	0	1	0	0	2	1	3
7:30 AM	2	2	0	0	4	0	0	0	0	0	0	0	0	1	1
7:45 AM	3	4	0	0	7	1	0	0	0	1	0	0	0	1	1
8:00 AM	1	3	0	0	4	0	0	0	0	0	0	0	0	0	0
8:15 AM	5	8	0	0	13	0	0	0	0	0	0	0	0	0	0
8:30 AM	2	1	0	0	3	0	0	0	0	0	0	0	1	1	2
8:45 AM	3	5	0	0	8	0	0	0	0	0	0	0	0	0	0
Count Total	20	28	0	0	48	2	0	0	0	2	0	0	4	4	8
Peak Hr	8	10	0	0	18	2	0	0	0	2	0	0	2	3	5

Two-Hour (Count	Sum	marie	s - He	eavy \	/ehicl	les											
lutam al		Linco	In Ave			Linco	In Ave		Lo	ne Tre	e Pkwy	(E)		N	/A		45	D a llian an
Interval Start		Easth	oound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riou
7:00 AM	0	0	2	0	0	0	4	0	0	0	0	0	0	0	0	0	6	0
7:15 AM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	3	0
7:30 AM	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	4	0
7:45 AM	0	0	3	0	0	0	4	0	0	0	0	0	0	0	0	0	7	20
8:00 AM	0	0	1	0	0	1	2	0	0	0	0	0	0	0	0	0	4	18
8:15 AM	0	0	5	0	0	1	7	0	0	0	0	0	0	0	0	0	13	28
8:30 AM	0	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	3	27
8:45 AM	0	0	3	0	0	1	4	0	0	0	0	0	0	0	0	0	8	28
Count Total	0	0	20	0	0	3	25	0	0	0	0	0	0	0	0	0	48	0
Peak Hour	0	0	8	0	0	1	9	0	0	0	0	0	0	0	0	0	18	0

Intonval	Li	incoln A	ve	L	incoln A	ve	Lone	Tree Pk	wy (E)		N/A		15-min	Dalling
Interval Start	E	astboun	d	V	Vestbour	nd	N	lorthbour	nd	S	outhbour	nd	Total	Rolling One Hour
o.u.r.	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	i otai	Ono mou
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	1	2
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	2	0	0	0	0	0	0	0	0	0	0	2	0
Peak Hour	0	2	0	0	0	0	0	0	0	0	0	0	2	0

Lone Tree Pkwy (E) Lincoln Ave



 \approx

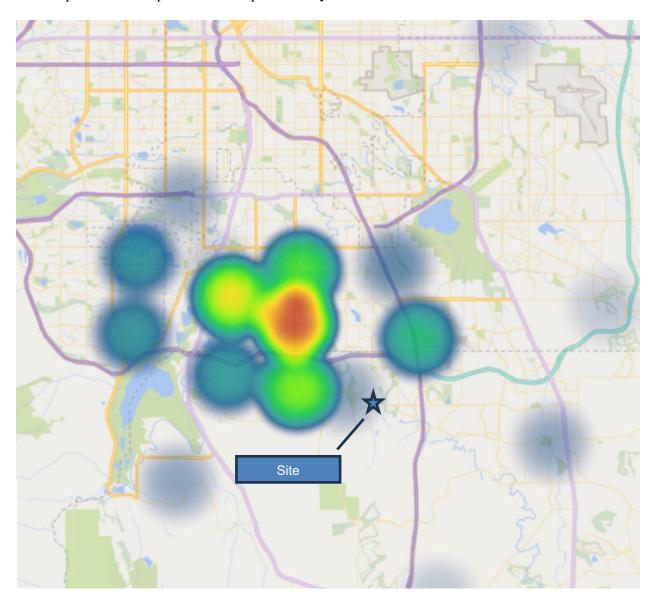
Peak Hour

Date: 12/12/2023

Count Period: 4:00 PM to 6:00 PM Peak Hour: 4:30 PM to 5:30 PM

Two-Hour Count Summaries

Inter	n al		Linco	oln Ave			Linco	In Ave		Lo	ne Tree	Pkwy	(E)		N	/A		15-min	Rolling
Sta			East	bound			West	bound			North	oound			South	bound		Total	One Hour
Ote		UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One nou
4:00	PM	0	0	324	3	0	25	383	0	0	0	0	12	0	0	0	0	747	0
4:15	PM	0	0	318	5	0	22	418	0	0	3	0	16	0	0	0	0	782	0
4:30	PM	0	0	333	1	2	19	534	0	0	1	0	17	0	0	0	0	907	0
4:45	PM	0	0	316	2	1	24	471	0	0	0	0	16	0	0	0	0	830	3,266
5:00	PM	0	0	278	2	0	30	486	0	0	3	0	22	0	0	0	0	821	3,340
5:15	PM	0	0	336	3	0	31	451	0	0	0	0	16	0	0	0	0	837	3,395
5:30	PM	0	0	285	3	0	27	393	0	0	0	0	15	0	0	0	0	723	3,211
5:45	PM	0	0	245	2	0	33	332	0	0	0	0	16	0	0	0	0	628	3,009
Count	Total	0	0	2,435	21	3	211	3,468	0	0	7	0	130	0	0	0	0	6,275	0
Dools	All	0	0	1,263	8	3	104	1,942	0	0	4	0	71	0	0	0	0	3,395	0
Peak Hour	HV	0	0	9	0	0	1	3	0	0	0	0	0	0	0	0	0	13	0
Hou	HV%	-	-	1%	0%	0%	1%	0%	-	-	0%	-	0%	-	-	-	-	0%	0


Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles				Pedestria	ıns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	4	5	1	0	10	0	0	0	0	0	0	0	0	0	0
4:15 PM	3	1	0	0	4	0	0	0	0	0	0	0	0	0	0
4:30 PM	1	0	0	0	1	0	0	0	0	0	0	0	3	0	3
4:45 PM	4	3	0	0	7	0	0	0	0	0	0	0	1	0	1
5:00 PM	2	1	0	0	3	0	0	0	0	0	0	0	0	0	0
5:15 PM	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0
5:30 PM	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0
Count Total	17	12	1	0	30	0	0	0	0	0	0	0	4	0	4
Peak Hr	9	4	0	0	13	0	0	0	0	0	0	0	4	0	4

		Linco	In Ave			Linco	In Ave		Lo	ne Tre	Pkwy	(E)		N	/A			
Interval Start			oound				bound				bound	\-/			bound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT LT TH RT 0 0 5 0		UT	LT	TH	RT	UT	LT	TH	RT	Total	One Hour		
4:00 PM	0	0	4	0	0	0	5	0	0	0	0	1	0	0	0	0	10	0
4:15 PM	0	0	3	0	0	0	1	0	0	0	0	0	0	0	0	0	4	0
4:30 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
4:45 PM	0	0	4	0	0	0	3	0	0	0	0	0	0	0	0	0	7	22
5:00 PM	0	0	2	0	0	1	0	0	0	0	0	0	0	0	0	0	3	15
5:15 PM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	13
5:30 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	13
5:45 PM	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	8
Count Total	0	0	17	0	0	1	11	0	0	0	0	1	0	0	0	0	30	0
Peak Hour	0	0	9	0	0	1	3	0	0	0	0	0	0	0	0	0	13	0

Interval	Li	incoln A	/e	L	incoln A	ve	Lone	Tree Pk	wy (E)		N/A		15-min	Dalling
Start	E	Eastboun	d	V	Vestbour	ıd	١	Northbour	nd	S	outhbour	nd	Total	Rolling One Hour
Start	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	, otal	Ono mou
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Heatmap of student zip code data as provided by the school:

APPENDIX D – Existing Synchro Outputs

	٠	→	•	←	1	†	-	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	44	1865	28	1193	158	51	80	64
v/c Ratio	0.15	0.81	0.27	0.54	0.59	0.14	0.29	0.17
Control Delay (s/veh)	5.5	16.5	47.3	10.9	42.3	12.0	33.8	10.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	5.5	16.5	47.3	10.9	42.3	12.0	33.8	10.9
Queue Length 50th (ft)	7	308	16	202	82	3	39	2
Queue Length 95th (ft)	15	505	43	260	138	29	75	31
Internal Link Dist (ft)		355		1347		306		319
Turn Bay Length (ft)	180		180				115	
Base Capacity (vph)	298	2293	104	2226	270	364	274	373
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.81	0.27	0.54	0.59	0.14	0.29	0.17
Intersection Summary								

_EX AM 1:06 pm 12/15/2023 Synchro 12 Report Page 1

	۶	→	*	•	←	•	1	†	1	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	†		×	†		7	4		7	4	
Traffic Volume (veh/h)	37	1477	108	26	1048	50	134	5	38	68	4	50
Future Volume (veh/h)	37	1477	108	26	1048	50	134	5	38	68	4	50
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	44	1738	127	28	1139	54	158	6	45	80	5	59
Peak Hour Factor	0.85	0.85	0.85	0.92	0.92	0.92	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	342	2079	150	50	2106	100	308	39	290	320	25	301
Arrive On Green	0.04	0.62	0.62	0.03	0.61	0.61	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1781	3360	243	1781	3454	164	1338	190	1424	1354	125	1479
Grp Volume(v), veh/h	44	910	955	28	586	607	158	0	51	80	0	64
Grp Sat Flow(s),veh/h/ln	1781	1777	1827	1781	1777	1841	1338	0	1614	1354	0	1604
Q Serve(g_s), s	0.8	36.1	37.6	1.4	17.3	17.3	10.0	0.0	2.3	4.7	0.0	3.0
Cycle Q Clear(g_c), s	0.8	36.1	37.6	1.4	17.3	17.3	13.0	0.0	2.3	7.0	0.0	3.0
Prop In Lane	1.00		0.13	1.00		0.09	1.00	V. 0	0.88	1.00		0.92
Lane Grp Cap(c), veh/h	342	1099	1130	50	1083	1122	308	0	328	320	0	326
V/C Ratio(X)	0.13	0.83	0.84	0.56	0.54	0.54	0.51	0.00	0.16	0.25	0.00	0.20
Avail Cap(c_a), veh/h	377	1099	1130	105	1083	1122	308	0	328	320	0	326
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.6	13.4	13.7	43.2	10.2	10.2	35.1	0.0	29.5	32.4	0.0	29.7
Incr Delay (d2), s/veh	0.2	7.2	7.8	9.6	1.9	1.9	6.0	0.0	1.0	1.9	0.0	1.3
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	13.4	14.4	0.7	6.0	6.2	3.7	0.0	1.0	1.7	0.0	1.3
Unsig. Movement Delay, s/veh		10.4	17.7	0.7	0.0	0.2	0.7	0.0	1.0	1.7	0.0	1.0
LnGrp Delay(d), s/veh	7.8	20.6	21.5	52.8	12.2	12.1	41.1	0.0	30.5	34.2	0.0	31.1
LnGrp LOS	7.0 A	20.0 C	C C	02.0 D	В	В	71.1 D	0.0	C	C	0.0	C
Approach Vol, veh/h	А	1909			1221		<u> </u>	209	0	0	144	
Approach Delay, s/veh		20.8			13.1			38.5			32.8	
Approach LOS		20.0 C			13.1 B			30.5 D			32.0 C	
<u></u>					Ь						C	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		22.8	7.0	60.2		22.8	7.8	59.4				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.3	5.3	52.9		18.3	5.1	53.1				
Max Q Clear Time (g_c+l1), s		15.0	3.4	39.6		9.0	2.8	19.3				
Green Ext Time (p_c), s		0.2	0.0	9.7		0.3	0.0	8.7				
Intersection Summary												
HCM 7th Control Delay, s/veh			19.6									
HCM 7th LOS			В									

_EX AM 1:06 pm 12/15/2023 Synchro 12 Report Page 2

Intersection						
Int Delay, s/veh	1.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		LDIX	VVDL	↑ ↑	₩.	אטוז
Traffic Vol, veh/h	↑ ↑	3	47	TT 1123	т	114
					-	
Future Vol, veh/h	1580	3	47	1123	1	114
Conflicting Peds, #/hr	0	_ 0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	180	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	92	92	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1837	3	51	1221	1	131
N A - 1 /N A1 N	1.1.1		4.1.0		P	
	//ajor1		Major2		Minor1	
Conflicting Flow All	0	0	1841	0	2551	920
Stage 1	-	-	-	-	1839	-
Stage 2	-	-	-	-	713	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	327	-	22	273
Stage 1	_	-	-	_	112	-
Stage 2	_	_	_	-	447	_
Platoon blocked, %	_			_	171	
Mov Cap-1 Maneuver	_	-	327	-	18	273
					18	213
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	112	-
Stage 2	-	-	-	-	377	-
Approach	EB		WB		NB	
HCM Control Delay, s/v			0.73		36.03	
HCM LOS			0.10		E	
1.5141 2.00					_	
Minor Lane/Major Mvm	t l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		244	-	-	327	-
HCM Lane V/C Ratio		0.543	-	-	0.156	-
HCM Control Delay (s/v	/eh)	36	-	-	18.1	-
HCM Lane LOS		E	-	-	С	_
HCM 95th %tile Q(veh)		2.9	_	_	0.5	_
TION JOHN JOHN Q(VEII)		2.0			0.0	

_EX AM 1:06 pm 12/15/2023 Synchro 12 Report Page 3

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1			4			4			414	
Traffic Vol, veh/h	60	0	3	0	0	10	0	107	1	9	49	80
Future Vol, veh/h	60	0	3	0	0	10	0	107	1	9	49	80
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-		-	-	None
Storage Length	0	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	71	0	4	0	0	12	0	126	1	11	58	94
Major/Minor	Minor2			Minor1			Major1		1	Major2		
Conflicting Flow All	252	253	76	176	299	126	152	0	0	127	0	0
Stage 1	126	126	-	126	126	-	-	-	-	-	-	-
Stage 2	126	127	-	50	173	-	-	-	-	-	-	-
Critical Hdwy	7.33	6.53	6.93	7.33	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-
Follow-up Hdwy	3.519	4.019	3.319		4.019	3.319	2.219	-	-	2.219	-	-
Pot Cap-1 Maneuver	691	650	970	778	612	923	1428	-	-	1458	-	-
Stage 1	865	791	-	877	791	-	-	-	-	-	-	-
Stage 2	877	790	-	957	755	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	677	645	970	769	608	923	1428	-	-	1458	-	-
Mov Cap-2 Maneuver	677	645	-	769	608	-	-	-	-	-	-	-
Stage 1	859	785	-	877	791	-	-	-	-	-	-	-
Stage 2	866	790	-	947	749	-	-	-	-	-	-	-
, and the second												
Approach	EB			WB			NB			SB		
HCM Control Delay, s/	v10.83			8.95			0			0.5		
HCM LOS	В			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR		
Capacity (veh/h)		1428	-	-	677	970	923	126	-	-		
HCM Lane V/C Ratio		-	-	-	0.104				-	-		
HCM Control Delay (s/	veh)	0	-	-	10.9	8.7	8.9	7.5	0	-		
HCM Lane LOS	,	A	-	-	В	Α	Α	A	A	-		
HCM 95th %tile Q(veh)	0	-	-	0.3	0	0	0	-	-		
	,											

_EX AM 1:06 pm 12/15/2023 Synchro 12 Report Page 4

	•	→	1	←	4	†	1	Ţ	
	EDI	EDT	VA/DI	MOT	NDI	NDT	ODI	ODT	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	48	1358	5	2110	65	15	82	77	
v/c Ratio	0.26	0.57	0.05	0.94	0.25	0.04	0.29	0.20	
Control Delay (s/veh)	8.0	9.3	41.4	26.9	33.2	20.2	33.9	10.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	8.0	9.3	41.4	26.9	33.2	20.2	33.9	10.8	
Queue Length 50th (ft)	7	169	3	~606	31	3	40	4	
Queue Length 95th (ft)	17	315	14	#810	64	18	80	38	
Internal Link Dist (ft)		355		1347		306		319	
Turn Bay Length (ft)	180		180				115		
Base Capacity (vph)	182	2383	100	2238	264	348	280	379	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.57	0.05	0.94	0.25	0.04	0.29	0.20	

Intersection Summary

_EX PM 1:11 pm 12/15/2023 Synchro 12 Report Page 1

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	*	•	←	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	↑ ↑		7	4		7	1	
Traffic Volume (veh/h)	44	1191	58	5	1871	70	55	5	8	72	7	61
Future Volume (veh/h)	44	1191	58	5	1871	70	55	5	8	72	7	61
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	48	1295	63	5	2034	76	65	6	9	82	8	69
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.85	0.85	0.85	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	160	2216	108	12	2132	79	293	136	204	351	34	290
Arrive On Green	0.04	0.64	0.64	0.01	0.61	0.61	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1781	3449	168	1781	3494	130	1322	675	1013	1398	167	1443
Grp Volume(v), veh/h	48	666	692	5	1028	1082	65	0	15	82	0	77
Grp Sat Flow(s),veh/h/ln	1781	1777	1840	1781	1777	1847	1322	0	1688	1398	0	1611
Q Serve(g_s), s	0.9	19.3	19.4	0.3	48.2	49.6	3.9	0.0	0.6	4.5	0.0	3.6
Cycle Q Clear(g_c), s	0.9	19.3	19.4	0.3	48.2	49.6	7.5	0.0	0.6	5.2	0.0	3.6
Prop In Lane	1.00		0.09	1.00		0.07	1.00		0.60	1.00		0.90
Lane Grp Cap(c), veh/h	160	1141	1182	12	1084	1127	293	0	339	351	0	324
V/C Ratio(X)	0.30	0.58	0.59	0.43	0.95	0.96	0.22	0.00	0.04	0.23	0.00	0.24
Avail Cap(c_a), veh/h	192	1141	1182	101	1084	1127	293	0	339	351	0	324
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	21.9	9.2	9.2	44.5	16.2	16.5	33.3	0.0	29.0	31.1	0.0	30.2
Incr Delay (d2), s/veh	1.0	2.2	2.1	23.1	17.4	18.8	1.7	0.0	0.2	1.6	0.0	1.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	6.4	6.7	0.2	20.3	22.0	1.4	0.0	0.3	1.7	0.0	1.5
Unsig. Movement Delay, s/veh		0.1	0.7	0.2	20.0	22.0		0.0	0.0	1.7	0.0	1.0
LnGrp Delay(d), s/veh	23.0	11.4	11.3	67.7	33.7	35.3	35.1	0.0	29.2	32.6	0.0	31.9
LnGrp LOS	C C	В	В	E	C	D	D	0.0	C	C	0.0	C C
Approach Vol, veh/h		1406			2115			80			159	
Approach Delay, s/veh		11.8			34.6			34.0			32.3	
Approach LOS		11.0 B			34.0 C			34.0 C			32.3 C	
<u></u>					C						C	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		22.6	5.1	62.3		22.6	8.0	59.4				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.1	5.1	53.3		18.1	5.1	53.3				
Max Q Clear Time (g_c+l1), s		9.5	2.3	21.4		7.2	2.9	51.6				
Green Ext Time (p_c), s		0.1	0.0	10.5		0.4	0.0	1.5				
Intersection Summary												
HCM 7th Control Delay, s/veh			25.9									
HCM 7th LOS			С									

_EX PM 1:11 pm 12/15/2023 Synchro 12 Report Page 2

Intersection						
Int Delay, s/veh	1.7					
•						
	BT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† β		*	^	A.	
	263	8	107	1942	4	71
•	263	8	107	1942	4	71
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control F	ree	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	180	-	0	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	85	85
Heavy Vehicles, %	2	2	2	2	2	2
	373	9	116	2111	5	84
	0.0		1.0		•	•
		_		_		
	jor1		Major2		Minor1	
Conflicting Flow All	0	0	1382	0	2665	691
Stage 1	-	-	-	-	1377	-
Stage 2	-	-	-	-	1288	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	492	-	18	387
Stage 1	-	-	-	-	199	-
Stage 2	-	-	-	-	223	-
Platoon blocked, %	-	_		_		
Mov Cap-1 Maneuver	_	_	492	_	14	387
Mov Cap-2 Maneuver	_	_		-	14	-
Stage 1	_		_	_	199	_
Stage 2	-	_	_	_	170	_
Slaye Z	-	-	-	_	170	-
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.76		52.67	
HCM LOS					F	
		UDI 4	COT	CDD	14/51	MOT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		159	-	-	492	-
HCM Lane V/C Ratio		0.555	-	-	0.236	-
HCM Control Delay (s/vel	1)	52.7	-	-	14.6	-
HCM Lane LOS		F	-	-	В	-
HCM 95th %tile Q(veh)		2.8	-	-	0.9	-

_EX PM 1:11 pm 12/15/2023 Synchro 12 Report Page 3

Intersection												
Int Delay, s/veh	0.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)			4			4			414	
Traffic Vol, veh/h	1	0	0	0	0	9	0	58	2	3	66	1
Future Vol, veh/h	1	0	0	0	0	9	0	58	2	3	66	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	<u> </u>	-	None	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	0	0	0	0	11	0	68	2	4	78	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	154	156	39	115	155	69	79	0	0	71	0	0
Stage 1	85	85	-	69	69	-	13	-	U	/ 1	-	U
Stage 2	68	71	-	46	86	-	-	-	-	-	-	-
Critical Hdwy	7.33	6.53	6.93	7.33	6.53	6.23	4.13	-	-	4.13	-	_
Critical Hdwy Stg 1	6.53	5.53	0.53	6.13	5.53	0.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 2	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	_
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-
Pot Cap-1 Maneuver	806	736	1024	855	736	993	1518	-	-	1529	-	-
Stage 1	913	824	1024	940	837	333	1310	-	-	1525	-	-
Stage 2	942	836	-	963	823	-	-	-	-	-	-	-
Platoon blocked, %	342	030	-	303	023	-	-	-	_	-	-	-
Mov Cap-1 Maneuver	795	734	1024	853	734	993	1518	-	-	1529	-	-
Mov Cap-1 Maneuver	795	734		853	734	333	1310	-	_	1323	-	-
Stage 1	911	822	-	940	837	-	-	-	-	-	-	-
Stage 2	931	836	-	960	821	-	-	-	-	-	_	-
Staye 2	301	000	-	900	021	-	-	-	_	-	_	_
Approach	EB			WB			NB			SB		
HCM Control Delay, s/	v 9.53			8.66			0			0.33		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1 I	EBLn2V	VBLn1	SBL	SBT	SBR		
Capacity (veh/h)		1518	-	-	795	_	993	151	-	_		
HCM Lane V/C Ratio			_		0.001		0.011		-	_		
HCM Control Delay (s/	veh)	0	-	_	9.5	0	8.7	7.4	0	_		
HCM Lane LOS	¥011)	A	_	-	3.5 A	A	Α	7. 4	A	_		
HCM 95th %tile Q(veh)	0	_	_	0	-	0	0	-	_		
Sim ootii 70tiio Q(Voii	1				- 0			J				

_EX PM 1:11 pm 12/15/2023 Synchro 12 Report Page 4

66

APPENDIX E – Background (without site development) Synchro Outputs

	٠	→	•	—	4	†	-	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	40	1739	28	1205	146	46	74	58
v/c Ratio	0.13	0.76	0.27	0.54	0.53	0.13	0.27	0.16
Control Delay (s/veh)	5.4	14.7	47.3	11.2	39.9	12.1	33.1	10.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	5.4	14.7	47.3	11.2	39.9	12.1	33.1	10.8
Queue Length 50th (ft)	6	268	16	208	75	2	36	2
Queue Length 95th (ft)	15	502	43	267	137	30	75	33
Internal Link Dist (ft)		355		1347		306		319
Turn Bay Length (ft)	180		180				115	
Base Capacity (vph)	297	2285	104	2214	275	364	278	372
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.76	0.27	0.54	0.53	0.13	0.27	0.16
Intersection Summary								

	۶	→	*	•	←	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		*	↑ ↑		7	1		7	1	
Traffic Volume (veh/h)	37	1492	108	26	1059	50	134	5	38	68	4	50
Future Volume (veh/h)	37	1492	108	26	1059	50	134	5	38	68	4	50
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	40	1622	117	28	1151	54	146	5	41	74	4	54
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	335	2073	148	50	2106	99	316	36	295	328	23	307
Arrive On Green	0.04	0.62	0.62	0.03	0.61	0.61	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	1781	3363	241	1781	3456	162	1345	175	1437	1360	110	1491
Grp Volume(v), veh/h	40	851	888	28	592	613	146	0	46	74	0	58
Grp Sat Flow(s), veh/h/ln	1781	1777	1827	1781	1777	1841	1345	0	1612	1360	0	1602
Q Serve(g_s), s	0.7	31.7	32.6	1.4	17.5	17.6	9.0	0.0	2.1	4.2	0.0	2.7
Cycle Q Clear(g_c), s	0.7	31.7	32.6	1.4	17.5	17.6	11.7	0.0	2.1	6.3	0.0	2.7
Prop In Lane	1.00	01	0.13	1.00	17.0	0.09	1.00	0.0	0.89	1.00	0.0	0.93
Lane Grp Cap(c), veh/h	335	1095	1126	50	1083	1122	316	0	331	328	0	329
V/C Ratio(X)	0.12	0.78	0.79	0.56	0.55	0.55	0.46	0.00	0.14	0.23	0.00	0.18
Avail Cap(c_a), veh/h	377	1095	1126	105	1083	1122	316	0	331	328	0	329
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.7	12.7	12.9	43.2	10.3	10.3	34.3	0.0	29.2	31.8	0.0	29.5
Incr Delay (d2), s/veh	0.2	5.4	5.6	9.6	2.0	1.9	4.8	0.0	0.9	1.6	0.0	1.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	11.5	12.2	0.7	6.1	6.3	3.3	0.0	0.9	1.5	0.0	1.1
Unsig. Movement Delay, s/veh		11.0	12.2	0.1	0.1	0.0	0.0	0.0	0.5	1.0	0.0	1.1
LnGrp Delay(d), s/veh	7.9	18.1	18.5	52.8	12.3	12.2	39.1	0.0	30.1	33.4	0.0	30.6
LnGrp LOS	7.5 A	В	В	02.0 D	12.3 B	В	D	0.0	C	C	0.0	00.0 C
Approach Vol, veh/h		1779	U	U	1233	U	D	192	<u> </u>	<u> </u>	132	
Approach Delay, s/veh		18.1			13.2			36.9			32.2	
											32.2 C	
Approach LOS		В			В			D			C	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		23.0	7.0	60.0		23.0	7.7	59.3				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.5	5.3	52.7		18.5	5.3	52.7				
Max Q Clear Time (g_c+l1), s		13.7	3.4	34.6		8.3	2.7	19.6				
Green Ext Time (p_c), s		0.3	0.0	11.3		0.3	0.0	8.8				
Intersection Summary												
HCM 7th Control Delay, s/veh			17.9									
HCM 7th LOS			В									

Note Section Section
Anne Configurations
Traffic Vol, veh/h 60 0 3 0 0 10 0 107 1 9 49 80 Future Vol, veh/h 60 0 3 0 0 10 0 107 1 9 49 80 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0
Traffic Vol, veh/h 60 0 3 0 0 10 0 107 1 9 49 80 Future Vol, veh/h 60 0 3 0 0 10 0 107 1 9 49 80 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0
Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free
RT Channelized None None None
Storage Length 0
/eh in Median Storage, # - 0 0 0 -
Grade, % - 0 0 0 -
Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92
feavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2
Avmt Flow 65 0 3 0 0 11 0 116 1 10 53 87
Major/Minor Minor2 Minor1 Major1 Major2
Conflicting Flow All 233 234 70 163 277 117 140 0 0 117 0 0
Stage 1 116 116 - 117 117
Stage 2 116 117 - 46 160
Critical Hdwy 7.33 6.53 6.93 7.33 6.53 6.23 4.13 4.13
Critical Hdwy Stg 1 6.53 5.53 - 6.13 5.53
Critical Hdwy Stg 2 6.13 5.53 - 6.53 5.53
Follow-up Hdwy 3.519 4.019 3.319 3.519 4.019 3.319 2.219 2.219
Pot Cap-1 Maneuver 712 666 979 794 630 935 1442 1470
Stage 1 876 799 - 887 798
Stage 2 888 798 - 962 765
Platoon blocked, %
Mov Cap-1 Maneuver 699 661 979 786 626 935 1442 1470
Mov Cap-2 Maneuver 699 661 - 786 626
Stage 1 870 793 - 887 798
Stage 2 878 798 - 952 760
Approach EB WB NB SB
HCM Control Delay, s/v10.58 8.9 0 0.5
HCM LOS B A
Minor Lane/Major Mvmt NBL NBT NBR EBLn1 EBLn2WBLn1 SBL SBT SBR
Capacity (veh/h) 1442 699 979 935 126
HCM Lane V/C Ratio 0.093 0.003 0.012 0.007
HCM Control Delay (s/veh) 0 10.7 8.7 8.9 7.5 0 -
ICM Lane LOS A B A A A -
ICM 95th %tile Q(veh) 0 0.3 0 0

Lane Group EBL EBT WBL WBT NBL NBT SBL SBT Lane Group Flow (vph) 48 1371 5 2130 60 14 78 74 v/c Ratio 0.26 0.58 0.05 0.95 0.23 0.04 0.28 0.20 Control Delay (s/veh) 8.0 9.4 41.4 28.1 32.8 19.5 33.6 11.1 Queue Delay 0.0		•	→	1	←	1	†	1	↓
v/c Ratio 0.26 0.58 0.05 0.95 0.23 0.04 0.28 0.20 Control Delay (s/veh) 8.0 9.4 41.4 28.1 32.8 19.5 33.6 11.1 Queue Delay 0.0 <th>Lane Group</th> <th>EBL</th> <th>EBT</th> <th>WBL</th> <th>WBT</th> <th>NBL</th> <th>NBT</th> <th>SBL</th> <th>SBT</th>	Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Control Delay (s/veh) 8.0 9.4 41.4 28.1 32.8 19.5 33.6 11.1 Queue Delay 0.0 <t< td=""><td>Lane Group Flow (vph)</td><td>48</td><td>1371</td><td>5</td><td>2130</td><td>60</td><td>14</td><td>78</td><td>74</td></t<>	Lane Group Flow (vph)	48	1371	5	2130	60	14	78	74
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td>0.26</td><td>0.58</td><td>0.05</td><td>0.95</td><td>0.23</td><td>0.04</td><td>0.28</td><td>0.20</td></th<>	v/c Ratio	0.26	0.58	0.05	0.95	0.23	0.04	0.28	0.20
Total Delay (s/veh) 8.0 9.4 41.4 28.1 32.8 19.5 33.6 11.1 Queue Length 50th (ft) 7 172 3 ~638 29 2 38 4 Queue Length 95th (ft) 17 320 14 #823 64 18 79 39 Internal Link Dist (ft) 355 1347 306 319 Turn Bay Length (ft) 180 180 115 Base Capacity (vph) 182 2383 100 2238 265 345 280 377 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Control Delay (s/veh)	8.0	9.4	41.4	28.1	32.8	19.5	33.6	11.1
Queue Length 50th (ft) 7 172 3 ~638 29 2 38 4 Queue Length 95th (ft) 17 320 14 #823 64 18 79 39 Internal Link Dist (ft) 355 1347 306 319 Turn Bay Length (ft) 180 180 115 Base Capacity (vph) 182 2383 100 2238 265 345 280 377 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Length 95th (ft) 17 320 14 #823 64 18 79 39 Internal Link Dist (ft) 355 1347 306 319 Turn Bay Length (ft) 180 180 115 Base Capacity (vph) 182 2383 100 2238 265 345 280 377 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0	Total Delay (s/veh)	8.0	9.4	41.4	28.1	32.8	19.5	33.6	11.1
Internal Link Dist (ft) 355 1347 306 319 Turn Bay Length (ft) 180 180 115 Base Capacity (vph) 182 2383 100 2238 265 345 280 377 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0	Queue Length 50th (ft)	7	172	3	~638	29	2	38	4
Turn Bay Length (ft) 180 180 115 Base Capacity (vph) 182 2383 100 2238 265 345 280 377 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0	Queue Length 95th (ft)	17	320	14	#823	64	18	79	39
Base Capacity (vph) 182 2383 100 2238 265 345 280 377 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Internal Link Dist (ft)		355		1347		306		319
Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Turn Bay Length (ft)	180		180				115	
Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0	Base Capacity (vph)	182	2383	100	2238	265	345	280	377
Storage Cap Reductn 0 0 0 0 0 0 0	Starvation Cap Reductn	0	0	0	0	0	0	0	0
	Spillback Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio 0.26 0.58 0.05 0.95 0.23 0.04 0.28 0.20	Storage Cap Reductn	0	0	0	0	0	0	0	0
	Reduced v/c Ratio	0.26	0.58	0.05	0.95	0.23	0.04	0.28	0.20

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	*	•	←	•	1	†	1	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	×	↑ ↑		×	†		7	4		7	1	
Traffic Volume (veh/h)	44	1203	58	5	1890	70	55	5	8	72	7	61
Future Volume (veh/h)	44	1203	58	5	1890	70	55	5	8	72	7	61
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	48	1308	63	5	2054	76	60	5	9	78	8	66
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	158	2217	107	12	2133	78	296	120	217	352	35	289
Arrive On Green	0.04	0.64	0.64	0.01	0.61	0.61	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1781	3451	166	1781	3496	129	1326	599	1078	1400	174	1437
Grp Volume(v), veh/h	48	673	698	5	1038	1092	60	0	14	78	0	74
Grp Sat Flow(s),veh/h/ln	1781	1777	1840	1781	1777	1847	1326	0	1676	1400	0	1612
Q Serve(g_s), s	0.9	19.6	19.7	0.3	49.3	50.8	3.6	0.0	0.6	4.3	0.0	3.5
Cycle Q Clear(g_c), s	0.9	19.6	19.7	0.3	49.3	50.8	7.0	0.0	0.6	4.9	0.0	3.5
Prop In Lane	1.00		0.09	1.00		0.07	1.00	V. 0	0.64	1.00		0.89
Lane Grp Cap(c), veh/h	158	1141	1182	12	1084	1127	296	0	337	352	0	324
V/C Ratio(X)	0.30	0.59	0.59	0.43	0.96	0.97	0.20	0.00	0.04	0.22	0.00	0.23
Avail Cap(c_a), veh/h	190	1141	1182	101	1084	1127	296	0	337	352	0	324
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.2	9.3	9.3	44.5	16.4	16.7	33.0	0.0	29.0	30.9	0.0	30.1
Incr Delay (d2), s/veh	1.1	2.2	2.2	23.1	18.8	20.4	1.5	0.0	0.2	1.4	0.0	1.6
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	6.5	6.8	0.2	21.1	22.9	1.3	0.0	0.3	1.6	0.0	1.5
Unsig. Movement Delay, s/veh		0.0	0.0	0.2	21.1	22.0	1.0	0.0	0.0	1.0	0.0	1.0
LnGrp Delay(d), s/veh	23.3	11.5	11.4	67.7	35.3	37.1	34.6	0.0	29.2	32.4	0.0	31.7
LnGrp LOS	C C	В	В	E	D	D	C C	0.0	C	C	0.0	C
Approach Vol, veh/h		1419			2135			74			152	
Approach Delay, s/veh		11.9			36.3			33.6			32.1	
Approach LOS		11.9 B			30.3 D			33.0 C			32.1 C	
<u></u>					D						C	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		22.6	5.1	62.3		22.6	8.0	59.4				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.1	5.1	53.3		18.1	5.1	53.3				
Max Q Clear Time (g_c+l1), s		9.0	2.3	21.7		6.9	2.9	52.8				
Green Ext Time (p_c), s		0.1	0.0	10.7		0.4	0.0	0.5				
Intersection Summary												
HCM 7th Control Delay, s/veh			26.9									
HCM 7th LOS			С									

Intersection						
Int Delay, s/veh	1.6					
			14/51	10/5-		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†		ሻ	^	Y	
	1275	8	107	1961	4	71
	1275	8	107	1961	4	71
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	180	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
	1386	9	116	2132	4	77
Major/Minor M	aior1	N	Major2	N	Minor1	
	ajor1 ∩					607
Conflicting Flow All	0	0	1395	0	2689	697
Stage 1	-	-	-	-	1390	-
Stage 2	-	-	-	-	1298	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	486	-	18	383
Stage 1	-	-	-	-	196	-
Stage 2	-	-	-	-	220	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	486	-	13	383
Mov Cap-2 Maneuver	-	-	-	-	13	-
Stage 1	-	-	-	-	196	-
Stage 2	-	-	-	-	167	-
-						
Annraach	ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.76		51.72	
HCM LOS					F	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		155		-	486	-
HCM Lane V/C Ratio		0.528	_		0.239	_
HCM Control Delay (s/ve	eh)	51.7			14.7	_
HCM Lane LOS	511)	51.7 F	_		B	_
HCM 95th %tile Q(veh)		2.6	-	-	0.9	-
HOW SOUT WILLE Q(Ven)		2.0	_	-	0.9	-

Movement
Traffic Vol, veh/h
Traffic Vol, veh/h 1 0 0 0 9 0 58 2 3 66 1 Future Vol, veh/h 1 0 0 0 0 9 0 58 2 3 66 1 Conflicting Peds, #/hr 0
Future Vol, veh/h
Conflicting Peds, #/hr 0
Sign Control Stop Stop Stop Stop Stop Stop Stop Free Stap Thead All
RT Channelized - None -
Storage Length 0 - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - - - - - - - - - - - - - - -
Veh in Median Storage, # - 0
Grade, % - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 0 - - 0 0 - - 0 9 92
Peak Hour Factor 92 93 93
Heavy Vehicles, % 2
Moment Flow 1 0 0 0 0 10 0 63 2 3 72 1 Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 142 144 36 107 143 64 73 0 0 65 0 0 Stage 1 79 79 - 64 64 -
Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 142 144 36 107 143 64 73 0 0 65 0 0 Stage 1 79 79 - 64 64 -
Conflicting Flow All 142 144 36 107 143 64 73 0 0 65 0 0 Stage 1 79 79 - 64 64 -
Conflicting Flow All 142 144 36 107 143 64 73 0 0 65 0 0 Stage 1 79 79 - 64 64 -
Conflicting Flow All 142 144 36 107 143 64 73 0 0 65 0 0 Stage 1 79 79 - 64 64 -
Stage 1 79 79 - 64 64 - <th< td=""></th<>
Stage 2 63 65 - 42 79 - <td< td=""></td<>
Critical Hdwy 7.33 6.53 6.93 7.33 6.53 6.23 4.13 - - 4.13 - - Critical Hdwy Stg 1 6.53 5.53 - 6.13 5.53 -
Critical Hdwy Stg 1 6.53 5.53 - 6.13 5.53 -
Critical Hdwy Stg 2 6.13 5.53 - 6.53 5.53 -
Follow-up Hdwy 3.519 4.019 3.319 3.519 4.019 3.319 2.219 2.219 Pot Cap-1 Maneuver 821 747 1028 867 747 1000 1526 1536
Pot Cap-1 Maneuver 821 747 1028 867 747 1000 1526 1536
•
Stage 2 947 840 - 967 829
Platoon blocked, %
Mov Cap-1 Maneuver 811 745 1028 865 746 1000 1526 1536
Mov Cap-2 Maneuver 811 745 - 865 746
Stage 1 919 827 - 946 841
Stage 2 938 840 - 965 827
Approach EB WB NB SB
HCM Control Delay, s/v 9.45 8.64 0 0.33 HCM LOS A A
TIONI LOO A A
Mineral and Maries Mounts ANDL ANDL ANDLED A FDL ONED A CDL ODD
Minor Lane/Major Mvmt NBL NBT NBR EBLn1 EBLn2WBLn1 SBL SBT SBR
Capacity (veh/h) 1526 811 - 1000 151
HCM Lane V/C Ratio 0.001 - 0.01 0.002
HCM Control Delay (s/veh) 0 9.4 0 8.6 7.3 0 -
HCM Lane LOS A A A A A -
HCM 95th %tile Q(veh) 0 0 - 0

1: LONE TREE PKWY & LINCOLN AVENUE

	•	-	1	←	1	†	1	Ţ
			MDI	14/5=		NET	0.51	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	40	1908	28	1326	146	46	74	58
v/c Ratio	0.15	0.83	0.27	0.60	0.54	0.13	0.27	0.16
Control Delay (s/veh)	5.6	17.3	47.3	11.9	40.4	12.2	33.4	10.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	5.6	17.3	47.3	11.9	40.4	12.2	33.4	10.8
Queue Length 50th (ft)	6	323	16	240	75	2	36	2
Queue Length 95th (ft)	15	#686	43	307	137	30	75	33
Internal Link Dist (ft)		355		1347		306		319
Turn Bay Length (ft)	180		180				115	
Base Capacity (vph)	263	2295	104	2224	272	360	275	368
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.83	0.27	0.60	0.54	0.13	0.27	0.16

Intersection Summary

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	*	•	+	•	1	†	~	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		7	↑ ↑		7	1		7	1	
Traffic Volume (veh/h)	37	1648	108	26	1170	50	134	5	38	68	4	50
Future Volume (veh/h)	37	1648	108	26	1170	50	134	5	38	68	4	50
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	40	1791	117	28	1272	54	146	5	41	74	4	54
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	302	2097	136	50	2124	90	313	36	292	325	22	303
Arrive On Green	0.04	0.62	0.62	0.03	0.61	0.61	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1781	3389	219	1781	3473	147	1345	175	1437	1360	110	1491
Grp Volume(v), veh/h	40	930	978	28	650	676	146	0	46	74	0	58
Grp Sat Flow(s),veh/h/ln	1781	1777	1831	1781	1777	1844	1345	0	1612	1360	0	1602
Q Serve(g_s), s	0.7	37.7	39.3	1.4	20.2	20.2	9.1	0.0	2.1	4.2	0.0	2.7
Cycle Q Clear(g_c), s	0.7	37.7	39.3	1.4	20.2	20.2	11.8	0.0	2.1	6.4	0.0	2.7
Prop In Lane	1.00		0.12	1.00		0.08	1.00		0.89	1.00		0.93
Lane Grp Cap(c), veh/h	302	1099	1133	50	1087	1128	313	0	328	325	0	326
V/C Ratio(X)	0.13	0.85	0.86	0.56	0.60	0.60	0.47	0.00	0.14	0.23	0.00	0.18
Avail Cap(c_a), veh/h	345	1099	1133	105	1087	1128	313	0	328	325	0	326
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.3	13.7	14.0	43.2	10.7	10.7	34.5	0.0	29.4	32.0	0.0	29.6
Incr Delay (d2), s/veh	0.2	8.1	8.8	9.6	2.4	2.4	4.9	0.0	0.9	1.6	0.0	1.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	14.2	15.3	0.7	7.1	7.3	3.3	0.0	0.9	1.5	0.0	1.1
Unsig. Movement Delay, s/veh			10.0	0.7		7.0	0.0	0.0	0.0	1.0	0.0	
LnGrp Delay(d), s/veh	8.5	21.8	22.8	52.8	13.1	13.1	39.4	0.0	30.3	33.6	0.0	30.8
LnGrp LOS	Α	Z 1.0	C	02.0 D	В	В	D	0.0	C	C	0.0	C
Approach Vol, veh/h	7.	1948			1354			192			132	
Approach Delay, s/veh		22.0			13.9			37.2			32.4	
Approach LOS		22.0 C			13.9 B			37.2 D			32.4 C	
					Ь						U	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		22.8	7.0	60.2		22.8	7.7	59.5				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.3	5.3	52.9		18.3	5.3	52.9				
Max Q Clear Time (g_c+l1), s		13.8	3.4	41.3		8.4	2.7	22.2				
Green Ext Time (p_c), s		0.3	0.0	8.9		0.3	0.0	10.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			20.2									
HCM 7th LOS			С									

Intersection						
Int Delay, s/veh	1.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDIX	ሻ	†	**	NUIX
Traffic Vol, veh/h	1751	3	47	1245	1	114
Future Vol, veh/h	1751	3	47	1245	1	114
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	180	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1903	3	51	1353	1	124
IVIVIIIL I IOW	1303	3	JI	1000		127
Major/Minor N	lajor1	1	Major2	1	Minor1	
Conflicting Flow All	0	0	1907	0	2684	953
Stage 1	-	-	-	-	1905	-
Stage 2	_	_	_	_	779	_
Critical Hdwy	_	_	4.14	_	6.84	6.94
Critical Hdwy Stg 1	-	_		_	5.84	-
Critical Hdwy Stg 2	_			_	5.84	_
Follow-up Hdwy	_	-	2.22		3.52	3.32
				-		
Pot Cap-1 Maneuver	-	-	308	-	18	259
Stage 1	-	-	-	-	103	-
Stage 2	-	-	-	-	413	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	308	-	15	259
Mov Cap-2 Maneuver	-	-	-	-	15	-
Stage 1	-	-	-	-	103	-
Stage 2	_	_	_	_	344	_
Olago L					0	
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.69		38.81	
HCM LOS					Е	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		227	-	-	308	-
HCM Lane V/C Ratio		0.551	-	-	0.166	-
HCM Control Delay (s/v	eh)	38.8	-	-	19	-
HCM Lane LOS		Е	-	-	С	-
HCM 95th %tile Q(veh)		3	-	-	0.6	-
					5.5	

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>			4			4			414	
Traffic Vol. veh/h	60	0	3	0	0	10	0	107	1	9	49	80
Future Vol, veh/h	60	0	3	0	0	10	0	107	1	9	49	80
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	_	None	-	_	None	-	_	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	-	_	-	-
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	_	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	65	0	3	0	0	11	0	116	1	10	53	87
Major/Minor	Minor2			Minor1		1	Major1			Major2		
Conflicting Flow All	233	234	70	163	277	117	140	0	0	117	0	0
Stage 1	116	116	-	117	117	-	-	-	-	-	-	-
Stage 2	116	117	-	46	160	-	-	-	-	-	-	-
Critical Hdwy	7.33	6.53	6.93	7.33	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-
Pot Cap-1 Maneuver	712	666	979	794	630	935	1442	-	-	1470	-	-
Stage 1	876	799	-	887	798	-	-	-	-	-	-	-
Stage 2	888	798	-	962	765	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	699	661	979	786	626	935	1442	-	-	1470	-	-
Mov Cap-2 Maneuver	699	661	-	786	626	-	-	-	-	-	-	-
Stage 1	870	793	-	887	798	-	-	-	-	-	-	-
Stage 2	878	798	-	952	760	-	-	-	-	-	-	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s/	v10.58			8.9			0			0.5		
HCM LOS	В			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR		EBLn2V		SBL	SBT	SBR		
Capacity (veh/h)		1442	-	-	699	979	935	126	-	-		
HCM Lane V/C Ratio		-	-	-		0.003			-	-		
HCM Control Delay (s/	veh)	0	-	-	10.7	8.7	8.9	7.5	0	-		
HCM Lane LOS		Α	-	-	В	Α	Α	Α	Α	-		
HCM 95th %tile Q(veh))	0	-	-	0.3	0	0	0	-	-		

1: LONE TREE PKWY & LINCOLN AVENUE

	•	-	1	•	4	†	-	Ţ	
			NA/DI	14/DT	N.D.	NDT	0.51	•	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	48	1508	5	2346	60	14	78	74	
v/c Ratio	0.27	0.63	0.05	1.05	0.23	0.04	0.28	0.20	
Control Delay (s/veh)	8.0	10.2	41.4	51.2	32.9	19.6	33.8	11.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	8.0	10.2	41.4	51.2	32.9	19.6	33.8	11.1	
Queue Length 50th (ft)	7	201	3	~819	29	2	38	4	
Queue Length 95th (ft)	17	374	14	#960	64	18	79	39	
Internal Link Dist (ft)		355		1347		306		319	
Turn Bay Length (ft)	180		180				115		
Base Capacity (vph)	181	2390	100	2244	264	344	278	375	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.63	0.05	1.05	0.23	0.04	0.28	0.20	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	•	•	1	†	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		7	†		*	1>		*	1>	
Traffic Volume (veh/h)	44	1329	58	5	2088	70	55	5	8	72	7	61
Future Volume (veh/h)	44	1329	58	5	2088	70	55	5	8	72	7	61
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	48	1445	63	5	2270	76	60	5	9	78	8	66
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	149	2232	97	12	2145	71	294	120	216	351	35	287
Arrive On Green	0.04	0.64	0.64	0.01	0.61	0.61	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1781	3469	151	1781	3509	117	1326	599	1078	1400	174	1437
Grp Volume(v), veh/h	48	739	769	5	1143	1203	60	0	14	78	0	74
Grp Sat Flow(s), veh/h/ln	1781	1777	1843	1781	1777	1849	1326	0	1676	1400	0	1612
Q Serve(g_s), s	0.9	22.8	23.0	0.3	55.0	55.0	3.6	0.0	0.6	4.3	0.0	3.5
Cycle Q Clear(g_c), s	0.9	22.8	23.0	0.3	55.0	55.0	7.0	0.0	0.6	4.9	0.0	3.5
Prop In Lane	1.00	22.0	0.08	1.00	33.0	0.06	1.00	0.0	0.64	1.00	0.0	0.89
Lane Grp Cap(c), veh/h	149	1143	1186	1.00	1086	1130	294	0	335	351	0	322
V/C Ratio(X)	0.32	0.65	0.65	0.43	1.05	1.06	0.20	0.00	0.04	0.22	0.00	0.23
	179	1143	1186	101	1086	1130	294	0.00	335	351	0.00	322
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			1.00			1.00				1.00		1.00
Upstream Filter(I)	1.00 22.6	1.00	9.8	1.00	1.00		1.00 33.1	0.00	1.00	31.0	0.00	
Uniform Delay (d), s/veh		9.8		44.5	17.5	17.5					0.0	30.2
Incr Delay (d2), s/veh	1.2	2.8	2.8	23.1	42.2	45.7	1.6	0.0	0.2	1.5	0.0	1.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	7.6	8.0	0.2	29.9	32.2	1.3	0.0	0.3	1.6	0.0	1.5
Unsig. Movement Delay, s/veh		40.0	40.0	07.7	50.7	00.0	0.4.7	0.0	00.0	00.5	0.0	04.0
LnGrp Delay(d), s/veh	23.8	12.6	12.6	67.7	59.7	63.2	34.7	0.0	29.3	32.5	0.0	31.8
LnGrp LOS	С	В	В	Е	F	F	С		С	С		С
Approach Vol, veh/h		1556			2351			74			152	
Approach Delay, s/veh		12.9			61.5			33.7			32.2	
Approach LOS		В			Е			С			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		22.5	5.1	62.4		22.5	8.0	59.5				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.0	5.1	53.4		18.0	5.0	53.5				
Max Q Clear Time (g_c+l1), s		9.0	2.3	25.0		6.9	2.9	57.0				
Green Ext Time (p_c), s		0.1	0.0	11.9		0.4	0.0	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			41.6									
HCM 7th LOS			D									

Intersection						
Int Delay, s/veh	2.4					
		EDD	WDI	WOT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	_	107	^	Y	- 1
	1401	8	107	2159	4	71
· · · · · · · · · · · · · · · · · · ·	1401	8	107	2159	4	71
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	180	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
	1523	9	116	2347	4	77
Major/Minor	oior1		/loior0	N	Minor1	
	ajor1		Major2		Minor1	700
Conflicting Flow All	0	0	1532	0	2933	766
Stage 1	-	-	-	-	1527	-
Stage 2	-	-	-	-	1406	<u>-</u>
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	431	-	12	345
Stage 1	-	-	-	-	165	-
Stage 2	-	-	-	-	192	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	431	-	9	345
Mov Cap-2 Maneuver	_	-	-	_	9	-
Stage 1	-	-	-	-	165	-
Stage 2	_	_	_	_	140	_
Clayo L					1.0	
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.78		95.31	
HCM LOS					F	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		112	-	-	431	-
HCM Cantrol Dalay (a/y	- -	0.728	-	-	0.27	-
HCM Control Delay (s/ve	en)	95.3	-	-	16.4	-
HCM Lane LOS		F	-	-	C	-
HCM 95th %tile Q(veh)		3.9	-	-	1.1	-

Intersection												
Int Delay, s/veh	0.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4			4			414	
Traffic Vol, veh/h	1	0	0	0	0	9	0	58	2	3	66	1
Future Vol, veh/h	1	0	0	0	0	9	0	58	2	3	66	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	<u>-</u>	-	None	<u> </u>	·-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	0	0	0	0	10	0	63	2	3	72	1
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	142	144	36	107	143	64	73	0	0	65	0	0
Stage 1	79	79	-	64	64	-	-	-	-	-	-	-
Stage 2	63	65	_	42	79	_	_	-	_	_	_	-
Critical Hdwy	7.33	6.53	6.93	7.33	6.53	6.23	4.13	-	_	4.13	-	_
Critical Hdwy Stg 1	6.53	5.53	-	6.13	5.53		-	-	_	-	-	_
Critical Hdwy Stg 2	6.13	5.53	-	6.53	5.53	_	_	-	_	-	-	_
Follow-up Hdwy	3.519	4.019		3.519	4.019	3.319	2.219	-	_	2.219	-	_
Pot Cap-1 Maneuver	821	747	1028	867	747	1000	1526	-	-	1536	-	-
Stage 1	921	829	-	946	841	-		_	-	-	-	-
Stage 2	947	840	-	967	829	-	-	-	-	-	-	-
Platoon blocked, %					3 -3			_	-		-	-
Mov Cap-1 Maneuver	811	745	1028	865	746	1000	1526	-	-	1536	-	-
Mov Cap-2 Maneuver	811	745	-	865	746	-	-	-	_		-	-
Stage 1	919	827	-	946	841	-	-	-	-	-	-	-
Stage 2	938	840	-	965	827	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/	v 9.45			8.64			0			0.33		
HCM LOS	Α			A								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR		
Capacity (veh/h)		1526	-	-	811	-	1000	151	-	-		
HCM Lane V/C Ratio		-	-	-	0.001	-		0.002	-	-		
HCM Control Delay (s/	veh)	0	-	-	9.4	0	8.6	7.3	0	-		
HCM Lane LOS	,	A	-	-	Α	A	Α	Α	A	-		
HCM 95th %tile Q(veh)	0	-	-	0	-	0	0	-	-		
	,											

APPENDIX F – Future (with site development) Synchro Outputs

1: LONE TREE PKWY & LINCOLN AVENUE

	۶	→	•	•	1	†	-	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	40	1749	36	1205	145	47	74	62	
v/c Ratio	0.13	0.79	0.35	0.54	0.53	0.13	0.27	0.17	
Control Delay (s/veh)	5.4	16.7	50.2	11.2	39.9	13.1	33.1	11.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	5.4	16.7	50.2	11.2	39.9	13.1	33.1	11.7	
Queue Length 50th (ft)	6	396	20	208	74	4	36	4	
Queue Length 95th (ft)	15	508	51	267	135	32	75	36	
Internal Link Dist (ft)		355		1347		306		319	
Turn Bay Length (ft)	180		180				115		
Base Capacity (vph)	297	2207	104	2214	274	366	277	375	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.13	0.79	0.35	0.54	0.53	0.13	0.27	0.17	
Intersection Summary									

	۶	→	•	•	•	•	4	†	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† 1>		*	†		*	₽		*	1>	
Traffic Volume (veh/h)	37	1492	117	33	1059	50	133	7	36	68	7	50
Future Volume (veh/h)	37	1492	117	33	1059	50	133	7	36	68	7	50
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	40	1622	127	36	1151	54	145	8	39	74	8	54
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	335	2043	159	59	2106	99	313	- 57	278	327	43	289
Arrive On Green	0.04	0.61	0.61	0.03	0.61	0.61	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	1781	3341	259	1781	3456	162	1340	277	1350	1359	209	1408
Grp Volume(v), veh/h	40	856	893	36	592	613	145	0	47	74	0	62
Grp Sat Flow(s), veh/h/ln	1781	1777	1824	1781	1777	1841	1340	0	1627	1359	0	1617
Q Serve(g_s), s	0.7	32.5	33.5	1.8	17.5	17.6	9.0	0.0	2.1	4.2	0.0	2.9
Cycle Q Clear(g_c), s	0.7	32.5	33.5	1.8	17.5	17.6	11.9	0.0	2.1	6.4	0.0	2.9
	1.00	32.3	0.14	1.00	17.5	0.09	1.00	0.0	0.83	1.00	0.0	0.87
Prop In Lane	335	1086	1115	59	1083	1122	313	0	335	327	0	332
Lane Grp Cap(c), veh/h			0.80	0.61				0.00		0.23	0 00	
V/C Ratio(X)	0.12	0.79			0.55	0.55	0.46		0.14		0.00	0.19
Avail Cap(c_a), veh/h	377	1086	1115	105	1083	1122	313	1.00	335	327	1.00	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.7	13.1	13.3	42.9	10.3	10.3	34.4	0.0	29.2	31.9	0.0	29.5
Incr Delay (d2), s/veh	0.2	5.8	6.1	9.9	2.0	1.9	4.9	0.0	0.9	1.6	0.0	1.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	11.9	12.6	0.9	6.1	6.3	3.3	0.0	0.9	1.5	0.0	1.2
Unsig. Movement Delay, s/veh		40.0	40.4		40.0	40.0						22.2
LnGrp Delay(d), s/veh	7.9	18.9	19.4	52.9	12.3	12.2	39.3	0.0	30.1	33.5	0.0	30.8
LnGrp LOS	А	В	В	D	В	В	D		С	С		С
Approach Vol, veh/h		1789			1241			192			136	
Approach Delay, s/veh		18.9			13.4			37.1			32.2	
Approach LOS		В			В			D			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		23.0	7.5	59.5		23.0	7.7	59.3				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.5	5.3	52.7		18.5	5.3	52.7				
Max Q Clear Time (g_c+l1), s		13.9	3.8	35.5		8.4	2.7	19.6				
Green Ext Time (p_c), s		0.3	0.0	11.0		0.3	0.0	8.8				
Intersection Summary												
HCM 7th Control Delay, s/veh			18.5									
HCM 7th LOS			В									

Intersection						
Int Delay, s/veh	1.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	LDI	ሻ	^	**	INDIX
	1593	3	58	1141	1	117
	1593	3	58	1141	1	117
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	
Sign Control						Stop
RT Channelized	-		-	None	-	None
Storage Length	-	-	180	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1732	3	63	1240	1	127
Major/Minor M	lajor1	N	Major2	N	Minor1	
						067
Conflicting Flow All	0	0	1735	0	2479	867
Stage 1	-	-	-	-	1733	-
Stage 2	-	-	-	-	746	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	359	-	24	296
Stage 1	-	-	-	-	128	-
Stage 2	_	_	-	_	429	-
Platoon blocked, %	_	_		_	0	
Mov Cap-1 Maneuver	_	_	359	_	20	296
Mov Cap-1 Maneuver	_	_	-	_	20	230
•		-			128	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	354	-
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.83		30.66	
HCM LOS			0.00		D	
110.111 200						
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		265	-	-	359	-
HCM Lane V/C Ratio		0.484	-	-	0.176	-
HCM Control Delay (s/v	eh)	30.7	-	-	17.1	-
HCM Lane LOS		D	-	-	С	-
HCM 95th %tile Q(veh)		2.5	-	-	0.6	-
					0.0	

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	Þ			4			4			414	
Traffic Vol, veh/h	59	0	6	0	0	10	11	107	1	9	49	99
Future Vol, veh/h	59	0	6	0	0	10	11	107	1	9	49	99
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	64	0	7	0	0	11	12	116	1	10	53	108
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	267	268	80	187	321	117	161	0	0	117	0	0
Stage 1	127	127	-	141	141	111	101	-	-	- 117	-	-
Stage 2	140	141	_	46	180	-	_	_	_	_	-	_
Critical Hdwy	7.33	6.53	6.93	7.33	6.53	6.23	4.13			4.13	_	
Critical Hdwy Stg 1	6.53	5.53	0.33	6.13	5.53	0.20	10	_	_	10	-	_
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53		_			_		
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	_	_	2.219	-	_
Pot Cap-1 Maneuver	675	637	964	765	595	935	1417			1470	_	
Stage 1	864	791	-	862	780	500	1717		_	- 1770	-	_
Stage 2	862	779	_	962	750	_					_	_
Platoon blocked, %	002	113		302	100				_		-	_
Mov Cap-1 Maneuver	657	627	964	748	586	935	1417			1470		
Mov Cap-1 Maneuver	657	627	304	748	586	500	1717		_	1770	-	_
Stage 1	858	785	-	854	773	-	-	<u>-</u>	-	-	-	-
Stage 2	844	772	_	949	744		_	_	_	_		_
Olaye Z	044	112	_	343	744	_	-	_	-	-	_	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/	v10.86			8.9			0.7			0.44		
HCM LOS	В			Α								
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR		
Capacity (veh/h)		166	-	-		964	935	107				
HCM Lane V/C Ratio		0.008	_				0.012		_	_		
HCM Control Delay (s/	/veh)	7.6	0	-		8.8	8.9	7.5	0	-		
HCM Lane LOS	von)	Α.	A	_	В	0.0 A	Α	7.5 A	A	_		
HCM 95th %tile Q(veh	1	0	-	-	0.3	0	0	0	-	-		
HOW JOHN JOHN W(VEH	1	U	-	-	0.5	U	U	U	_	_		

1: LONE TREE PKWY & LINCOLN AVENUE

	•	→	1	←	1	†	1	Ţ	
	EDI	FDT	VA/DI	MOT	NDI	NDT	ODI	007	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	48	1382	8	2130	76	19	78	75	
v/c Ratio	0.26	0.58	0.08	0.95	0.29	0.05	0.28	0.20	
Control Delay (s/veh)	8.0	9.4	42.1	28.1	34.0	18.8	33.7	11.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	8.0	9.4	42.1	28.1	34.0	18.8	33.7	11.2	
Queue Length 50th (ft)	7	173	4	~638	37	3	38	4	
Queue Length 95th (ft)	17	324	18	#823	77	22	79	40	
Internal Link Dist (ft)		355		1347		306		319	
Turn Bay Length (ft)	180		180				115		
Base Capacity (vph)	182	2382	100	2238	265	348	279	377	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.58	0.08	0.95	0.29	0.05	0.28	0.20	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	•	•	4	†	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		ň	†		*	1>		*	1>	
Traffic Volume (veh/h)	44	1203	68	7	1890	70	70	6	11	72	8	61
Future Volume (veh/h)	44	1203	68	7	1890	70	70	6	11	72	8	61
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	48	1308	74	8	2054	76	76	7	12	78	9	66
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	158	2184	123	18	2133	78	295	124	213	347	39	286
Arrive On Green	0.04	0.64	0.64	0.01	0.61	0.61	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1781	3419	193	1781	3496	129	1325	619	1061	1393	194	1421
Grp Volume(v), veh/h	48	679	703	8	1038	1092	76	0	19	78	0	75
Grp Sat Flow(s), veh/h/ln	1781	1777	1836	1781	1777	1847	1325	0	1679	1393	0	1615
	0.9	20.1	20.2	0.4	49.3	50.8	4.6	0.0	0.8	4.3	0.0	3.5
Q Serve(g_s), s	0.9	20.1	20.2	0.4	49.3	50.8	8.1	0.0	0.8	5.1	0.0	3.5
Cycle Q Clear(g_c), s		20.1			49.3			0.0			0.0	
Prop In Lane	1.00	4425	0.11	1.00	1004	0.07	1.00	^	0.63	1.00	^	0.88
Lane Grp Cap(c), veh/h	158	1135	1173	18	1084	1127	295	0	338	347	0	325
V/C Ratio(X)	0.30	0.60	0.60	0.45	0.96	0.97	0.26	0.00	0.06	0.22	0.00	0.23
Avail Cap(c_a), veh/h	190	1135	1173	101	1084	1127	295	0	338	347	0	325
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.1	9.5	9.5	44.3	16.4	16.7	33.5	0.0	29.0	31.1	0.0	30.1
Incr Delay (d2), s/veh	1.1	2.3	2.3	16.4	18.8	20.4	2.1	0.0	0.3	1.5	0.0	1.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	6.7	7.0	0.3	21.1	22.9	1.6	0.0	0.4	1.6	0.0	1.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	23.2	11.8	11.8	60.7	35.3	37.1	35.6	0.0	29.4	32.6	0.0	31.8
LnGrp LOS	С	В	В	E	D	D	D		С	С		С
Approach Vol, veh/h		1430			2138			95			153	
Approach Delay, s/veh		12.2			36.3			34.4			32.2	
Approach LOS		В			D			С			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		22.6	5.4	62.0		22.6	8.0	59.4				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.1	5.1	53.3		18.1	5.1	53.3				
Max Q Clear Time (g_c+l1), s		10.1	2.4	22.2		7.1	2.9	52.8				
Green Ext Time (p_c), s		0.1	0.0	10.7		0.4	0.0	0.5				
Intersection Summary												
HCM 7th Control Delay, s/veh	_	_	27.1		_	_	 _			_		
HCM 7th LOS			С									

Intersection						
Int Delay, s/veh	1.7					
		EDD	WDI	WDT	NDL	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
	†	•	100	^	Y	70
	1278	8	109	1963	4	73
	1278	8	109	1963	4	73
Conflicting Peds, #/hr	_ 0	_ 0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	180	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow 1	1389	9	118	2134	4	79
Major/Minor Ma	nior1		/loior?		Minar1	
	ajor1		Major2		Minor1	600
Conflicting Flow All	0	0	1398	0	2697	699
Stage 1	-	-	-	-	1393	-
Stage 2	-	-	-	-	1304	
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	485	-	17	382
Stage 1	-	-	-	-	195	-
Stage 2	-	-	-	-	218	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	485	-	13	382
Mov Cap-2 Maneuver	-	-	-	_	13	-
Stage 1	-	-	-	-	195	-
Stage 2	_	_	_	_	165	_
Jugo 2					.00	
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.78		52.71	
HCM LOS					F	
Minor Long/Major Myrest		VIDI ~1	EDT	EDD	WDI	MDT
Minor Lane/Major Mvmt		VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		155	-	-	485	-
HCM Lane V/C Ratio		0.541	-		0.244	-
HCM Control Delay (s/ve	h)	52.7	-	-		-
HCM Lane LOS		F	-	-	В	-
HCM 95th %tile Q(veh)		2.7	-	-	1	-

Intersection												
Int Delay, s/veh	1.9											
				MOL	MAIDT	14/55	NE	NET	NDD	001	007	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	Þ			4			4			414	
Traffic Vol, veh/h	20	0	2	0	0	9	2	58	2	3	66	14
Future Vol, veh/h	20	0	2	0	0	9	2	58	2	3	66	14
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	22	0	2	0	0	10	2	63	2	3	72	15
Major/Minor N	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	153	155	43	111	162	64	87	0	0	65	0	0
Stage 1	86	86	43	68	68	U -1	-	<u> </u>	<u> </u>		-	-
Stage 2	67	70	_	42	93	_	_	-	_	<u>-</u>	_	_
Critical Hdwy	7.33	6.53	6.93	7.33	6.53	6.23	4.13	_	_	4.13	_	-
Critical Hdwy Stg 1	6.53	5.53	0.93	6.13	5.53	0.23	7.13	-	_	7.10	_	_
Critical Hdwy Stg 2	6.13	5.53	-	6.53	5.53	-	_	_	_	-	_	-
Follow-up Hdwy	3.519	4.019		3.519	4.019	3.319	2.219	_	-	2.219	_	_
Pot Cap-1 Maneuver	806	736	1018	861	730	1000	1508	-	_	1536	-	-
•	913	823	1010	941	838	1000	1500	-	-	1550	-	-
Stage 1 Stage 2	942	837	-	967	817	-	-	-	-	-	_	-
•	942	03/	-	907	017	_	-	-	-	-		_
Platoon blocked, %	705	722	1010	056	707	1000	1500	-	-	1536	-	
Mov Cap-1 Maneuver	795	733 733	1018	856	727 727	1000	1508	-	-	1536	-	-
Mov Cap-2 Maneuver	795		-	856		-	-	-	-	-	-	-
Stage 1	911	821	-	940	836	-	-	-	-	-	-	-
Stage 2	932	835	-	963	815	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/v	9.55			8.64			0.24			0.28		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	t .	NBL	NBT	NRD	EBLn1	FRL n2V	VRI n1	SBL	SBT	SBR		
										אומט		
Capacity (veh/h)		58	-	-	795	1018	1000	105	-	-		
HCM Control Polov (a/	/ala\	0.001	-	-	0.027	0.002		0.002	-	-		
HCM Control Delay (s/	ven)	7.4	0	-	9.7	8.5	8.6	7.3	0	-		
HCM Lane LOS		A	Α	-	A	A	A	A	Α	-		
HCM 95th %tile Q(veh)	1	0	-	-	0.1	0	0	0	-	-		

1: LONE TREE PKWY & LINCOLN AVENUE

	۶	-	1	←	1	†	-	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	40	1918	36	1326	145	47	74	62
v/c Ratio	0.15	0.87	0.35	0.60	0.54	0.13	0.27	0.17
Control Delay (s/veh)	5.7	20.1	50.2	11.9	40.3	13.2	33.4	11.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	5.7	20.1	50.2	11.9	40.3	13.2	33.4	11.8
Queue Length 50th (ft)	6	477	20	240	74	4	36	4
Queue Length 95th (ft)	15	#693	51	307	136	32	75	36
Internal Link Dist (ft)		355		1347		306		319
Turn Bay Length (ft)	180		180				115	
Base Capacity (vph)	262	2217	104	2224	271	362	274	372
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.87	0.35	0.60	0.54	0.13	0.27	0.17

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	•	•	4	†	-	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† 1>		ň	† 1>		*	1>		*	1>	
Traffic Volume (veh/h)	37	1648	117	33	1170	50	133	7	36	68	7	50
Future Volume (veh/h)	37	1648	117	33	1170	50	133	7	36	68	7	50
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	40	1791	127	36	1272	54	145	8	39	74	8	54
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	302	2067	145	59	2124	90	310	56	275	324	42	286
Arrive On Green	0.04	0.61	0.61	0.03	0.61	0.61	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1781	3369	236	1781	3473	147	1340	277	1350	1359	209	1408
Grp Volume(v), veh/h	40	935	983	36	650	676	145	0	47	74	0	62
Grp Sat Flow(s), veh/h/ln	1781	1777	1828	1781	1777	1844	1340	0	1627	1359	0	1617
	0.7	38.6	40.4	1.8	20.2	20.2	9.0	0.0	2.1	4.3	0.0	2.9
Q Serve(g_s), s	0.7	38.6	40.4	1.8	20.2	20.2	11.9	0.0	2.1	6.4	0.0	2.9
Cycle Q Clear(g_c), s		30.0	0.13	1.00	20.2	0.08		0.0			0.0	0.87
Prop In Lane	1.00	1000			1007		1.00	0	0.83	1.00	0	
Lane Grp Cap(c), veh/h	302	1090	1122	59	1087	1128	310	0	331	324	0	329
V/C Ratio(X)	0.13	0.86	0.88	0.61	0.60	0.60	0.47	0.00	0.14	0.23	0.00	0.19
Avail Cap(c_a), veh/h	345	1090	1122	105	1087	1128	310	0	331	324	0	329
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.3	14.2	14.5	42.9	10.7	10.7	34.6	0.0	29.4	32.0	0.0	29.7
Incr Delay (d2), s/veh	0.2	8.7	9.7	9.9	2.4	2.4	5.0	0.0	0.9	1.6	0.0	1.3
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	14.7	16.0	0.9	7.1	7.3	3.3	0.0	0.9	1.5	0.0	1.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	8.5	22.9	24.2	52.9	13.1	13.1	39.6	0.0	30.3	33.7	0.0	31.0
LnGrp LOS	А	С	С	D	В	В	D		С	С		С
Approach Vol, veh/h		1958			1362			192			136	
Approach Delay, s/veh		23.3			14.2			37.3			32.4	
Approach LOS		С			В			D			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		22.8	7.5	59.7		22.8	7.7	59.5				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.3	5.3	52.9		18.3	5.3	52.9				
Max Q Clear Time (g_c+l1), s		13.9	3.8	42.4		8.4	2.7	22.2				
Green Ext Time (p_c), s		0.2	0.0	8.2		0.3	0.0	10.0				
Intersection Summary												
HCM 7th Control Delay, s/veh	_		21.0	_		_	 _			_		
HCM 7th LOS			С									

Intersection						
Int Delay, s/veh	1.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†		7	^	A.	
Traffic Vol, veh/h	1749	3	58	1252	1	117
Future Vol, veh/h	1749	3	58	1252	1	117
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	_	None	-	None	_	None
Storage Length	_	-	180	-	0	-
Veh in Median Storage,	# 0	_	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1901	3	63	1361	1	127
Major/Minor N	1ajor1	N	//ajor2	N	/linor1	
Conflicting Flow All	0	0	1904	0	2709	952
Stage 1	-	-	-	-	1903	-
Stage 2	_	_	_	_	807	_
Critical Hdwy		-	4.14		6.84	6.94
•	-	-		-		
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	308	-	17	260
Stage 1	-	-	-	-	103	-
Stage 2	-	-	-	-	400	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	308	-	13	260
Mov Cap-2 Maneuver	_	_	-	_	13	_
Stage 1	_	_	_	-	103	_
Stage 2	_	_	_	_	318	_
Olago Z					010	
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.87		40.28	
HCM LOS					Е	
14.		IDI 4	CDT		\A/DI	MET
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		225	-	-	308	-
HCM Lane V/C Ratio		0.57	-	-	0.204	-
HCM Control Delay (s/v	eh)	40.3	-	-	19.6	-
HCM Lane LOS		Е	-	-	С	-
HCM 95th %tile Q(veh)		3.2	-	-	0.8	-

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4			4			413	
Traffic Vol, veh/h	59	0	6	0	0	10	11	107	1	9	49	99
Future Vol, veh/h	59	0	6	0	0	10	11	107	1	9	49	99
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	·-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	64	0	7	0	0	11	12	116	1	10	53	108
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	267	268	80	187	321	117	161	0	0	117	0	0
Stage 1	127	127	-	141	141	-	-	-	-	-	-	-
Stage 2	140	141	-	46	180	-	-	-	-	-	-	-
Critical Hdwy	7.33	6.53	6.93	7.33	6.53	6.23	4.13	-	-	4.13	-	-
Critical Hdwy Stg 1	6.53	5.53	-	6.13	5.53	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.13	5.53	-	6.53	5.53	-	-	-	-	-	-	-
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	-	2.219	-	-
Pot Cap-1 Maneuver	675	637	964	765	595	935	1417	-	-	1470	-	-
Stage 1	864	791	-	862	780	-	-	-	-	-	-	-
Stage 2	862	779	-	962	750	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	657	627	964	748	586	935	1417	-	-	1470	-	-
Mov Cap-2 Maneuver	657	627	-	748	586	-	-	-	-	-	-	-
Stage 1	858	785	-	854	773	-	-	-	-	-	-	-
Stage 2	844	772	-	949	744	-	-	-	-	-	-	-
, and the second												
Approach	EB			WB			NB			SB		
HCM Control Delay, s/	v10.86			8.9			0.7			0.44		
HCM LOS	В			Α								
Minor Lane/Major Mvm	nt _	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR		
Capacity (veh/h)		166	-	-	657	964	935	107	-	-		
HCM Lane V/C Ratio		0.008	-	-	0.098	0.007	0.012	0.007	-	-		
HCM Control Delay (s/	veh)	7.6	0	-	11.1	8.8	8.9	7.5	0	-		
HCM Lane LOS	,	Α	Α	-	В	Α	Α	Α	Α	-		
HCM 95th %tile Q(veh)	0	-	-	0.3	0	0	0	-	-		

TF 45 AM 2:31 pm 12/15/2023 Synchro 12 Report Page 4

1: LONE TREE PKWY & LINCOLN AVENUE

	•	→	1	←	1	†	1	Ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	48	1519	8	2346	76	19	78	75
v/c Ratio	0.27	0.64	0.08	1.05	0.29	0.05	0.28	0.20
Control Delay (s/veh)	8.0	10.3	42.1	51.2	34.1	18.8	33.8	11.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	8.0	10.3	42.1	51.2	34.1	18.8	33.8	11.3
Queue Length 50th (ft)	7	203	4	~819	37	3	38	4
Queue Length 95th (ft)	17	380	18	#960	78	22	79	40
Internal Link Dist (ft)		355		1347		306		319
Turn Bay Length (ft)	180		180				115	
Base Capacity (vph)	181	2387	100	2244	263	346	277	376
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.27	0.64	0.08	1.05	0.29	0.05	0.28	0.20

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٠	→	•	•	•	•	1	†	/	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		7	↑ ↑		*	1>		*	13	
Traffic Volume (veh/h)	44	1329	68	7	2088	70	70	6	11	72	8	61
Future Volume (veh/h)	44	1329	68	7	2088	70	70	6	11	72	8	61
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	48	1445	74	8	2270	76	76	7	12	78	9	66
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	149	2201	112	18	2145	71	293	124	212	346	39	284
Arrive On Green	0.04	0.64	0.64	0.01	0.61	0.61	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1781	3440	176	1781	3509	117	1325	619	1061	1393	194	1421
Grp Volume(v), veh/h	48	744	775	8	1143	1203	76	0	19	78	0	75
Grp Sat Flow(s), veh/h/ln	1781	1777	1839	1781	1777	1849	1325	0	1679	1393	0	1615
Q Serve(g_s), s	0.9	23.4	23.6	0.4	55.0	55.0	4.6	0.0	0.8	4.3	0.0	3.5
Cycle Q Clear(g_c), s	0.9	23.4	23.6	0.4	55.0	55.0	8.1	0.0	0.8	5.1	0.0	3.5
Prop In Lane	1.00	20.1	0.10	1.00	00.0	0.06	1.00	0.0	0.63	1.00	0.0	0.88
Lane Grp Cap(c), veh/h	149	1137	1177	18	1086	1130	293	0	336	346	0	323
V/C Ratio(X)	0.32	0.65	0.66	0.45	1.05	1.06	0.26	0.00	0.06	0.23	0.00	0.23
Avail Cap(c_a), veh/h	179	1137	1177	101	1086	1130	293	0.00	336	346	0.00	323
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.5	10.0	10.1	44.3	17.5	17.5	33.6	0.0	29.1	31.2	0.0	30.2
Incr Delay (d2), s/veh	1.2	2.9	2.9	16.4	42.2	45.7	2.1	0.0	0.3	1.5	0.0	1.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	7.9	8.3	0.3	29.9	32.2	1.6	0.0	0.4	1.6	0.0	1.5
Unsig. Movement Delay, s/veh		7.5	0.0	0.0	20.0	0Z.Z	1.0	0.0	0.7	1.0	0.0	1.5
LnGrp Delay(d), s/veh	23.7	13.0	13.0	60.7	59.7	63.2	35.7	0.0	29.5	32.7	0.0	31.9
LnGrp LOS	20.7 C	В	В	E	55.7 F	65.2 F	D	0.0	23.5 C	C	0.0	01.5 C
Approach Vol, veh/h		1567			2354			95			153	
Approach Delay, s/veh		13.3			61.5			34.5			32.3	
Approach LOS		13.3 B			01.5 E			34.5 C			32.3 C	
		Ь									C	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		22.5	5.4	62.1		22.5	8.0	59.5				
Change Period (Y+Rc), s		4.5	4.5	4.5		4.5	4.5	4.5				
Max Green Setting (Gmax), s		18.0	5.1	53.4		18.0	5.0	53.5				
Max Q Clear Time (g_c+l1), s		10.1	2.4	25.6		7.1	2.9	57.0				
Green Ext Time (p_c), s		0.1	0.0	11.9		0.4	0.0	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			41.7									
HCM 7th LOS			D									

Intersection						
Int Delay, s/veh	2.5					
<u> </u>		EDD	///DI	WDT	NDL	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	•	100	^	Y	70
	1404	8	109	2161	4	73
· · · · · · · · · · · · · · · · · · ·	1404	8	109	2161	4	73
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	-	-	180	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1526	9	118	2349	4	79
Major/Minor	_:4		1-i0		Ain and	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	1535	0	2942	767
Stage 1	-	-	-	-	1530	-
Stage 2	-	-	-	-	1411	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	429	-	12	345
Stage 1	-	-	-	-	165	-
Stage 2	-	-	-	-	191	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	429	-	8	345
Mov Cap-2 Maneuver	-	-	-	-	8	-
Stage 1	-	-	-	-	165	-
Stage 2	_	_	_	_	138	_
3.033 L					.00	
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0.79		98.33	
HCM LOS					F	
Minor Long/Major M.		NDI 4	EDT	EDD	WDI	MDT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		112	-	-	429	-
HCM Lane V/C Ratio		0.746	-	-	0.276	-
HCM Control Delay (s/ve	eh)	98.3	-	-		-
LICMILana LOC		F	-	_	С	-
HCM Lane LOS HCM 95th %tile Q(veh)		4.1			1.1	

Intersection												
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	Þ			4			4			414	
Traffic Vol, veh/h	20	0	2	0	0	9	2	58	2	3	66	14
Future Vol, veh/h	20	0	2	0	0	9	2	58	2	3	66	14
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	0	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	22	0	2	0	0	10	2	63	2	3	72	15
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	153	155	43	111	162	64	87	0	0	65	0	0
Stage 1	86	86	-	68	68	-	-	-	-	-	-	-
Stage 2	67	70	_	42	93	-	_	_	_	_	-	_
Critical Hdwy	7.33	6.53	6.93	7.33	6.53	6.23	4.13	_		4.13		-
Critical Hdwy Stg 1	6.53	5.53	0.33	6.13	5.53	0.23	T. 10	_	_	7.10	-	_
Critical Hdwy Stg 1 Critical Hdwy Stg 2	6.13	5.53	_	6.53	5.53							
Follow-up Hdwy	3.519	4.019		3.519	4.019	3.319	2.219	_	_	2.219	_	_
Pot Cap-1 Maneuver	806	736	1018	861	730	1000	1508	-	-	1536	_	-
Stage 1	913	823	1010	941	838	1000	1300	-	-	1550	_	_
Stage 2	942	837	-	967	817	-	-	_	_	_	_	-
Platoon blocked, %	342	037	-	301	017	-	-	-	_	-	_	_
Mov Cap-1 Maneuver	795	733	1018	856	727	1000	1508	-		1536	-	-
Mov Cap-1 Maneuver	795	733	1010	856	727	1000	1500	-	-	1550	-	-
Stage 1	911	821		940	836	-	-	-	-	-	_	-
•	932	835	-	940	815	_	-	-	-	-		-
Stage 2	ჟა2	033	-	903	010	-	-	-	_	-	_	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/	v 9.55			8.64			0.24			0.28		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR		
Capacity (veh/h)		58	-	-	795	1018	1000	105	-	_		
HCM Lane V/C Ratio		0.001	_		0.027	0.002		0.002	-	<u>-</u>		
HCM Control Delay (s/	veh)	7.4	0	_	9.7	8.5	8.6	7.3	0	_		
HCM Lane LOS	von)	Α.	A	_	Α.	Α	Α	Α.5	A	_		
HCM 95th %tile Q(veh))	0		-	0.1	0	0	0	-	-		
HOW JOHN JOHN WING WING	1	U	_	_	0.1	0	U	U				

APPENDIX G – Traffic Operations Plan

Traffic Operation Plan:

A traffic operations plan has been contemplated to ensure that traffic does not impact public right-of-way during pick up and drop off operations. The plan can be adjusted and iterated on as conditions and school populations change. Ambleside is committed to being flexible and making adjustments as necessary to ensure the safety of all.

As stated, the goal of the operations plan is to maintain safe circulation throughout the site while ensuring no vehicles queue out into public right of way. A number of strategies will be used, and adjusted, if necessary, to ensure this happens.

Ambleside will have school staff on site to direct traffic, provide guidance, and ensure that the operations plan is being followed. Staff are available to adjust traffic flows if needed, guide students into and out of the building, observe opportunities to improve the plan, and provide constant communication to parents.

Ambleside purposefully limits its school size (in our bylaws) to 221 students or fewer. Based on current operations average (which takes into account siblings and family ride sharing), we anticipate that the auto occupancy would be approximately 2.3 and some percentage of walking or biking from the surrounding neighborhoods. The new school anticipates 30 staff members who drive daily to school that would arrive and leave outside of the peak hours and have dedicated parking away from primary traffic flows.

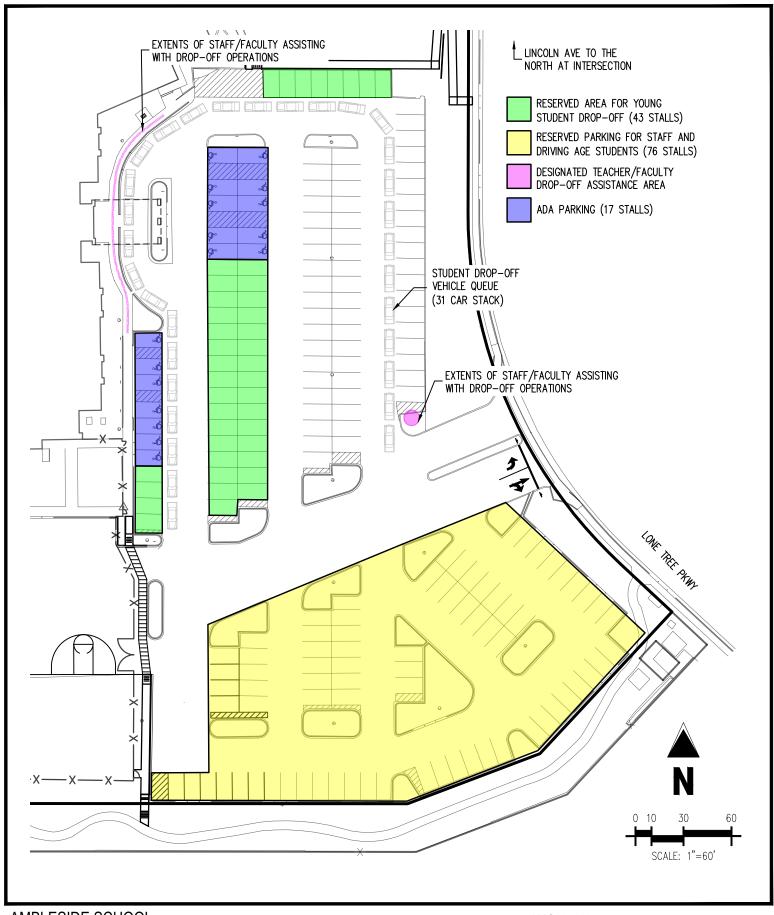
School drop-off takes place from 7:20 - 7:50 a.m. M-F. The grades levels will be dropped off in a staggered scheduled:

- 9-12 at 7:20 AM
- K-5 at 7:30 AM
- 6-8 at 7:40 AM

The youngest grade levels will park and be walked into school (with additional efficiencies such as requesting vehicles be backed in for ease of egress) while the oldest grade levels will have designated parking. It is anticipated that with this operations plan fewer than 25 vehicles (max of 21 shown below) will queue at any given time. The site has stacking space for up to 31 vehicles before impacting the access driveway. The following table details the above operations plan.

<u>Vehicle</u>			Time
<u>s</u>	<u>Method</u>	<u>Grades</u>	Period
14	Park	11 and 12	7:20 -
14	Drop Off	9 and 10	7:30
21 21	Park and Escort Drop Off	K, 1, 2 3, 4, 5	7:30 - 7:40
21	Drop Off	6, 7, 8	7:40 - 7:50

Auto occupancy we have to fall below 1.6 to have the possibility of impacting the public ROW. An auto occupancy of 1.6 would result in a queue of 30 vehicles while space exists to accommodate 31 vehicles. This is extremely unlikely with the combination of staff/students and student/student populations that exist


within the school. Anecdotally no queueing issues exist at the current school. It is not anticipated that the change in location would be any different.

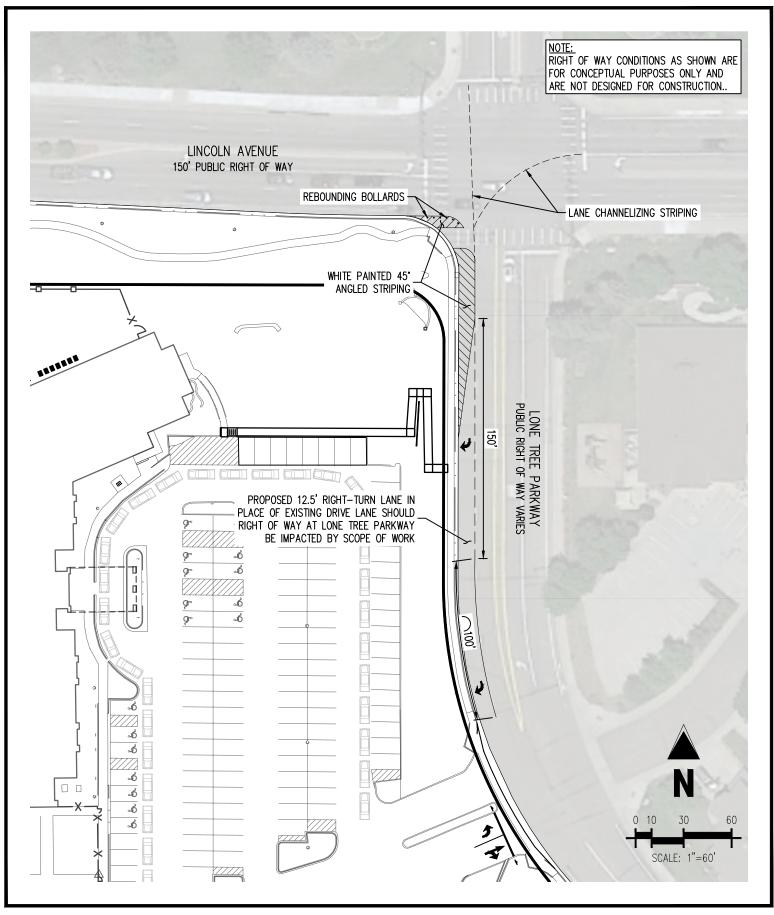
School pick-up takes place from 3:30 - 3:45 M-Th and 12:15 - 12:30 on F. In a similar manner, vehicles will drive through and pick up their children. Staff members leave for the day at various times from 3:45 - 5:30 p.m. The PM pick-ups are spread due to various school activities. Outbound traffic from the site will be directed to the right along Lone Tree Parkway if continuing to the east and to the left along Lone Tree Parkway if heading north or west.

Staff are present at all times during pick up and drop off to ensure that plans are being followed. This also allows for unforeseen situations to be dealt with. Vehicles within fire lane areas will never be unattended and compliance with this will be ensured by Staff. In the event of an emergency staff shall ensure the fire lane is cleared of all vehicles and obstructions (including temporary signage) so that emergency services can respond in an efficient and effective manner. An Exhibit is provided herein to visualize the areas described above.

Assemblies and extra events would use the assembly space. The site would be parked for such an event and would happen off peak. There would be very little traffic on campus from late May - mid - August.

In the event that the school use and operations result in any vehicle queues backing into the Lone Tree Parkway right-of-way, or if the City determines that there are operational issues within the right-of-way surrounding the property, the owner will commit to working with the City on operational improvements at the western intersection of Lone Tree Parkway and Lincoln Avenue. An Exhibit is attached to show conceptual potential improvements.

AMBLESIDE SCHOOL

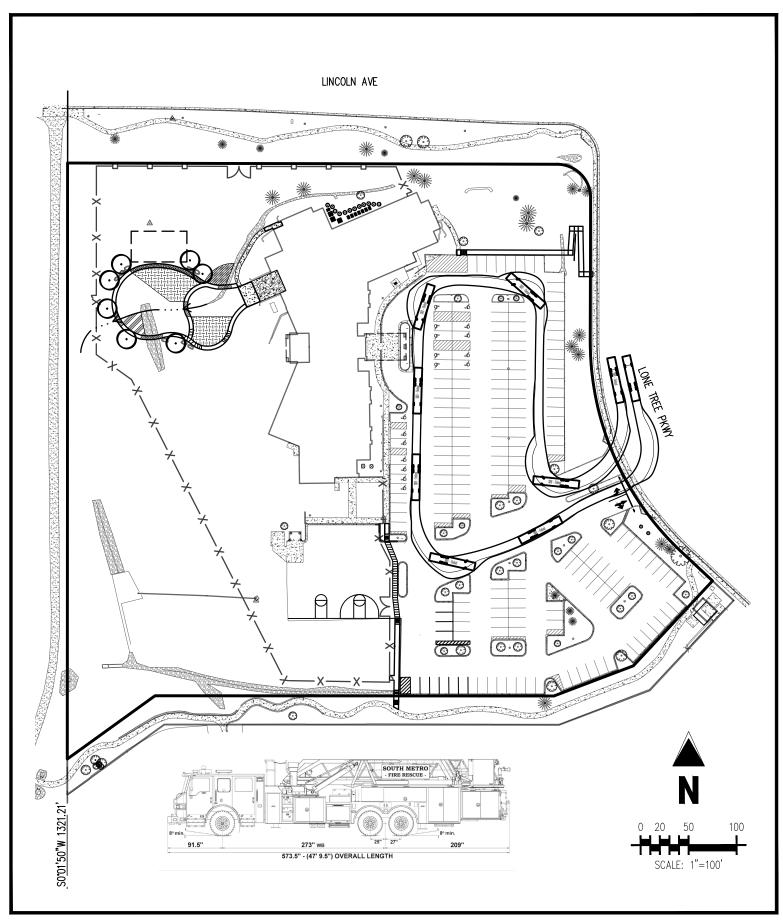

9941 LONE TREE PARKWAY LONE TREE, CO 80124

VEHICLE DROP-OFF QUEUING EXHIBIT

Project No:	AMC000002
Drawn By:	DMH
Checked By:	JSB
Date:	03/13/2024

5500 Greenwood Plaza Blvd., Suite 200 Greenwood Village, CO 80111 303.770.8884 • GallowayUS.com

AMBLESIDE SCHOOL LONE TREE PARKWAY & LINCOLN AVENUE


9941 LONE TREE PARKWAY LONE TREE, CO 80124

CONCEPTUAL ROW CONFIGURATION

Project No:	AMC000002
Drawn By:	DMH
Checked By:	JSB
Date:	05/28/2024

5500 Greenwood Plaza Blvd., Suite 200 Greenwood Village, CO 80111 303.770.8884 • GallowayUS.com

AMBLESIDE SCHOOL

9941 LONE TREE PARKWAY LONE TREE, CO 80124

FIRETRUCK VEHICLE TURN ANALYSIS

Project No:	AMC000002
Drawn By:	DMH
Checked By:	JSB
Date:	05/30/2024

5500 Greenwood Plaza Blvd., Suite 200 Greenwood Village, CO 80111 303.770.8884 • GallowayUS.com