Civil Engineers | Landscape Architects
March 28, 2022

Jacob James, P.E., City Engineer
C ity of Lone Tree, Community Development
9220 Kimmer Drive, Suite 100
Lone Tree, CO 80124

RE: Lone Tree Recreation Center - Pickle Ball Courts Drainage Letter

Jacob,
The proposed project includes the redevelopment of a portion of Lone Tree Recreation Center at 10249 RidgeGate Circle in Lone Tree, CO. The portion of the site being redeveloped is currently a single row of parking for the recreation center and the remainder is vacant / native seed. The proposed improvements will include six (6) pickle ball courts, a shelter, and associated flatwork for access to the courts from the recreation center and adjoining right-of-way.

Per a meeting with City of Lone Tree staff on December 15, 2021, you stated that the design team would need to verify that water quality capture volume (W QCV) for the proposed improvements was included in the existing detention facility (Pond 309) to the west of the recreation center. The existing drainage facility is included in the Phase III Drainage Report for Tract FF, Detention Pond 309 \& Lone Tree Community Park at RidgeGate as prepared by Merrick and dated July 2008. Per this report, the proposed improvements exist within sub-basin 0 S2B.

The report states that the sub-basins which are tributary to Pond 309 have an imperviousness of 30.5%. The proposed improvements associated with the pickle ball courts would increase this imperviousness to 32.5%. The report also calculates the 100 year volume for Pond 309 (inclusive of W QCV) by converting the imperviousness percentage to a " C " coefficient. The converted "C" coefficient for 30.5% imperviousness equals 0.57 . The converted " C " coefficient for the proposed 32.5% imperviousness also equals 0.57 . Therefore, if these improvements were included in the original design for Pond 309, the total volume of the pond would not have increased.

In regards to W Q CV, the report calculates a required volume of 0.41 acre-feet based on the aforementioned 30.5% imperviousness. A 32.5% imperviousness would result in a volume of 0.42 acrefeet (686 cf increase). Utilizing the design geometry of Pond 309 , this would result in a W Q CV water surface elevation increase from 6022.16 to 6022.18 (0.02 feet or $1 / 4$ "). This increase is negligible and would have no impact on the $1-7 / 16^{\prime \prime}$ diameter W Q design hole or other features of the existing pond.

Sincerely,

Ryan J. Loftus, P.E.
For and on behalf of
Sterling D esign Associates, LLC

Sterling Design Associates

2009 W . Littleton Blvd. \#300 Littleton, CO 80120 303.794.4727
www.sterlingdesignasso ciates.com

PHASE III DRAINAGE REPORT

FOR

TRACT FF, DETENTION POND 309 \& LONE TREE COMMUNITY PARK AT RIDGEGATE

JULY 2008

Prepared For:
Rampart Range Metropolitan District No. 1
8390 E. Crescent Parkway, Suite 500
Greenwood Village, CO 80111
Phone: (303) 779-4525
Fax: (303) 773-2050

Prepared By:

Sub-Basin 3F is a portion of Basin A4 of the Martin \& Martin Phase III drainage Report for the Eastern Recreation Center, March 13, 2003 revision, as referenced below with Basin OS2.)

Basin OS2 is a majority of the existing recreation center as identified from the Martin \& Martin report for the Eastern Recreation Center (March 13, 2003 revision). The only region within the Martin \& Martin report excluded from Basin OS2 is sub-basin B2,.which is a portion of Crossington Way and is tributary to Pond 308 (see Phase III Drainage Report for Crossington Way Road Extension Drainage Improvements, by Merrick \& Company, July 2008, currently under review), and that portion of Basin A4 included as Sub-Basin 3F above. The sub-basins from the Martin \& Martin report have been aggregated into three (3) sub-basins for the purposes of this report as follows:

Sub-Basin OS2A is the landscape area west of the Recreation Center building that sheet-flows into Basin 3F for discharge to Pond 309. This sub-basin corresponds to Basin A4 of the Martin \& Martin report.

Sub-Basin OS2B is the Recreation Center roof, parking lot, and landscape areas captured by area drains that discharge to Pond 309 . This area is served by an inlet and pipe system, identified in the Martin \& Martin report, that discharges to the temporary drainage swale that will be piped through the park. This sub-basin corresponds to Basins R1, A1, A2 and A3 of the Martin \& Martin report.

Sub-Basin OS2C is the perimeter of the Recreation Center site that is not captured for piping/discharge into Pond 309 and corresponds to Basins B1 and B3 of the Martin \& Martin report. Sub-Basin OS2C runoff is detained in Pond 302 and does not contribute to sizing calculations for Pond 309. However, it is included with this report to draw attention to an apparent error in the Martin \& Martin report, wherein runoff from the Rose Tuggle Way portion of Basin OS2C (M\&M basin B3) was stated as flowing east on Ridgegate Circle, out of the Pond 302 tributary area, versus west along Ridgegate Circle as is intended.

蹋 MERRICK ${ }^{\circ}$

DETENTION BASIN REQUIREMENTS

PERCENT IMPERVIOUS AND TRIBUTARY AREA

Area Description		\% Impervious Imp	A x Imp	1(\%)	Soil Type	
	$\begin{gathered} \mathrm{A} \\ \text { (acres) } \end{gathered}$				$\begin{gathered} \mathrm{B} \\ \text { (acres) } \end{gathered}$	$\begin{gathered} \text { C/D } \\ \text { (acres) } \end{gathered}$
Basin OS1	1.20	52\%	0.620			1.20
Basin 1A	0.27	0\%	0.000			0.27
Basin 1B	0.43	0\%	0.000			0.43
Basin 10	0.60	20\%	0.120			0.60
Basin 1D	1.19	50\%	0.595			1.19
Basin 1E	3.82	50\%	1.910			3.82
Basin 2A	2.77	0\%	0.000		2.77	
Basin 2B	0.43	0\%	0.000		0.43	
Basin 3A	0.13	10\%	0.013			0.13
Basin 3B	1.28	10\%	0.128			1.28
Basin 3C	4.35	10\%	0.435			4.35
Basin 3D	0.68	100\%	0.680			0.68
Basin 3E	2.54	10\%	0.254			2.54
Basin 3F	0.68	10\%	0.068			0.68
Basin OS2A	0.40	10\%	0.040			0.40
Basin OS2B	5.83	56\%	3.251			5.83
Totals	26.60		8.114	30.5\%	3.20	23.40
					12\%	88\%

DETENTION VOLUME REQUIREMENTS

$V_{2}=$ KIA \quad (Sect 12.3.2, Doulas Co SDCTCM)
Where:

$\mathrm{K}=$	1.10	inches
$1=$	0.305	Developed Basin \% Impervious, as a ratio
$A=$	26.6	acres
		(Note: The soon to be adopted Douglas County Standards have shifted from $10-\mathrm{yr} / 100-\mathrm{yr}$ volumes to $2-\mathrm{yr} / 100-\mathrm{yr}$
		with the adoption of "full-spectrum" water quality per UDFCD,
		With a statement in Sect 12.3 .2 that the new 2-yr volume req'd is approximately equal to the old 10 -yr volume req'd.)

$V_{100}=K A$
Where:

$K=3.42^{*}(1)^{\wedge 3-7.58 *}(1)^{\wedge} 2+6.46^{*}(\mathrm{l})-0.431$			(Sect 12.3.2, Doulas Co SDCTCM)
$1=$	0.305	Developed Basin \% impervious, as a ratio	
A =	26.6	acres	
$\mathrm{K}_{100}=$	0.931	inches	

$\mathbf{V}_{100}=$	2.064	Required 100-year Volume (Acre-ft) (includes 2-yr and WQCV)
$\mathbf{V}_{\mathbf{2}}=$	0.744	Required 2-year Volume (Acre-ft) (Includes WQCV)

WATER QUALITY CAPTURE VOLUME REQUIREMENTS


```
    WQCV = 0.15 Inches
Design Volume \(=(\) WQCV/12 \() * A^{*} 1.2\)
Volume \(=\quad 0.41 \quad\) Acre-ft
```

TOTAL DETENTION + WATER QUALITY VOLUME

Volume $=$	2.064	Acre-ft	REQUIRED VOLUME
Volume $=$	4.737	Acre-ft	PROVIDED VOLUME

RELEASE RATE REQUIREMENTS

Release Rates (cts/acre) by Soil Group

	A	B	$C \& D$
2-year	0.02	0.03	0.04
10-year	0.13	0.23	0.3
100-year	0.5	0.85	1

ALLOWED DETENTION BASIN RELEASE RATES PER DRAINAGE CRITERIA:

Soils:	12%	B
	88%	C/D

	Rate	Area	Discharge
2-year	0.04	26.6	1.03 cfs
10-year	0.29	26.6	7.76 cfs
100-year	0.98	26.6	$\mathbf{2 6 . 1 2} \mathbf{~ c f s}$

(Rate $=$ Sum(Area \% of Soil Type * Allowed Release Rate)

DETENTION VOLUME BY THE MODIFIED FAA METHOD
(See USDCM Volume 2 Storage Chapter for descrip\#lon of method)
Project: Rampart Range Metro District No. 1
Bash n ID: Pond 309
(For catchments less than 160 acres only. For larger catčimentis, use hydrograph routing method) (NOTE: for catchments larger than 90 acres, CUHP hydrograph and pouting are recommended)

\qquad

Subject fouss 309 Wever CALC'S	Revision	By	Date	Chk'd	Date
	-				

DETEMME WSEZ wqi, WSEL, ANA WSET 10 D
For $V_{\text {wsez }}=0.41$ Acrt (Dertanon Finsa Eermme Sfreansheet)

$$
\begin{aligned}
& \left.V_{10}=145 A-F T \quad\right\} \quad M_{O D I N E D ~ F A A} \\
& \left.V_{100}=2.29 A C \cdot F T\right\} R E A D H E R T
\end{aligned}
$$

 $W_{S E L}\left(\omega_{\text {ger }}\right) \rightarrow 0.41>0.34 \quad\left(6022^{\circ}\right)$ REVISED:

$$
\begin{aligned}
& \frac{0.41-0.2}{0.77+0.34}=\frac{x-602 z^{2}}{602 z^{2}-60 z 2^{2}} \frac{(0.42-0.34)=(x-6022.0)}{(0.77-0.34)((6023.0-60220)} \\
& x=602216 \quad x=6022.18
\end{aligned}
$$

$$
\begin{array}{r}
\text { WSEZ }_{10} \rightarrow \quad 1,45>1.42 \quad\left(6024^{2}\right) \\
\frac{145-1.42}{2.30-1.42}=\frac{x-6024^{\circ}}{602^{2}-6024^{\circ}} \\
x=6024.03
\end{array}
$$

$$
\begin{aligned}
\text { secs }_{100}= & 2.29>142 \quad(6024) \\
& \frac{2.29-142}{230-112}=\frac{x-6024}{\cos 25^{\circ}-6024} \\
& x=602499
\end{aligned}
$$

Orifice Plate Perforation Sizing

Circular Perforation Sizing

This table may be used to size perforation in a vertical plate of riser pipe.

Hole Dia. (in.) *	Hole Dia. (iin.)	Min. Sc (in.)	Area per Row (sq. in.)		
			$n=1$	$\mathrm{n}=2$	$\mathrm{n}=3$
1/4	0.250	1	0.05	0.10	0.15
5/16	0.313	2	0.08	0.16	0.24
$3 / 8$	0.375	2	0.11	0.22	0.33
$7 / 16$	0.438	2	0.15	0.30	0.45
1/2	0.500	2	0.20	0.40	0.60
9/16	0.563	3	0.25	0.50	0.75
5/8	0.625	3	0.31	0.62	0.93
11/16	0.688	3	0.37	0.74	1.17
3/4	0.750	3	0.44	0.88	1.32
13/16	0.813	3	0.52	1.04	1.56
7/8	0.875	3	0.60	1.20	1.80
15/16	0.938	3	0.69	1.38	2.07
1	1.000	4	0.79	1.58	2.37
$11 / 16$	1.063	4	0.89	1.78	2.67
1118	1.125	4	0.99	1.98	2.97
$13 / 16$	1.188	4	1.11	2.22	3.33
11/4	1.250	4	1.23	2.46	3.69
15/16	1.313	4	1.35	2.70	4.05
$13 / 8$	1.375	4	1.48	2.96	4.44
- $71 / 16$	1.438	4	(162)	3.24	4.86
-1/2	1.500	4	1.77	3.54	5.31
$19 / 16$	1.563	4	1.92	3.84	5.76
15/8	1.625	4	2.07	4.14	6.21
1 11/16	1.688	4	2.24	4.48	6.72
$13 / 4$	1.750	4	2.41	4.82	7.23
$113 / 16$	1.813	4	2.58	5.16	7.74
$17 / 8$	1.875	4	2.76	5.52	8.28
115/16	1.938	4	2.95	5.90	8.85
2	2.000	4	3.14	6.28	9.42
$\mathrm{n}=$ Number of columns of perforations					
Minimum	steel plate	ckness	1/4"	5/16 ${ }^{\prime \prime}$	$3 / 8{ }^{\prime \prime}$
* Designer may interfere to the nearest $32^{\text {nd }}$ inch to better match the needed area if desired.					

Rectangular Perforation sizing
Use only one rectangular column whenever two 2;inch diameter circular perforations cannot provide needed outlet area.

Rectangular Height $=2$-inches
Rectangular Width = Required Area per Row $/ 2^{\text {h }}$

Rectangular hole Width	Min. Steel Thickness
$5 *$	1/4"
6^{7}	1/4 ${ }^{\text {* }}$
7'	5/32"
$8{ }^{\prime \prime}$	5116*
$9^{\prime \prime}$	11/32 ${ }^{\text {* }}$
$10^{\prime \prime}$	3/8 ${ }^{\text {²}}$
$>10^{\circ}$	$1 / 2^{\circ}$

Figure 5-WQCV Outlets Orifice Perforation Sizing.

Table RO-5- Runoff Coefficients, C

Percentage Imperviousness	Type C and D NRCS Hydrologic Soil Groups					
	2-yr	5 -yr	10-yr	25-yr	50-yr	100-yr
0\%	0.04	0.15	0.25	0.37	0.44	0.50
5\%	0.08	0.18	0.28	0.39	0.46	0.52
10\%	0.11	0.21	0.30	0.41	0.47	0.53
15\%	0.14	0.24	0.32	0.43	0.49	0.54
20\%	0.17	0.26	0.34	0.44	0.50	0.55
25\%	0.20	0.28	0.36	0.46	0.51	0.56
30\%	0.22	0.30	0.38	0.47	0.52	0.57
35\%	0.25	0.33	0.40	0.48	0.53	0.57
40\%	0.28	0.35	0.42	0.50	0.54	0.58
45\%	0.31	0.37	0.44	0.51	0.55	0.59
50\%	0.34	0.40	0.46	0.53	0.57	0.60
55\%	0.37	0.43	0.48	0.55	0.58	0.62
60\%	0.41	0.46	0.51	0.57	0.60	0.63
65\%	0.45	0.49	0.54	0.59	0.62	0.65
70\%	0.49	0.53	0.57	0.62	0.65	0.68
75\%	0.54	0.58	0.62	0.66	0.68	0.71
80\%	0.60	0.63	0.66	0.70	0.72	0.74
85\%	0.66	0.68	0.71	0.75	0.77	0.79
90\%	0.73	0.75	0.77	0.80	0.82	0.83
95\%	0.80	0.82	0.84	0.87	0.88	0.89
100\%	0.89	0.90	0.92	0.94	0.95	0.96
	TYPE B NRCS HYDROLOGIC Solls Group					
0\%	0.02	0.08	0.15	0.25	0.30	0.35
5\%	0.04	0.10	0.19	0.28	0.33	0.38
10\%	0.06	0.14	0.22	0.31	0.36	0.40
15\%	0.08	0.17	0.25	0.33	0.38	0.42
20\%	0.12	0.20	0.27	0.35	0.40	0.44
25\%	0.15	0.22	0.30	0.37	0.41	0.46
30\%	0.18	0.25	0.32	0.39	0.43	0.47
35\%	0.20	0.27	0.34	0.41	0.44	0.48
40\%	0.23	0.30	0.36	0.42	0.46	0.50
45\%	0.26	0.32	0.38	0.44	0.48	0.51
50\%	0.29	0.35	0.40	0.46	0.49	0.52
55\%	0.33	0.38	0.43	0.48	0.51	0.54
60\%	0.37	0.41	0.46	0.51	0.54	0.56
65\%	0.41	0.45	0.49	0.54	0.57	0.59
70\%	0.45	0.49	0.53	0.58	0.60	0.62
75\%	0.51	0.54	0.58	0.62	0.64	0.66
80\%	0.57	0.59	0.63	0.66	0.68	0.70
85\%	0.63	0.66	0.69	0.72	0.73	0.75
90\%	0.71	0.73	0.75	0.78	0.80	0.81
95\%	0.79	0.81	0.83	0.85	0.87	0.88
100\%	0.89	0.90	0.92	0.94	0.95	0.96

