

March 15, 2024

Andrew Samson, EIT 9220 Kimmer Drive, Suite 100 Lone Tree, CO 80124

RE: Drainage Compliance Letter in support of Ambleside School project located at 9941 Lone Tree Pkwy (Existing Cornerstone Church).

Mr. Samson,

This drainage conformance letter has been prepared for Ambleside School located at 9941 Lone Tree Pkwy in Lone Tree, CO. The objective of this letter is to show the proposed site improvements will result in a de minimis increase in flows from the site and will not require additional storm sewer infrastructure improvements.

The existing Site is approximately 7.39 acres and is located on the southwest corner of Lincoln Avenue and Lone Tree Pkwy. The lot borders Lone Tree Pkwy to the east, Lincoln Ave to the north, single-family homes on the west (Highlands Ranch No. 90A), and single-family homes on the south (Block 3, Centennial Ridge Subdivision Filing No. 1). The existing site is currently occupied by the Cornerstone Church.

The proposed improvements will include installing 3,040 square feet of sidewalk throughout the Site and 616 square feet of asphalt paving. These proposed improvements will not alter the existing drainage patterns. However, since these proposed impervious areas will replace landscaped areas, there will be a small increase in overall imperviousness (approximately 1%) and runoff from the site.

The existing drainage calculations are provided in the Phase III Drainage Report from CKE Engineering, approved May, 4, 2012. For a comparison of the existing drainage conditions to the proposed conditions, please refer to the table below:

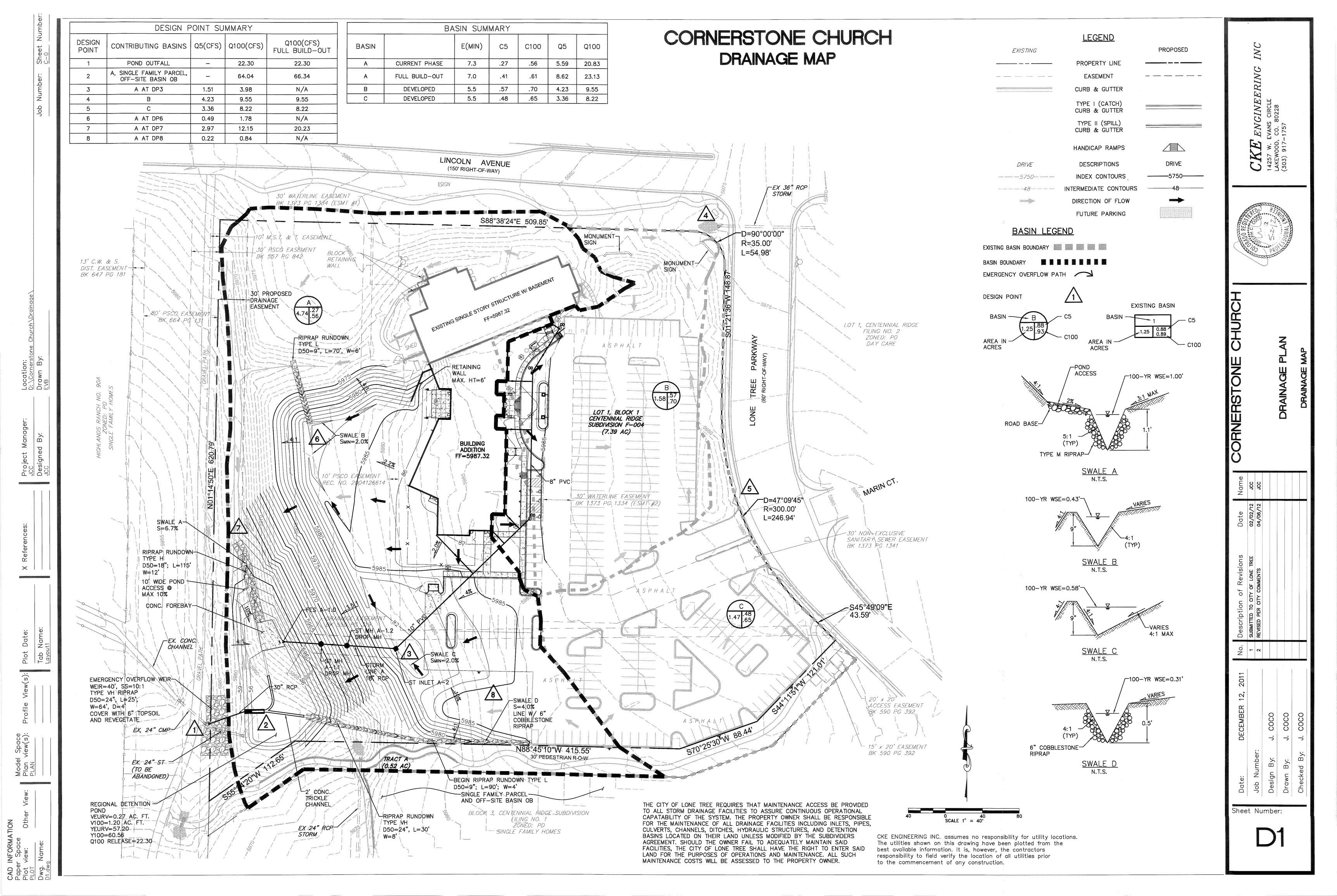
		Existi	ing Cond	ditions			Propo	sed Cond	litions	
Sub-Basin	Imp [%]	C ₅	C ₁₀₀	Q₅ [cfs]	Q ₁₀₀ [cfs]	Imp [%]	C ₅	C ₁₀₀	Q₅ [cfs]	Q ₁₀₀ [cfs]
Α	53	0.41	0.61	8.6	23.1	54	0.42	0.61	8.8	23.2
В	74	0.57	0.70	4.2	9.6	75	0.58	0.71	4.3	9.7
С	64	0.48	0.65	3.4	8.2	64	0.48	0.65	3.4	8.2

Based on the results of the Rational Calculations, the proposed improvements will result in a small increase in flows during the 5-year and 100-year events. During the 5-year and 100-year events it is anticipated that an additional 0.3 CFS and 0.2 CFS would be generated, respectively. Improvements as part of Sub-Basin A are all that contribute to the existing on-site pond infrastructure and result in approximately a 1% and 0.50% change in flow rate for the 5-year and 100-year storms, respectively.

Conclusions:

While the proposed improvements will result in a small increase in flows during the minor and major storm events, this small increase in flows would have a negligible impact on the existing infrastructure and will not result in a need for additional storm sewer improvements. Additional future improvements to this site may result in the need for additional storm sewer improvements and drainage analysis. Further calculation would there for be required at that time to determine what, if any improvements, would be required.

Ambleside School – Drainage Letter SWC Lone Tree Pkwy and Lincoln Ave March 15, 2024


Sincerely, **GALLOWAY**

Sid Biddle, PE Civil Project Manager SidBiddle@gallowayus.com

Appendices

- A. Existing Drainage MapB. Existing Rational Calculations
- C. Proposed Site Exhibit
 D. Proposed Rational Calculations

APPENDIX A Existing Drainage Map

APPENDIX B

Existing Rational Calculations

WEIGHTED C-VALUE CALCULATION - FULL BUILDOUT

JOB NO: Full Biuldout
PROJECT: Cornerstone Church
DATE: 3/30/2012

Soil Type (A-D):

С

TOTAL AREA (SF)	AREA LANDSCAPE (SF)	AREA PAVEMENT (SF)	AREA Roof Top (SF)	C2	C5	C10	C100	l (%)
BASINS				***	· · · · · · · · · · · · · · · · · · ·	······································		
206425	93146	71160	42119	0.36	0.41	0.47	0.61	53%
		49531	1315	0.53	0.57		0.70	74%
63950	23257	40693	0	0.44	0.48	0.53	0.65	64%
170013	64875	71160	33978	0.41	0.46	0.51	0.63	60%
509014	199058	232544	77412	0.40	0.45	0.51	0.63	59%
	AREA (SF) BASINS 206425 68626 63950 170013	AREA (SF) LANDSCAPE (SF) BASINS 206425 93146 68626 17780 63950 23257 170013 64875	AREA (SF) LANDSCAPE (SF) PAVEMENT (SF) BASINS 206425 93146 71160 68626 17780 49531 63950 23257 40693 170013 64875 71160	AREA (SF) LANDSCAPE (SF) PAVEMENT (SF) AREA Roof Top (SF) BASINS 206425 93146 71160 42119 68626 17780 49531 1315 63950 23257 40693 0 170013 64875 71160 33978	AREA (SF) LANDSCAPE (SF) PAVEMENT (SF) Top (SF) C2 BASINS 206425 93146 71160 42119 0.36 68626 17780 49531 1315 0.53 63950 23257 40693 0 0.44 170013 64875 71160 33978 0.41	TOTAL AREA (SF)	AREA (SF)	AREA (SF)

C Values are based on Urban Drainage Equations RO-6, RO-7 and Tables RO3 and RO-4.

Surface	i
landscape	0%
roof	90%
pavement	100%

STANSARD FORM SF-2
TIME OF CONCENTRATION
SUBDIVISION: Cornerstone Church
CALCULATED BY: JCC
DATE: 3/30/2012

REMARKS															
FINAL	٥٠		Min	(14)	7 0	ט ע	5 10	6.7	1	•					7
ECK	(URBANIZED BASINS)	tc=(1/180)+10	Min	(13)	15.6	12.0	11.6	15.5							
t, CHECK	(URBANIZE	COMP. TOT LENGTH tc=(1/180)+10	t	(12)	1010	525	292	985							
		COMP	ئب	, ()	7.0	י רנ ה	5.5	6.7							
		42	Min	(10)	5.2	2.8	1.4	5.1							
TIME		VEL.	FPS	6)	3.2	2.9	3.1	3.2							†
TRAVEL TIME	(t ₁)	SLOPE	%	(8)	2.8	2.1	2.4	2.8							
		LENGTH SLOPE	芷	(2)	1005	490	255	980							-
AND		- تنب	Min	(9)	1.7	2.6	4.2	1.6							
INITIAL/OVERLAND	TIME (t _i)	SLOPE	%	(2)	4.0	10.0	4.3	4.0							
/ILINI		LENGTH SLOPE	芷	(4)	5	35	37	5							
		AREA	Ac	(3)	4.74	1.58	1.47	3.90							
SUB-BASIN	DATA	ပိ		(2)	0.41	0.57	0.48	 0.46							
S		DESIG:		(1)	¥	В	ပ	 DP7							

_	_		,	1
-	-	-		
-		 -		
L				
\vdash		-		
_		_		
-	-			
_				
_	_	_		
		<u> </u>		
i i	Ī		: 1	

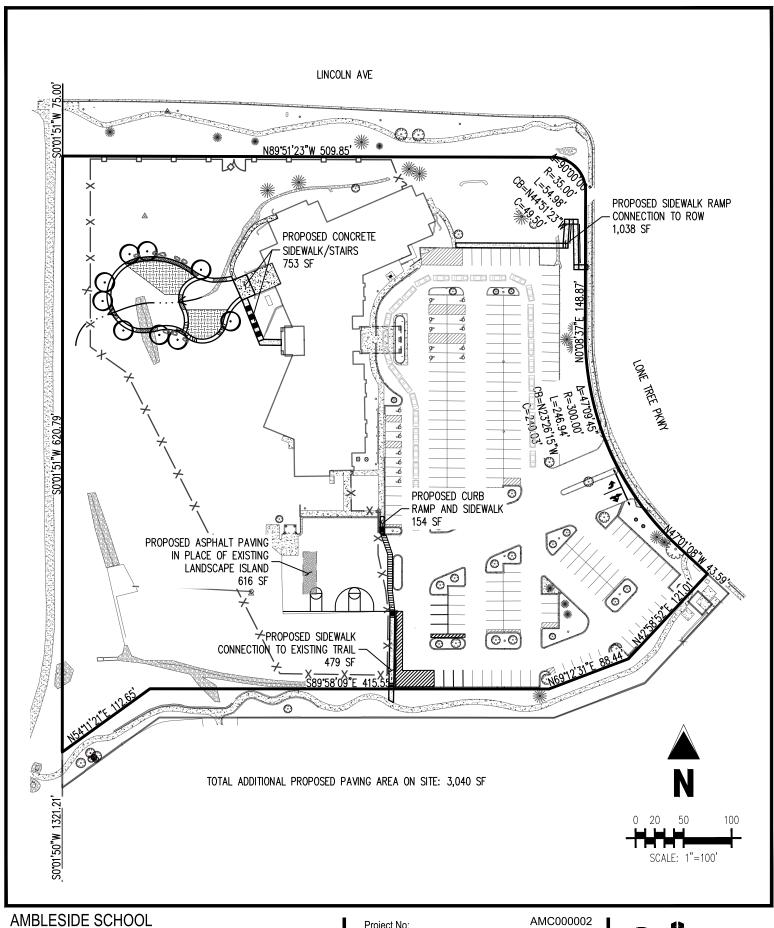
STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

CALCULATED BY: JCC DATE: RE\ 3/30/2012 CHECKED BY: JCC

JOB NO: Full Biuldout
PROJECT: Cornerstone Church
DESIGN STORM: 5 Year

Γ		T	11	1			T	T					Т		T	Т		-
	Ç I	KEMARKS	XXXXX XXXXX															
TIME	(,,,,,)	(54)	× × ×															_
	(294)	(00)	- I		\neg		\dashv						-+	_		-	_	-
TRAVEL	VELOCITY	4	┩▔┝			_	\bot											_
F	LENGTH (FT)	(10)										l						
\vdash	SIZE	-	┧╲┟		+		-+	-										-
	∃dld	(18)																
PIPE	(%)	(17)	[×[•
	SLOPE SLOPE		J^L				_											_
	FOM (CER) DERIGN	16	×				j			İ		1						
	rom (cŁa)	± (c)			_	十		一	十	_			\dashv	一十		-	\dashv	-
EET	STREET	Ξ																
STREE	(%)	(14)																
H	SFOPE (CFS)	┿	1		┰┸	T^{\perp}	\top^{\perp}	\mathbf{T}^{\perp}	┰┸	┯┸		1	 -	\mathbf{T}	 -		+L	_
	0107	(13)																
TOTAL RUNOFF	(ІИ/НВ)	(12)							1	1	╁	1	1			†	†	-
S	(=,)	┿	 	1		 	ļ	<u> </u>		<u> </u>				<u> </u>	_			
AL	(A * D) 3 (DA)	£								1								
0	(NIM)	+-	 -	†	+	†		+	╫	╁	╁	+	+	╫	+	-	-	_
	ા	(10)																
П	(CFS)	(6)	8.62	4.23	3.36		7.92											-
	д М/НВ	\vdash		-	 	-	-	├			4_		-	 	↓ —		-	-
	an/Ni I	8	4.40	4.75	4.75		4.45											
	(DA)		1.96	0.89	0.71		1.78			1	╁┈		1	 	1		<u> </u>	
힣	C * A	8	- -	0	0		-											
<u>R</u>	(MIM)		7.0	5.5	5.5		6.7							İ				
	f°	(9)		 	<u> </u>													
DIRECT RUNOFF	RUNOFF COEFF	(5)	0.41	0.57	0.48		0.46											
	(AC)	H		├						-	╁	┿	╁┈	┼	-	 	 -	1
	ABRA	4	4.74	1.58	1.47		3.90			L								
	DESIGN	(3)																1
╙	TNIO9 A∃ЯA	\dashv		-						<u> </u>	-	-	 	 	-	 	<u> </u>	
	DESIGN	(2)	2	4	5		2								<u> </u>			
	BASIN		∢	В	၁		DP7											

B-11


STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

CALCULATED BY: JCC DATE: 3/30/2012 CHECKED BY: JCC

JOB NO: Full Biuldout
PROJECT: Cornerstone Church
DESIGN STORM: 100 Year

_		T	11			<u>1</u> -			·····								_			
	SHAPKS	(22)	XXXXX											·						
T T	(MIM)	(21)	×									\dagger	1				T			П
TRAVEL TIME	(299) J	┿	┩╲┝		_	_	\perp	_			<u> </u>	+	-				+	\dashv		Н
AVE	VELOCITY	(20)	×	l			l													
R	(FT)	(19)	×									T					Τ			П
\vdash	CENGTH	-	┨┈┝	_	-	\dashv						+	_				+	-		Н
	Edid	(18)	×						l				1							
PIPE	(%)	(17)										T	寸							П
	2FOBE FOM (CE2)	+-	┦▔┡			\dashv	_					4	\dashv			 	╀	_		Н
	DESIGN	(16)	$ \hat{\mathbf{x}} $																	
	rom (cea)	15)										1	寸	一			T			П
STREET	(%) TEEET	5	<u>`</u> _	_	+	\dashv	\perp	_	\dashv			_					_	\dashv		Н
STI	3d07S	(14)	×											I				İ		
	(CES)	(13)					Τ	Π	Т	T	Т			T	\top	Т		<u> </u>	Τ	٦
4	(IN/HR)	╄		 				 		+	\dashv			-	_	_			4	4
ON	(aH/NI)	(12)																		ı
TOTAL RUNOFF	(AC)	(11)								1	7			1	1	Ť			十	ᅦ
OTA	(MIN) E(C * A)	_		 	ļ			ļ	ـــ	4	4			ऻ		_			lacksquare	_
H	2 [†]	(10)														İ				ı
П	(CES)	(6)	23.13	9.55	8.22		20.23		T	1				1	1	1			1	一
	Q IN/HR	Ľ				<u> </u>	+		1		4			-	-	+			╀	4
	I I	8)	8.00	8.65	8.65		8.20				ı									
Ł	(DA)	(7)	2.89	1.10	0.95		2.47				T								T	
DIRECT RUNOFF	(MIN)	H							╁	+-	+			┿	+	+		-	┿	\dashv
<u>\</u>	°1	(9)	7.0	5.5	5.5		6.7		l							ı				
REC	COEFF	Н	21	0	35		က္က			╁	+			+	╅	╁			十	ᅱ
□	RUNOFF	(2)	0.61	0.70	0.65		0.63												丄	_
	AREA (DA)	(4)	4.74	1.58	1.47		3.90													
	DESIGN	(3)								1	\dagger			1	+	\dagger		_	T	\dashv
Н	INIOH	\dashv							-	+-	+			+	+	+		_	+	\dashv
_	DERIGN	(2)	2	4	5		7												$oldsymbol{\perp}$	_
	BASIN		A	В	ပ		DP7													

APPENDIX C Proposed Site Exhibit

9941 LONE TREE PARKWAY LONE TREE, CO 80124

SIDEWALK AREA EXHIBIT

 Project No:
 AMC000002

 Drawn By:
 DMH

 Checked By:
 JSB

 Date:
 03/13/2024

5500 Greenwood Plaza Blvd., Suite 200 Greenwood Village, CO 80111 303.770.8884 • GallowayUS.com

APPENDIX D

Proposed Rational Calculations

		BASIN S	SUMMARY	TABLE		
Tributary	Area			t_c	Q_5	Q ₁₀₀
Sub-basin	(acres)	C_5	C ₁₀₀	(min)	(cfs)	(cfs)
Α	4.74	0.42	0.61	6.99	8.8	23.2
В	1.58	0.58	0.71	5.50	4.3	9.7
Č	1.47	0.48	0.65	5.50	3.3	8.2

COMPOSITE % IMPERVIOUS CALCULATIONS

Subdivision: Centennial Rdige
Location: User Defined

Project Name: Ambleside School

Project No.: AMC002

Calculated By: ETA

Checked By: JSB

Date: 3/13/24

		Pave	ed Roads/Sid	ewalks		Lawns			Roofs		Basins Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
Α	4.74	100	1.68	35.4	0	2.09	0.0	90	0.97	18.40	53.8
В	1.58	100	1.16	73.7	0	0.38	0.0	90	0.03	1.70	75.4
С	1.47	100	0.93	63.6	0	0.53	0.0	90	0.00	0.00	63.6

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Centennial Rdige
Location: User Defined

Project Name: Ambleside School
Project No.: AMC002
Calculated By: ETA
Checked By: JSB
Date: 3/13/24

		SUB-BA	SIN			INITIAL/	OVERLAN	D (Sheet Flow)		Shallow C	oncentrate	ed Flows			Tc CHECK		
		DAT	A				(T _i)			(T _t)			((URBANIZED BAS	SINS)	FINAL	
BASIN	D.A.	Hydrologic	Impervious	C ₁₀₀	C ₅	L	S	Ti	L	S	Cv	VEL.	T _t	COMP. T _c	TOTAL	Urbanized T _c	T _c
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)					(MIN)	LENGTH (FT)	(MIN)	(MIN)
Α	4.74	С	53.8	0.61	0.42	5	4.0	1.8	1005	2.8	20.0	3.2	5.2	7.0	1010.0	15.6	7.0
В	1.58	С	75.4	0.71	0.58	35	10.0	2.6	490	2.1	20.0	2.9	2.8	5.5	525.0	12.9	5.5
С	1.47	С	63.6	0.65	0.48	37	4.3	4.2	255 2.4 20.0 3.1 1.4					5.5	292.0	11.6	5.5

NOTES:

 $T_i = (0.395*(1.1 - C_5)*(L)^0.5)/((S)^0.33)$, S in ft/ft

T_t=L/60V (Velocity From Fig. 501) Velocity V=Cv*S^0.5, S in ft/ft

Tc Check = 10+L/180

For Urbanized basins a minimum $T_{\mbox{\tiny C}}$ of 5.0 minutes is required.

For non-urbanized basins a minimum $T_{\rm c}$ of 10.0 minutes is required

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name:	Ambleside School
Subdivision: Centennial Rdige	Project No.	: AMC002
Location: User Defined	Calculated By:	ETA
Design Storm: 5-Year	Checked By:	JSB
	Date:	3/13/24

					DIRECT RI	JNOFF				TOTAL	RUNOFF		STR	REET		PIPE		TRA	AVEL TII	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	O (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
		А	4.74		7.0	1.99	4.41	8.8													
		В	1.58	0.58	5.5	0.91	4.74	4.3													
		С	1.47	0.48	5.5	0.70	4.74	3.3													

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: Ambieside School	
Subdivision: Centennial Rdige	Project No.: AMC002	
Location: User Defined	Calculated By: ETA	
Design Storm: 100-Year	Checked By: JSB	
	Date: 3/13/24	

		DIRECT RUNOFF								TOTAL RUNOFF					STREET PIPE					ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	O (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	O (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
		А	4.74		7.0			23.2													
		В	1.58	0.71	5.5	1.12	8.63	9.7													
		С	1.47	0.65	5.5	0.95	8.63	8.2													

