

March 03, 2023

Mr. Jacob James PE, CFM City Engineer **City of Lone Tree Public Works** 9220 Kimmer Drive Lone Tree, CO 80124

#### Re: Lyric Condos at Ridgegate Filing 1 – Drainage Compliance Letter

Dear Mr. James:

Please accept this letter as verification of drainage compliance for Lyric Condos at Ridgegate Filing 1, located in a portion of Section 14, Section 22, Section 23, and Section 24, Township 6 South, Range 67 West of the Sixth Principal Meridian, City of Lone Tree, Douglas County, Colorado. Ridgegate Parkway bounds the site to the north, an existing drainage swale bounds the site to the east, Lyric Street bounds the site to the west, and Octave Avenue bounds the site to the south. A vicinity map for the project is included in the Appendix to this letter.

Currently, the project site is vacant. The site generally slopes northwest from the high point southeast of the proposed Lyric Condos development, with slopes ranging between 0.5% to 5%. This project consists of the development of multi-family lots with public roadways. Final design of Lyric Condos will include storm sewer, sanitary sewer and water line. Lyric Condos consists of approximately 14.41 acres.

The purpose of this letter is to demonstrate that the proposed project conforms to the established drainage patterns and criteria set forth in the previously approved Phase III Drainage Report for Ridgegate Southwest Village Filing 1. The governing master report is the Approved *Phase III Drainage Report for Ridgegate Southwest Village Filing 1* by JR Engineering, LLC, Addendum #1 revised September 28, 2021. The referenced information from the governing master report is included in the Appendix of the report.

The site is tributary to the Happy Canyon floodplain as defined by the FEMA Flood Insurance Rate Maps, FIRM #08035C0063H and effective September 4, 2020, and is included in the Appendix. The site lies entirely within Zone X which is the flood insurance rate zone that corresponds to areas outside the one percent annual chance floodplain.

The Natural Resources Conservation Service Web Soil Survey in the approved drainage reports identify the soil on the property as Hydrologic Soils Group C and D. Hydrologic Group C soils are described as "soils that have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine structure." Hydrologic Group D soils are described as "soils that have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface and shallow soils over nearly impervious material." A soils map has been included in the Attachments.

The Lyric Condos site is located within Basin F4 (66% impervious, 5.58 acres) and Basin F5 (75% impervious, 7.54 acres) as defined in the Phase III Drainage Report for Ridgegate Southwest Village Filing 1, see Appendix D. In the proposed condition, the site will consist of 42 sub-basins. Sub-Basins C1-C24 represent Basin F5 from the previously approved drainage report. Captured stormwater runoff from Sub-Basins C1-C24 will generally be routed northwest and discharge from the Lyric Condos site at an existing 36-inch RCP Stub. Runoff from Sub-Basins C1-C24 will generally be routed northwest Parkway (described as Pond R in the Filing 1 report) where water quality will be provided. Captured stormwater runoff from Sub-Basins T1-T23 will generally route south and discharge from the Lyric Condos site at an existing 24-inch RCP stub. Sub-Basins O1-O3 represent on-site areas that will drain offsite and be captured by existing infrastructure. Runoff from Sub-Basins T1-T23 as well as Sub-Basins O1-O3 will be conveyed via existing storm sever in Octave

Avenue and Lyric Street to an existing EURV Pond A in the regional park northwest of the Lyric/Octave intersection where water quality will be provided. 100-yr flood control volume will be provided by on-line peak shaving ponds in Happy Canyon Creek.

#### Table 1: Approved Filing 1 Imperviousness vs. Proposed Imperviousness

| Approved Fining T dashis I et Treviously Approved Dramage Report |                    |             |                 |  |  |  |  |  |  |  |
|------------------------------------------------------------------|--------------------|-------------|-----------------|--|--|--|--|--|--|--|
| Basin ID                                                         | Percent Impervious | Area Onsite | Impervious Area |  |  |  |  |  |  |  |
| EX-Basin F4                                                      | 66%                | 5.58 Acres  | 3.68 Acres      |  |  |  |  |  |  |  |
| Ex-Basin F5                                                      | 75%                | 7.54 Acres  | 5.66 Acres      |  |  |  |  |  |  |  |
| Total 70.5%                                                      |                    | 13.12 Acres | 9.34 Acres      |  |  |  |  |  |  |  |

Approved Filing 1 Basins Per Previously Approved Drainage Report

### **Proposed Basins Onsite**

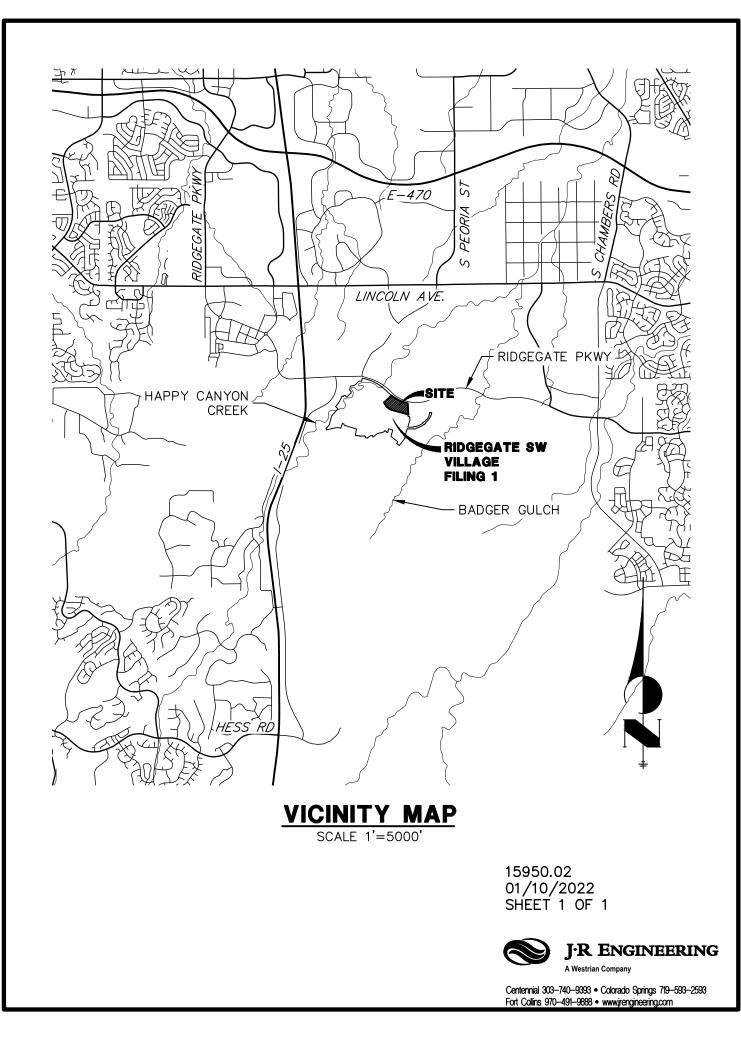
| Basin         | Percent<br>Impervious | Area<br>Onsite<br>(ac) | Impervious<br>Area (ac) |  |
|---------------|-----------------------|------------------------|-------------------------|--|
| T1            | 57.4%                 | 1.06                   | 0.61                    |  |
| T2            | 61.1%                 | 1.57                   | 0.96                    |  |
| T3            | 54.7%                 | 0.10                   | 0.05                    |  |
| T4            | 54.0%                 | 0.12                   | 0.06                    |  |
| T5            | 54.0%                 | 0.12                   | 0.06                    |  |
| T6            | 54.3%                 | 0.14                   | 0.08                    |  |
| T7            | 54.0%                 | 0.12                   | 0.06                    |  |
| T8            | 54.0%                 | 0.12                   | 0.06                    |  |
| Т9            | 16.3%                 | 0.09                   | 0.01                    |  |
| T10           | 11.9%                 | 0.13                   | 0.02                    |  |
| T11           | 2.0%                  | 0.02                   | 0.00                    |  |
| T12           | 2.0%                  | 0.06                   | 0.00                    |  |
| T13           | 2.0%                  | 0.03                   | 0.00                    |  |
| T14           | 2.0%                  | 0.04                   | 0.00                    |  |
| T15           | 27.8%                 | 0.05                   | 0.01                    |  |
| T16           | 87.2%                 | 0.23                   | 0.20                    |  |
| T17           | 79.0%                 | 0.14                   | 0.11                    |  |
| T18           | 65.1%                 | 0.34                   | 0.22                    |  |
| T19           | 56.6%                 | 0.43                   | 0.24                    |  |
| T20           | 58.0%                 | 0.07                   | 0.04                    |  |
| T21           | 2.0%                  | 0.08                   | 0.00                    |  |
| T22           | 2.0%                  | 0.03                   | 0.00                    |  |
| T23           | 2.0%                  | 0.10                   | 0.00                    |  |
| Total Basin T | 54.5%                 | 5.19                   | 2.83                    |  |

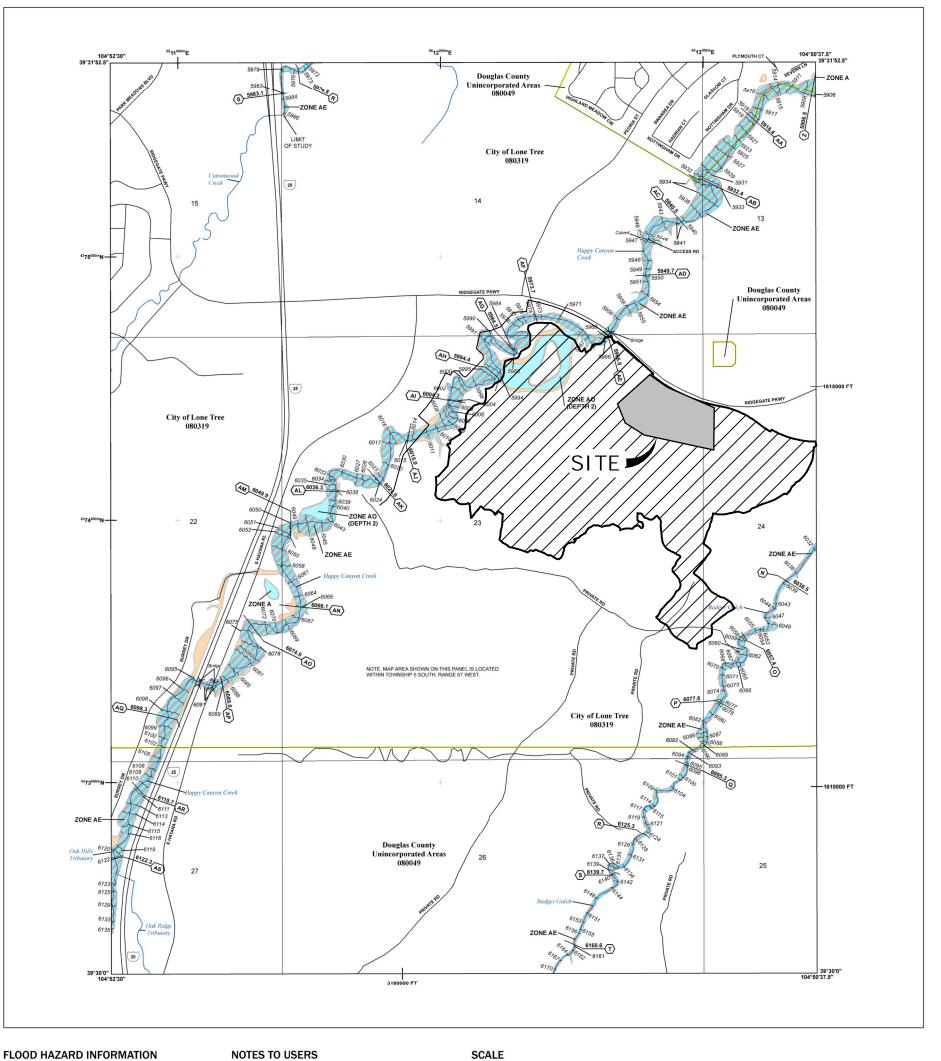
|               |            | •      |          |
|---------------|------------|--------|----------|
|               | Percent    | Area   | Impervio |
| Basin         | Impervious | Onsite | us Area  |
|               | impervious | (ac)   | (ac)     |
| C1            | 65.2%      | 0.44   | 0.29     |
| C2            | 55.9%      | 0.86   | 0.48     |
| C3            | 82.2%      | 0.11   | 0.09     |
| C4            | 49.8%      | 0.14   | 0.07     |
| C5            | 66.0%      | 0.77   | 0.51     |
| C6            | 11.1%      | 0.57   | 0.06     |
| C7            | 64.1%      | 0.84   | 0.54     |
| C8            | 21.1%      | 0.09   | 0.02     |
| С9            | 19.9%      | 0.12   | 0.02     |
| C10           | 2.0%       | 0.02   | 0.00     |
| C11           | 25.5%      | 0.11   | 0.03     |
| C12           | 30.7%      | 0.09   | 0.03     |
| C13           | 20.4%      | 0.07   | 0.01     |
| C14           | 62.6%      | 0.7    | 0.44     |
| C15           | 61.5%      | 0.31   | 0.19     |
| C16           | 62.6%      | 0.86   | 0.54     |
| C17           | 39.6%      | 0.16   | 0.06     |
| C18           | 38.4%      | 0.13   | 0.05     |
| C19           | 2.0%       | 1.51   | 0.03     |
| C20           | 2.0%       | 0.05   | 0.00     |
| C21           | 2.0%       | 0.04   | 0.00     |
| C22           | 36.9%      | 0.13   | 0.05     |
| C23           | 27.4%      | 0.28   | 0.08     |
| C24           | 66.9%      | 0.91   | 0.61     |
| Total Basin C | 45.1%      | 9.31   | 4.20     |

| Basin  | Percent    | Area Onsite | Impervious |
|--------|------------|-------------|------------|
| Dasiii | Impervious | (ac)        | Area (ac)  |
| TOTAL  | 48.4%      | 14.5        | 7.03       |

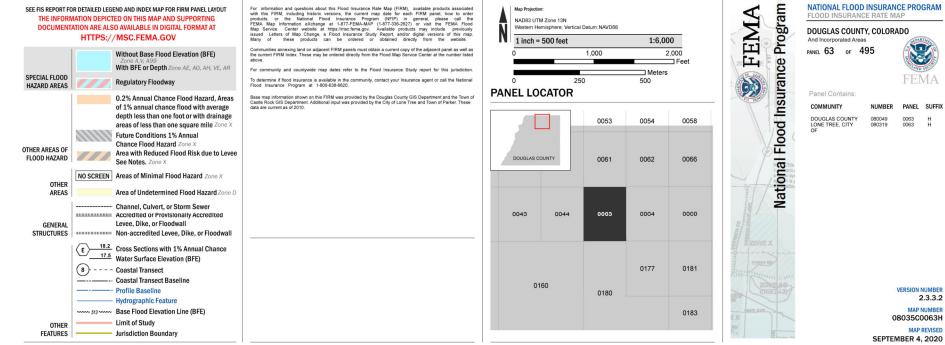
Sincerely, JR ENGINEERING, LLC

Kurtis W. Williams, P.E.


Attachments:


- Attachment A
  - Vicinity Map
  - o FEMA Flood Insurance Rate Map
  - o NRCS Soils Map
- Attachment B
  - Hydrologic Calculations
- Attachment C
  - o Hydraulic Calculations
- Attachment D
  - o References-Previously Approved Phase III Drainage Report, Addendum #1, Sheet 4
- Attachment E
  - o Proposed Drainage Plan

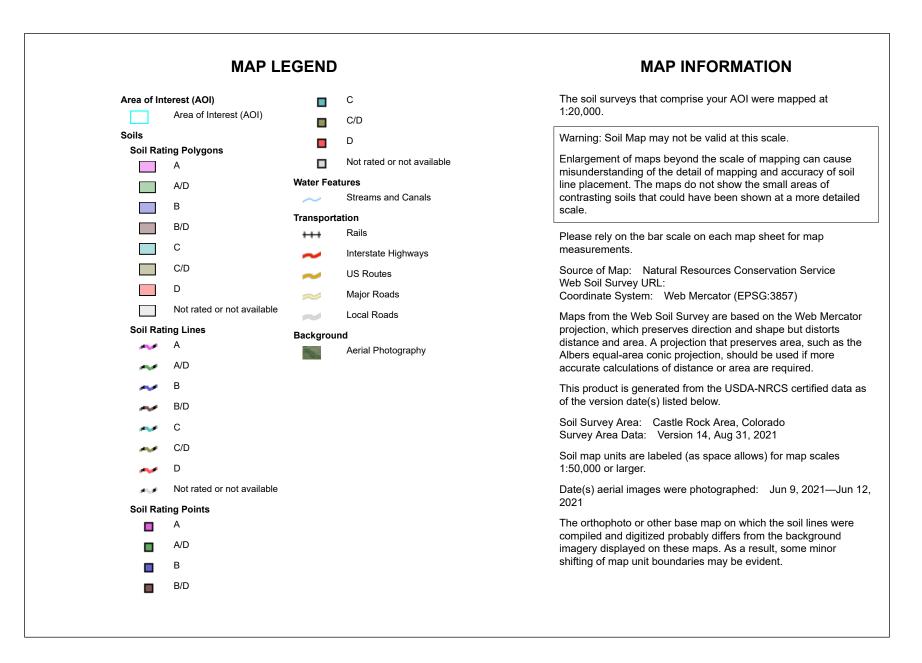



# ATTACHMENT A

## FIGURES






1-877-FE



PROJECT NO.: 15950.10



Natural Resources Conservation Service



# Hydrologic Soil Group

| Map unit symbol           | Map unit name                                        | Rating | Acres in AOI | Percent of AOI |
|---------------------------|------------------------------------------------------|--------|--------------|----------------|
| En                        | Englewood clay loam                                  | С      | 13.5         | 44.7%          |
| Fu                        | Fondis-Kutch<br>association                          | С      | 2.8          | 9.3%           |
| NsE                       | Newlin-Satanta<br>complex, 5 to 20<br>percent slopes | В      | 1.1          | 3.6%           |
| RmE                       | Renohill-Buick complex,<br>5 to 25 percent slopes    | D      | 12.8         | 42.5%          |
| Totals for Area of Intere | est                                                  |        | 30.2         | 100.0%         |

## Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## ATTACHMENT B

## HYDROLOGIC CALCULATIONS

| Subdivision:  | Lyric Condos           | Calculated By: |
|---------------|------------------------|----------------|
| Location:     | City of Lone Tree      | Date:          |
| Project Name: | Ridgegate Filing No. 1 |                |
| Project No.:  | 15950.10               |                |

: MJP 2/21/2023

| BASIN SUMMARY TABLE |         |            |      |      |            |       |                  |  |  |  |
|---------------------|---------|------------|------|------|------------|-------|------------------|--|--|--|
| Tributary           | Area    | Percent    |      |      | tc         | Q5    | Q <sub>100</sub> |  |  |  |
| Sub-basin           | (acres) | Impervious | C5   | C100 | (min)      | (cfs) | (cfs)            |  |  |  |
| T1                  | 1.06    | 57%        | 0.51 | 0.72 | 5.0        | 2.67  | 6.70             |  |  |  |
| T2                  | 1.57    | 61%        | 0.54 | 0.74 | 5.0        | 4.16  | 10.14            |  |  |  |
| T3                  | 0.10    | 55%        | 0.48 | 0.71 | 5.0        | 0.25  | 0.62             |  |  |  |
| T4                  | 0.12    | 54%        | 0.48 | 0.70 | 5.0        | 0.30  | 0.71             |  |  |  |
| T5                  | 0.12    | 54%        | 0.48 | 0.70 | 5.0        | 0.30  | 0.71             |  |  |  |
| T6                  | 0.14    | 54%        | 0.48 | 0.71 | 5.0        | 0.35  | 0.88             |  |  |  |
| T7                  | 0.12    | 54%        | 0.48 | 0.70 | 8.3        | 0.25  | 0.60             |  |  |  |
| T8                  | 0.12    | 54%        | 0.48 | 0.70 | 8.3        | 0.25  | 0.60             |  |  |  |
| T9                  | 0.09    | 16%        | 0.17 | 0.55 | 8.4        | 0.08  | 0.38             |  |  |  |
| T10                 | 0.13    | 12%        | 0.13 | 0.53 | 8.6        | 0.08  | 0.52             |  |  |  |
| T11                 | 0.02    | 2%         | 0.05 | 0.49 | 9.2        | 0.00  | 0.07             |  |  |  |
| T12                 | 0.06    | 2%         | 0.05 | 0.49 | 9.2        | 0.00  | 0.22             |  |  |  |
| T13                 | 0.03    | 2%         | 0.05 | 0.49 | 9.2        | 0.00  | 0.07             |  |  |  |
| T14                 | 0.04    | 2%         | 0.05 | 0.49 | 9.2        | 0.00  | 0.15             |  |  |  |
| T15                 | 0.05    | 28%        | 0.26 | 0.60 | 5.0        | 0.05  | 0.26             |  |  |  |
| T16                 | 0.23    | 87%        | 0.75 | 0.84 | 5.0        | 0.84  | 1.68             |  |  |  |
| T17<br>T18          | 0.14    | 79%<br>65% | 0.68 | 0.81 | 5.0<br>5.0 | 0.50  | 0.97             |  |  |  |
| T18<br>T19          | 0.34    | 57%        | 0.57 | 0.75 | 5.0        | 1.04  | 2.29             |  |  |  |
| T20                 |         | 57%        | 0.50 |      |            |       |                  |  |  |  |
| T20                 | 0.07    | 2%         | 0.05 | 0.72 | 5.0<br>5.0 | 0.20  | 0.44             |  |  |  |
| T21                 | 0.08    | 2%         | 0.05 | 0.49 | 5.0        | 0.00  | 0.09             |  |  |  |
| T22                 | 0.03    | 2%         | 0.05 | 0.49 | 8.5        | 0.00  | 0.09             |  |  |  |
| C1                  | 0.44    | 65%        | 0.03 | 0.49 | 5.5        | 1.21  | 2.83             |  |  |  |
| C2                  | 0.86    | 56%        | 0.49 | 0.73 | 5.0        | 2.08  | 5.38             |  |  |  |
| C3                  | 0.11    | 82%        | 0.71 | 0.82 | 5.0        | 0.40  | 0.79             |  |  |  |
| C4                  | 0.14    | 50%        | 0.44 | 0.69 | 6.2        | 0.28  | 0.83             |  |  |  |
| C5                  | 0.77    | 66%        | 0.58 | 0.75 | 5.0        | 2.18  | 5.12             |  |  |  |
| C6                  | 0.57    | 11%        | 0.13 | 0.53 | 8.9        | 0.29  | 2.20             |  |  |  |
| C7                  | 0.84    | 64%        | 0.56 | 0.75 | 8.7        | 1.96  | 4.67             |  |  |  |
| C8                  | 0.09    | 21%        | 0.21 | 0.57 | 5.0        | 0.10  | 0.44             |  |  |  |
| C9                  | 0.12    | 20%        | 0.20 | 0.57 | 5.0        | 0.10  | 0.62             |  |  |  |
| C10                 | 0.02    | 2%         | 0.05 | 0.49 | 5.0        | 0.00  | 0.09             |  |  |  |
| C11                 | 0.11    | 25%        | 0.24 | 0.59 | 5.0        | 0.15  | 0.53             |  |  |  |
| C12                 | 0.09    | 31%        | 0.29 | 0.61 | 5.0        | 0.15  | 0.44             |  |  |  |
| C13                 | 0.07    | 20%        | 0.20 | 0.57 | 5.0        | 0.05  | 0.35             |  |  |  |
| C14                 | 0.70    | 63%        | 0.55 | 0.74 | 5.0        | 1.88  | 4.59             |  |  |  |
| C15                 | 0.31    | 62%        | 0.54 | 0.74 | 5.0        | 0.84  | 2.03             |  |  |  |
| C16                 | 0.86    | 63%        | 0.55 | 0.74 | 5.0        | 2.33  | 5.64             |  |  |  |
| C17                 | 0.16    | 40%        | 0.36 | 0.65 | 5.0        | 0.30  | 0.88             |  |  |  |
| C18                 | 0.13    | 38%        | 0.35 | 0.64 | 5.0        | 0.25  | 0.71             |  |  |  |
| C19                 | 1.51    | 2%         | 0.05 | 0.49 | 16.4       | 0.25  | 4.18             |  |  |  |
| C20                 | 0.05    | 2%         | 0.05 | 0.49 | 5.0        | 0.00  | 0.18             |  |  |  |
| C21                 | 0.04    | 2%         | 0.05 | 0.49 | 5.9        | 0.00  | 0.17             |  |  |  |
| C22                 | 0.13    | 37%        | 0.34 | 0.63 | 5.0        | 0.20  | 0.71             |  |  |  |
| C23                 | 0.28    | 27%        | 0.26 | 0.60 | 5.0        | 0.35  | 1.50             |  |  |  |
| C24                 | 0.91    | 67%        | 0.58 | 0.76 | 5.0        | 2.62  | 6.09             |  |  |  |
|                     |         |            |      |      |            |       | -                |  |  |  |
| 01                  | 0.13    | 2%         | 0.05 | 0.49 | 6.3        | 0.05  | 0.50             |  |  |  |
| 02                  | 0.24    | 5%         | 0.08 | 0.50 | 5.0        | 0.10  | 1.06             |  |  |  |
| 03                  | 0.07    | 2%         | 0.05 | 0.49 | 5.0        | 0.00  | 0.26             |  |  |  |

| Subdivision:  | Lyric Condos           | Calcu | ulated By: | MJP       |
|---------------|------------------------|-------|------------|-----------|
| Location:     | City of Lone Tree      |       | Date:      | 2/21/2023 |
| Project Name: | Ridgegate Filing No. 1 |       |            |           |
| Project No.:  | 15950.10               |       |            |           |

|              | DESIGN POINT TABLE |              |           |                 |       |  |  |  |  |  |  |
|--------------|--------------------|--------------|-----------|-----------------|-------|--|--|--|--|--|--|
| Design       | Decia              | Direc        | t Flow    | Cumulative Flow |       |  |  |  |  |  |  |
| Point        | Basin              | Q5           | Q100      | Q5              | Q100  |  |  |  |  |  |  |
| 1            | C1                 | 1.21         | 2.83      |                 |       |  |  |  |  |  |  |
| 2            | C2                 | 2.08         | 5.38      |                 |       |  |  |  |  |  |  |
| 3            | C2                 | 0.40         | 0.79      |                 |       |  |  |  |  |  |  |
| 2.1          |                    |              |           | 3.62            | 8.69  |  |  |  |  |  |  |
| 4.1          | C4                 | 0.28         | 0.83      | 3.77            | 9.22  |  |  |  |  |  |  |
| 24           | <br>C4             | 2.62         | 6.09      | 3.77            | 9.22  |  |  |  |  |  |  |
| 24           |                    | 2.02         | 0.09      | 6.23            | 14.94 |  |  |  |  |  |  |
| 21           | C4                 | 0.00         | 0.17      |                 |       |  |  |  |  |  |  |
| 21.1         |                    |              |           | 6.23            | 15.10 |  |  |  |  |  |  |
| 22           | C4                 | 0.20         | 0.71      |                 |       |  |  |  |  |  |  |
| 22.1         |                    |              |           | 6.42            | 15.77 |  |  |  |  |  |  |
| 23           | C4                 | 0.35         | 1.50      |                 | 17.10 |  |  |  |  |  |  |
| 23.1         | C5                 | 2.18         | 5.12      | 6.74            | 17.18 |  |  |  |  |  |  |
| 7            | C7                 | 1.96         | 4.67      |                 |       |  |  |  |  |  |  |
| 7.1          |                    |              |           | 9.71            | 22.71 |  |  |  |  |  |  |
| 14           | C14                | 1.99         | 6.37      |                 |       |  |  |  |  |  |  |
| 15           | C15                | 0.84         | 2.03      |                 |       |  |  |  |  |  |  |
| 15.1         |                    |              |           | 2.85            | 7.30  |  |  |  |  |  |  |
| 15.2         |                    |              |           | 12.11           | 30.01 |  |  |  |  |  |  |
| 20<br>16     | C20<br>C16         | 0.00<br>2.33 | 0.18 5.64 |                 |       |  |  |  |  |  |  |
| 16.1         |                    | 2.33         | 5.04      | 2.33            | 5.82  |  |  |  |  |  |  |
| 16.2         |                    |              |           | 14.06           | 34.90 |  |  |  |  |  |  |
| 6            | C6                 | 0.29         | 2.20      |                 |       |  |  |  |  |  |  |
| 8            | C8                 | 0.10         | 0.44      |                 |       |  |  |  |  |  |  |
| 8.1          |                    |              |           | 0.37            | 2.57  |  |  |  |  |  |  |
| 9            | C9                 | 0.10         | 0.62      |                 |       |  |  |  |  |  |  |
| 9.1<br>10    | <br>C10            | 0.00         | 0.09      | 0.45            | 3.08  |  |  |  |  |  |  |
| 10.1         |                    |              | 0.09      | 0.45            | 3.16  |  |  |  |  |  |  |
| 11           | C11                | 0.15         | 0.53      |                 |       |  |  |  |  |  |  |
| 11.1         |                    |              |           | 0.58            | 3.60  |  |  |  |  |  |  |
| 12           | C12                | 0.15         | 0.44      |                 |       |  |  |  |  |  |  |
| 12.1<br>13   | <br>C13            | 0.05         | 0.35      | 0.70            | 3.96  |  |  |  |  |  |  |
| 13.1         |                    | 0.03         | 0.35      | 0.74            | 4.26  |  |  |  |  |  |  |
| 17           | C17                | 0.30         | 0.88      |                 |       |  |  |  |  |  |  |
| 18           | C18                | 0.25         | 0.71      |                 |       |  |  |  |  |  |  |
| 18.1         |                    |              |           | 0.54            | 1.59  |  |  |  |  |  |  |
| 18.2         |                    |              |           | 15.12           | 40.15 |  |  |  |  |  |  |
| 19           | C19                | 0.25         | 4.18      |                 |       |  |  |  |  |  |  |
| 19.1         |                    |              |           | 11.93           | 35.09 |  |  |  |  |  |  |
| 103          | T3                 | 0.25         | 0.62      |                 |       |  |  |  |  |  |  |
| 109          | T9                 | 0.08         | 0.38      |                 |       |  |  |  |  |  |  |
| 109.1        |                    |              |           | 0.30            | 0.90  |  |  |  |  |  |  |
| 104          | T4                 | 0.30         | 0.71      |                 |       |  |  |  |  |  |  |
| 110          | T10                | 0.08         | 0.52      |                 |       |  |  |  |  |  |  |
| 110.1        |                    |              |           | 0.63            | 2.01  |  |  |  |  |  |  |
| 105          | T5                 | 0.30         | 0.71      |                 |       |  |  |  |  |  |  |
| 111          | T11                | 0.00         | 0.07      |                 |       |  |  |  |  |  |  |
| 111.1        |                    |              |           | 0.86            | 2.61  |  |  |  |  |  |  |
| 101          | T1                 | 2.67         | 6.70      |                 |       |  |  |  |  |  |  |
| 106          | T6                 | 0.35         | 0.88      |                 |       |  |  |  |  |  |  |
| 106.1        |                    |              |           | 2.09            | 3.81  |  |  |  |  |  |  |
| 112          | T12                | 0.00         | 0.22      |                 |       |  |  |  |  |  |  |
| 112.1        |                    |              |           | 2.58            | 5.96  |  |  |  |  |  |  |
| 107          | T7                 | 0.25         | 0.60      |                 |       |  |  |  |  |  |  |
| 113          | T13                | 0.00         | 0.07      |                 |       |  |  |  |  |  |  |
| 113.1        |                    |              |           | 2.82            | 6.62  |  |  |  |  |  |  |
| 108          | T8                 | 0.25         | 0.60      |                 |       |  |  |  |  |  |  |
| 114          | T14                | 0.00         | 0.15      |                 |       |  |  |  |  |  |  |
| 114.1        | <br>T22            |              |           | 3.07            | 7.34  |  |  |  |  |  |  |
| 122          | T22<br>T15         | 0.00         | 0.09      |                 |       |  |  |  |  |  |  |
| 115.1        |                    | 0.05         | 0.20      | 0.05            | 0.35  |  |  |  |  |  |  |
| 121          | T21                | 0.00         | 0.35      |                 |       |  |  |  |  |  |  |
| 116          | T16                | 0.84         | 1.68      |                 |       |  |  |  |  |  |  |
| 116.1        |                    |              |           | 0.84            | 2.03  |  |  |  |  |  |  |
| 116.2        | <br>T17            | 0.50         | 0.97      | 0.89            | 2.38  |  |  |  |  |  |  |
| 117.1        |                    | 0.00         | 0.77      | 1.39            | 3.35  |  |  |  |  |  |  |
| 118          | T18                | 0.94         | 2.29      |                 |       |  |  |  |  |  |  |
| 118.1        |                    |              |           | 2.33            | 5.64  |  |  |  |  |  |  |
| 118.2        |                    |              |           | 4.99            | 11.99 |  |  |  |  |  |  |
| 102<br>102.1 | T2                 | 5.09         | 13.92     | 8.85            | 18.72 |  |  |  |  |  |  |
| 102.1        | T19                | 1.04         | 2.73      | 8.85            | 18.72 |  |  |  |  |  |  |
| 123          | T23                | 0.04         | 0.37      |                 |       |  |  |  |  |  |  |
| 120          | T20                | 0.60         | 6.19      |                 |       |  |  |  |  |  |  |
| 120.1        |                    |              |           | 10.24           | 26.43 |  |  |  |  |  |  |
|              |                    |              |           |                 |       |  |  |  |  |  |  |

## **COMPOSITE % IMPERVIOUS CALCULATIONS**

Subdivision: Ridgegate

Location: Douglas County - Zone 1

Project Name: Lyric Condos

Project No.: 15950.10 Calculated By: MJP

Checked By:

Date: 12/27/22

|          |                 | Single Family<br>Residential/Commercial |           | Roads/Pond         |        |           | Open Space/Park    |        |           | Basins Total<br>Weighted % |       |
|----------|-----------------|-----------------------------------------|-----------|--------------------|--------|-----------|--------------------|--------|-----------|----------------------------|-------|
| Basin ID | Total Area (ac) | % Imp.                                  | Area (ac) | Weighted %<br>Imp. | % Imp. | Area (ac) | Weighted<br>% Imp. | % Imp. | Area (ac) | Weighted<br>% Imp.         | Imp.  |
|          |                 |                                         |           |                    |        |           |                    |        |           |                            |       |
| T1       | 1.06            | 45%                                     | 0.34      | 14.4%              | 100%   | 0.45      | 42.5%              | 2%     | 0.27      | 0.5%                       | 57.4% |
| T2       | 1.57            | 45%                                     | 0.45      | 12.9%              | 100%   | 0.75      | 47.8%              | 2%     | 0.37      | 0.5%                       | 61.1% |
| T3       | 0.10            | 45%                                     | 0.05      | 20.3%              | 100%   | 0.03      | 34.0%              | 2%     | 0.02      | 0.4%                       | 54.7% |
| T4       | 0.12            | 45%                                     | 0.05      | 20.3%              | 100%   | 0.04      | 33.3%              | 2%     | 0.03      | 0.4%                       | 54.0% |
| T5       | 0.12            | 45%                                     | 0.05      | 20.3%              | 100%   | 0.04      | 33.3%              | 2%     | 0.03      | 0.4%                       | 54.0% |
| T6       | 0.14            | 45%                                     | 0.06      | 20.3%              | 100%   | 0.05      | 33.6%              | 2%     | 0.03      | 0.4%                       | 54.3% |
| T7       | 0.12            | 45%                                     | 0.05      | 20.3%              | 100%   | 0.04      | 33.3%              | 2%     | 0.03      | 0.4%                       | 54.0% |
| Т8       | 0.12            | 45%                                     | 0.05      | 20.3%              | 100%   | 0.04      | 33.3%              | 2%     | 0.03      | 0.4%                       | 54.0% |
| Т9       | 0.09            | 45%                                     | 0.03      | 15.0%              | 100%   | 0.00      | 0.0%               | 2%     | 0.06      | 1.3%                       | 16.3% |
| T10      | 0.13            | 45%                                     | 0.03      | 10.4%              | 100%   | 0.00      | 0.0%               | 2%     | 0.10      | 1.5%                       | 11.9% |
| T11      | 0.02            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.00      | 0.0%               | 2%     | 0.02      | 2.0%                       | 2.0%  |
| T12      | 0.06            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.00      | 0.0%               | 2%     | 0.06      | 2.0%                       | 2.0%  |
| T13      | 0.03            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.00      | 0.0%               | 2%     | 0.03      | 2.0%                       | 2.0%  |
| T14      | 0.04            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.00      | 0.0%               | 2%     | 0.04      | 2.0%                       | 2.0%  |
| T15      | 0.05            | 45%                                     | 0.03      | 27.0%              | 100%   | 0.00      | 0.0%               | 2%     | 0.02      | 0.8%                       | 27.8% |
| T16      | 0.23            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.20      | 87.0%              | 2%     | 0.03      | 0.3%                       | 87.2% |
| T17      | 0.14            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.11      | 78.6%              | 2%     | 0.03      | 0.4%                       | 79.0% |
| T18      | 0.34            | 45%                                     | 0.18      | 23.8%              | 100%   | 0.14      | 41.2%              | 2%     | 0.02      | 0.1%                       | 65.1% |
| T19      | 0.43            | 45%                                     | 0.09      | 9.4%               | 100%   | 0.20      | 46.5%              | 2%     | 0.14      | 0.7%                       | 56.6% |
| T20      | 0.07            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.04      | 57.1%              | 2%     | 0.03      | 0.9%                       | 58.0% |
| T21      | 0.08            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.00      | 0.0%               | 2%     | 0.08      | 2.0%                       | 2.0%  |
| T22      | 0.03            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.00      | 0.0%               | 2%     | 0.03      | 2.0%                       | 2.0%  |
| T23      | 0.10            | 45%                                     | 0.00      | 0.0%               | 100%   | 0.00      | 0.0%               | 2%     | 0.10      | 2.0%                       | 2.0%  |
| TOTAL    | 5.19            |                                         |           |                    |        |           |                    |        |           |                            | 54.5% |

|          |                 | Single Family<br>Residential/Commercial |           |                    | Roads/Pond |           |                    | Open Space/Park |           |                    |                    |
|----------|-----------------|-----------------------------------------|-----------|--------------------|------------|-----------|--------------------|-----------------|-----------|--------------------|--------------------|
| Basin ID | Total Area (ac) | % Imp.                                  | Area (ac) | Weighted %<br>Imp. | % Imp.     | Area (ac) | Weighted<br>% Imp. | % Imp.          | Area (ac) | Weighted<br>% Imp. | Weighted %<br>Imp. |
| C1       | 0.44            | 45%                                     | 0.10      | 10.2%              | 100%       | 0.24      | 54.5%              | 2%              | 0.10      | 0.5%               | 65.2%              |
| C2       | 0.86            | 45%                                     | 0.28      | 14.7%              | 100%       | 0.35      | 40.7%              | 2%              | 0.23      | 0.5%               | 55.9%              |
| C3       | 0.11            | 45%                                     | 0.00      | 0.0%               | 100%       | 0.09      | 81.8%              | 2%              | 0.02      | 0.4%               | 82.2%              |
| C4       | 0.14            | 45%                                     | 0.11      | 35.4%              | 100%       | 0.02      | 14.3%              | 2%              | 0.01      | 0.1%               | 49.8%              |
| C5       | 0.77            | 45%                                     | 0.12      | 7.0%               | 100%       | 0.45      | 58.4%              | 2%              | 0.20      | 0.5%               | 66.0%              |
| C6       | 0.57            | 45%                                     | 0.12      | 9.5%               | 100%       | 0.00      | 0.0%               | 2%              | 0.45      | 1.6%               | 11.1%              |
| C7       | 0.84            | 45%                                     | 0.12      | 6.4%               | 100%       | 0.48      | 57.1%              | 2%              | 0.24      | 0.6%               | 64.1%              |
| C8       | 0.09            | 45%                                     | 0.04      | 20.0%              | 100%       | 0.00      | 0.0%               | 2%              | 0.05      | 1.1%               | 21.1%              |
| С9       | 0.12            | 45%                                     | 0.05      | 18.8%              | 100%       | 0.00      | 0.0%               | 2%              | 0.07      | 1.2%               | 19.9%              |
| C10      | 0.02            | 45%                                     | 0.00      | 0.0%               | 100%       | 0.00      | 0.0%               | 2%              | 0.02      | 2.0%               | 2.0%               |
| C11      | 0.11            | 45%                                     | 0.06      | 24.5%              | 100%       | 0.00      | 0.0%               | 2%              | 0.05      | 0.9%               | 25.5%              |
| C12      | 0.09            | 45%                                     | 0.06      | 30.0%              | 100%       | 0.00      | 0.0%               | 2%              | 0.03      | 0.7%               | 30.7%              |
| C13      | 0.07            | 45%                                     | 0.03      | 19.3%              | 100%       | 0.00      | 0.0%               | 2%              | 0.04      | 1.1%               | 20.4%              |
| C14      | 0.70            | 45%                                     | 0.12      | 7.7%               | 100%       | 0.38      | 54.3%              | 2%              | 0.20      | 0.6%               | 62.6%              |
| C15      | 0.31            | 45%                                     | 0.11      | 16.0%              | 100%       | 0.14      | 45.2%              | 2%              | 0.06      | 0.4%               | 61.5%              |
| C16      | 0.86            | 45%                                     | 0.30      | 15.7%              | 100%       | 0.40      | 46.5%              | 2%              | 0.16      | 0.4%               | 62.6%              |
| C17      | 0.16            | 45%                                     | 0.14      | 39.4%              | 100%       | 0.00      | 0.0%               | 2%              | 0.02      | 0.3%               | 39.6%              |
| C18      | 0.13            | 45%                                     | 0.11      | 38.1%              | 100%       | 0.00      | 0.0%               | 2%              | 0.02      | 0.3%               | 38.4%              |
| C19      | 1.51            | 45%                                     | 0.00      | 0.0%               | 100%       | 0.00      | 0.0%               | 2%              | 1.51      | 2.0%               | 2.0%               |
| C20      | 0.05            | 45%                                     | 0.00      | 0.0%               | 100%       | 0.00      | 0.0%               | 2%              | 0.05      | 2.0%               | 2.0%               |
| C21      | 0.04            | 45%                                     | 0.00      | 0.0%               | 100%       | 0.00      | 0.0%               | 2%              | 0.04      | 2.0%               | 2.0%               |
| C22      | 0.13            | 45%                                     | 0.06      | 20.8%              | 100%       | 0.02      | 15.4%              | 2%              | 0.05      | 0.8%               | 36.9%              |
| C23      | 0.28            | 45%                                     | 0.12      | 19.3%              | 100%       | 0.02      | 7.1%               | 2%              | 0.14      | 1.0%               | 27.4%              |
| C24      | 0.91            | 45%                                     | 0.12      | 5.9%               | 100%       | 0.55      | 60.4%              | 2%              | 0.24      | 0.5%               | 66.9%              |
| TOTAL    | 9.31            |                                         |           |                    |            |           |                    |                 |           |                    | 45.1%              |
| 01       | 0.13            | 45%                                     | 0.00      | 0.0%               | 100%       | 0.00      | 0.0%               | 2%              | 0.13      | 2.0%               | 2.0%               |
| 02       | 0.24            | 45%                                     | 0.00      | 0.0%               | 100%       | 0.01      | 2.9%               | 2%              | 0.23      | 1.9%               | 4.9%               |
| O3       | 0.07            | 45%                                     | 0.00      | 0.0%               | 100%       | 0.00      | 0.0%               | 2%              | 0.07      | 2.0%               | 2.0%               |
| TOTAL    | 0.44            |                                         |           |                    |            |           |                    |                 |           |                    | 3.6%               |

## COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: <u>Ridgegate</u> Location: <u>Douglas County - Zone 1</u>

Project No.: <u>15950.10</u> Calculated By: <u>MJP</u>

Checked By:

Date: 12/27/22

|          |                    | Basins Total       | Hydr           | ologic Soil (  | Group            | Hydr        | ologic Soil ( | Group         | Mir              | nor Coeffici     | ents               | Major              | Coefficien         | ts                   |                                         |                                           |
|----------|--------------------|--------------------|----------------|----------------|------------------|-------------|---------------|---------------|------------------|------------------|--------------------|--------------------|--------------------|----------------------|-----------------------------------------|-------------------------------------------|
| Basin ID | Total Area<br>(ac) | Weighted %<br>Imp. | Area A<br>(ac) | Area B<br>(ac) | Area C/D<br>(ac) | % A<br>(ac) | % B<br>(ac)   | % C/D<br>(ac) | C <sub>5,A</sub> | C <sub>5,B</sub> | C <sub>5,C/D</sub> | C <sub>100,A</sub> | C <sub>100,B</sub> | C <sub>100,C/D</sub> | Basins Total<br>Weighted C <sub>5</sub> | Basins Total<br>Weighted C <sub>100</sub> |
|          |                    |                    |                |                |                  |             |               |               |                  |                  |                    |                    |                    |                      |                                         |                                           |
| T1       | 1.06               | 57.4%              | 0.00           | 0.00           | 1.06             | 0%          | 0%            | 100%          | 0.42             | 0.47             | 0.51               | 0.56               | 0.70               | 0.72                 | 0.51                                    | 0.72                                      |
| T2       | 1.57               | 61.1%              | 0.00           | 0.00           | 1.57             | 0%          | 0%            | 100%          | 0.46             | 0.50             | 0.54               | 0.59               | 0.71               | 0.74                 | 0.54                                    | 0.74                                      |
| Т3       | 0.10               | 54.7%              | 0.00           | 0.00           | 0.10             | 0%          | 0%            | 100%          | 0.40             | 0.45             | 0.48               | 0.54               | 0.68               | 0.71                 | 0.48                                    | 0.71                                      |
| T4       | 0.12               | 54.0%              | 0.00           | 0.00           | 0.12             | 0%          | 0%            | 100%          | 0.39             | 0.44             | 0.48               | 0.53               | 0.68               | 0.70                 | 0.48                                    | 0.70                                      |
| T5       | 0.12               | 54.0%              | 0.00           | 0.00           | 0.12             | 0%          | 0%            | 100%          | 0.39             | 0.44             | 0.48               | 0.53               | 0.68               | 0.70                 | 0.48                                    | 0.70                                      |
| T6       | 0.14               | 54.3%              | 0.00           | 0.00           | 0.14             | 0%          | 0%            | 100%          | 0.39             | 0.44             | 0.48               | 0.53               | 0.68               | 0.71                 | 0.48                                    | 0.71                                      |
| T7       | 0.12               | 54.0%              | 0.00           | 0.00           | 0.12             | 0%          | 0%            | 100%          | 0.39             | 0.44             | 0.48               | 0.53               | 0.68               | 0.70                 | 0.48                                    | 0.70                                      |
| Т8       | 0.12               | 54.0%              | 0.00           | 0.00           | 0.12             | 0%          | 0%            | 100%          | 0.39             | 0.44             | 0.48               | 0.53               | 0.68               | 0.70                 | 0.48                                    | 0.70                                      |
| Т9       | 0.09               | 16.3%              | 0.00           | 0.00           | 0.09             | 0%          | 0%            | 100%          | 0.09             | 0.12             | 0.17               | 0.24               | 0.50               | 0.55                 | 0.17                                    | 0.55                                      |
| T10      | 0.13               | 11.9%              | 0.00           | 0.00           | 0.13             | 0%          | 0%            | 100%          | 0.06             | 0.09             | 0.13               | 0.20               | 0.48               | 0.53                 | 0.13                                    | 0.53                                      |
| T11      | 0.02               | 2.0%               | 0.00           | 0.00           | 0.02             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                      |
| T12      | 0.06               | 2.0%               | 0.00           | 0.00           | 0.06             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                      |
| T13      | 0.03               | 2.0%               | 0.00           | 0.00           | 0.03             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                      |
| T14      | 0.04               | 2.0%               | 0.00           | 0.00           | 0.04             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                      |
| T15      | 0.05               | 27.8%              | 0.00           | 0.00           | 0.05             | 0%          | 0%            | 100%          | 0.17             | 0.21             | 0.26               | 0.33               | 0.56               | 0.60                 | 0.26                                    | 0.60                                      |
| T16      | 0.23               | 87.2%              | 0.00           | 0.00           | 0.23             | 0%          | 0%            | 100%          | 0.72             | 0.74             | 0.75               | 0.79               | 0.84               | 0.84                 | 0.75                                    | 0.84                                      |
| T17      | 0.14               | 79.0%              | 0.00           | 0.00           | 0.14             | 0%          | 0%            | 100%          | 0.64             | 0.67             | 0.68               | 0.73               | 0.80               | 0.81                 | 0.68                                    | 0.81                                      |
| T18      | 0.34               | 65.1%              | 0.00           | 0.00           | 0.34             | 0%          | 0%            | 100%          | 0.50             | 0.54             | 0.57               | 0.62               | 0.73               | 0.75                 | 0.57                                    | 0.75                                      |
| T19      | 0.43               | 56.6%              | 0.00           | 0.00           | 0.43             | 0%          | 0%            | 100%          | 0.42             | 0.46             | 0.50               | 0.55               | 0.69               | 0.72                 | 0.50                                    | 0.72                                      |
| T20      | 0.07               | 58.0%              | 0.00           | 0.00           | 0.07             | 0%          | 0%            | 100%          | 0.43             | 0.47             | 0.51               | 0.56               | 0.70               | 0.72                 | 0.51                                    | 0.72                                      |
| T21      | 0.08               | 2.0%               | 0.00           | 0.00           | 0.08             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                      |
| T22      | 0.03               | 2.0%               | 0.00           | 0.00           | 0.03             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                      |
| T23      | 0.10               | 2.0%               | 0.00           | 0.00           | 0.10             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                      |
| C1       | 0.44               | 65.2%              | 0.00           | 0.00           | 0.44             | 0%          | 0%            | 100%          | 0.50             | 0.54             | 0.57               | 0.62               | 0.73               | 0.75                 | 0.57                                    | 0.75                                      |
| C2       | 0.86               | 55.9%              | 0.00           | 0.00           | 0.86             | 0%          | 0%            | 100%          | 0.41             | 0.46             | 0.49               | 0.55               | 0.69               | 0.71                 | 0.49                                    | 0.71                                      |
| C3       | 0.11               | 82.2%              | 0.00           | 0.00           | 0.11             | 0%          | 0%            | 100%          | 0.67             | 0.69             | 0.71               | 0.75               | 0.81               | 0.82                 | 0.71                                    | 0.82                                      |
| C4       | 0.14               | 49.8%              | 0.00           | 0.00           | 0.14             | 0%          | 0%            | 100%          | 0.35             | 0.40             | 0.44               | 0.50               | 0.66               | 0.69                 | 0.44                                    | 0.69                                      |
| C5       | 0.77               | 66.0%              | 0.00           | 0.00           | 0.77             | 0%          | 0%            | 100%          | 0.51             | 0.55             | 0.58               | 0.63               | 0.74               | 0.75                 | 0.58                                    | 0.75                                      |

|          |                    | Basins Total       | Hydro          | ologic Soil (  | Group            | Hydro       | ologic Soil ( | Group         | Mir              | nor Coefficie    | ents               | Major              | Coefficien         | ts                   |                                         |                                        |
|----------|--------------------|--------------------|----------------|----------------|------------------|-------------|---------------|---------------|------------------|------------------|--------------------|--------------------|--------------------|----------------------|-----------------------------------------|----------------------------------------|
| Basin ID | Total Area<br>(ac) | Weighted %<br>Imp. | Area A<br>(ac) | Area B<br>(ac) | Area C/D<br>(ac) | % A<br>(ac) | % B<br>(ac)   | % C/D<br>(ac) | C <sub>5,A</sub> | C <sub>5,B</sub> | C <sub>5,C/D</sub> | C <sub>100,A</sub> | C <sub>100,B</sub> | C <sub>100,C/D</sub> | Basins Total<br>Weighted C <sub>5</sub> | Basins Total Weighted C <sub>100</sub> |
| C6       | 0.57               | 11.1%              | 0.00           | 0.00           | 0.57             | 0%          | 0%            | 100%          | 0.05             | 0.08             | 0.13               | 0.20               | 0.48               | 0.53                 | 0.13                                    | 0.53                                   |
| C7       | 0.84               | 64.1%              | 0.00           | 0.00           | 0.84             | 0%          | 0%            | 100%          | 0.49             | 0.53             | 0.56               | 0.61               | 0.73               | 0.75                 | 0.56                                    | 0.75                                   |
| C8       | 0.09               | 21.1%              | 0.00           | 0.00           | 0.09             | 0%          | 0%            | 100%          | 0.12             | 0.16             | 0.21               | 0.28               | 0.52               | 0.57                 | 0.21                                    | 0.57                                   |
| С9       | 0.12               | 19.9%              | 0.00           | 0.00           | 0.12             | 0%          | 0%            | 100%          | 0.11             | 0.15             | 0.20               | 0.26               | 0.52               | 0.57                 | 0.20                                    | 0.57                                   |
| C10      | 0.02               | 2.0%               | 0.00           | 0.00           | 0.02             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                   |
| C11      | 0.11               | 25.5%              | 0.00           | 0.00           | 0.11             | 0%          | 0%            | 100%          | 0.15             | 0.19             | 0.24               | 0.31               | 0.55               | 0.59                 | 0.24                                    | 0.59                                   |
| C12      | 0.09               | 30.7%              | 0.00           | 0.00           | 0.09             | 0%          | 0%            | 100%          | 0.19             | 0.24             | 0.29               | 0.35               | 0.57               | 0.61                 | 0.29                                    | 0.61                                   |
| C13      | 0.07               | 20.4%              | 0.00           | 0.00           | 0.07             | 0%          | 0%            | 100%          | 0.11             | 0.15             | 0.20               | 0.27               | 0.52               | 0.57                 | 0.20                                    | 0.57                                   |
| C14      | 0.70               | 62.6%              | 0.00           | 0.00           | 0.70             | 0%          | 0%            | 100%          | 0.47             | 0.52             | 0.55               | 0.60               | 0.72               | 0.74                 | 0.55                                    | 0.74                                   |
| C15      | 0.31               | 61.5%              | 0.00           | 0.00           | 0.31             | 0%          | 0%            | 100%          | 0.46             | 0.51             | 0.54               | 0.59               | 0.71               | 0.74                 | 0.54                                    | 0.74                                   |
| C16      | 0.86               | 62.6%              | 0.00           | 0.00           | 0.86             | 0%          | 0%            | 100%          | 0.47             | 0.52             | 0.55               | 0.60               | 0.72               | 0.74                 | 0.55                                    | 0.74                                   |
| C17      | 0.16               | 39.6%              | 0.00           | 0.00           | 0.16             | 0%          | 0%            | 100%          | 0.26             | 0.31             | 0.36               | 0.42               | 0.61               | 0.65                 | 0.36                                    | 0.65                                   |
| C18      | 0.13               | 38.4%              | 0.00           | 0.00           | 0.13             | 0%          | 0%            | 100%          | 0.25             | 0.30             | 0.35               | 0.41               | 0.61               | 0.64                 | 0.35                                    | 0.64                                   |
| C19      | 1.51               | 2.0%               | 0.00           | 0.00           | 1.51             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                   |
| C20      | 0.05               | 2.0%               | 0.00           | 0.00           | 0.05             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                   |
| C21      | 0.04               | 2.0%               | 0.00           | 0.00           | 0.04             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                   |
| C22      | 0.13               | 36.9%              | 0.00           | 0.00           | 0.13             | 0%          | 0%            | 100%          | 0.24             | 0.29             | 0.34               | 0.40               | 0.60               | 0.63                 | 0.34                                    | 0.63                                   |
| C23      | 0.28               | 27.4%              | 0.00           | 0.00           | 0.28             | 0%          | 0%            | 100%          | 0.17             | 0.21             | 0.26               | 0.32               | 0.56               | 0.60                 | 0.26                                    | 0.60                                   |
| C24      | 0.91               | 66.9%              | 0.00           | 0.00           | 0.91             | 0%          | 0%            | 100%          | 0.51             | 0.56             | 0.58               | 0.63               | 0.74               | 0.76                 | 0.58                                    | 0.76                                   |
| 01       | 0.13               | 2.0%               | 0.00           | 0.00           | 0.13             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                   |
| 02       | 0.24               | 4.9%               | 0.00           | 0.00           | 0.24             | 0%          | 0%            | 100%          | 0.02             | 0.03             | 0.08               | 0.15               | 0.45               | 0.50                 | 0.08                                    | 0.50                                   |
| 03       | 0.07               | 2.0%               | 0.00           | 0.00           | 0.07             | 0%          | 0%            | 100%          | 0.01             | 0.01             | 0.05               | 0.13               | 0.44               | 0.49                 | 0.05                                    | 0.49                                   |
| TOTAL    | 14.94              |                    | 0.00           | 0.00           | 14.94            | 0%          | 0%            | 100%          |                  |                  |                    |                    |                    |                      | 0.42                                    | 0.68                                   |

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

| NRCS          |                                                      |                                                    |                                                    | Storm Ret                                          | turn Period                                           |                                            |                                            |
|---------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| Soil<br>Group | 2-Year                                               | 5-Year                                             | 10-Year                                            | 25-Year                                            | 50-Year                                               | 100-Year                                   | 500-Year                                   |
| A             | C <sub>A</sub> =<br>0.84 <i>i</i> <sup>1.302</sup>   | C <sub>A</sub> =<br>0.86 <i>i</i> <sup>1.276</sup> | C <sub>A</sub> =<br>0.87 <i>i</i> <sup>1.232</sup> | C <sub>A</sub> =<br>0.84 <i>i</i> <sup>1.124</sup> | C <sub>A</sub> =<br>0.85 <i>i</i> +0.025              | C <sub>A</sub> =<br>0.78 <i>i</i> +0.110   | C <sub>A</sub> =<br>0.65 <i>i</i> +0.254   |
| в             | C <sub>B</sub> =                                     | C <sub>B</sub> =<br>0.86/ <sup>1.088</sup>         | C <sub>B</sub> =<br>0.81 <i>t</i> +0.057           | C <sub>B</sub> = 0.63 <i>t</i> +0.249              | C <sub>B</sub> =<br>0.56 <i>t</i> +0.328              | C <sub>B</sub> = 0.47 <i>i</i> +0.426      | C <sub>B</sub> =<br>0.37 <i>i</i> +0.536   |
| C/D           | C <sub>C/D</sub> =<br>0.83 <i>i</i> <sup>1.122</sup> | C <sub>C/D</sub> =<br>0.82 <i>i</i> +0.035         | C <sub>C/D</sub> =<br>0.74 <i>i</i> +0.132         | C <sub>C/D</sub> =<br>0.56 <i>i</i> +0.319         | C <sub>C</sub> <sub>D</sub> =<br>0.49 <i>i</i> +0.393 | C <sub>C/D</sub> =<br>0.41 <i>i</i> +0.484 | C <sub>C/D</sub> =<br>0.32 <i>i</i> +0.588 |

Where:

*i* = % imperviousness (expressed as a decimal)

 $C_{d}$  = Runoff coefficient for Natural Resources Conservation Service (NRCS) HSG A soils

 $C_B$  = Runoff coefficient for NRCS HSG B soils

 $C_{C/D}$  = Runoff coefficient for NRCS HSG C and D soils.

### STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Ridgegate Location: Douglas County - Zone 1

Project Name: Lyric Condos Project No.: 15950.10 Calculated By: MJP Checked By:

Date: 12/27/22

|       |      | SUB-I       | BASIN      |                |                  | INITI | AL/OVER           | LAND  |                | T              | RAVEL TIN         | 1E     |                |             | tc CHECK     |                 |                |
|-------|------|-------------|------------|----------------|------------------|-------|-------------------|-------|----------------|----------------|-------------------|--------|----------------|-------------|--------------|-----------------|----------------|
|       |      | DA          | TA         |                |                  |       | (T <sub>i</sub> ) |       |                |                | (T <sub>t</sub> ) |        |                | (L          | JRBANIZED BA | SINS)           | FINAL          |
| BASIN | D.A. | Hydrologic  | Impervious | C <sub>5</sub> | C <sub>100</sub> | L     | S <sub>o</sub>    | t,    | L <sub>t</sub> | S <sub>t</sub> | K                 | VEL.   | t <sub>t</sub> | COMP. $t_c$ | TOTAL        | Urbanized $t_c$ | t <sub>c</sub> |
| ID    | (ac) | Soils Group | (%)        |                |                  | (ft)  | (%)               | (min) | (ft)           | (%)            |                   | (ft/s) | (min)          | (min)       | LENGTH (ft)  | (min)           | (min)          |
|       |      |             |            |                |                  |       |                   |       |                |                |                   |        |                |             |              |                 |                |
| T1    | 1.06 | С           | 57%        | 0.51           | 0.72             | 50    | 33.0%             | 2.4   | 326            | 3.5%           | 20.0              | 3.7    | 1.5            | 3.8         | 376.0        | 17.9            | 5.0            |
| T2    | 1.57 | С           | 61%        | 0.54           | 0.74             | 50    | 33.0%             | 2.3   | 583            | 3.5%           | 20.0              | 3.7    | 2.6            | 4.9         | 633.0        | 18.6            | 5.0            |
| T3    | 0.10 | С           | 55%        | 0.48           | 0.71             | 30    | 33.0%             | 1.9   | 65             | 1.0%           | 20.0              | 2.0    | 0.5            | 2.5         | 95.0         | 17.4            | 5.0            |
| T4    | 0.12 | С           | 54%        | 0.48           | 0.70             | 30    | 33.0%             | 1.9   | 65             | 1.0%           | 20.0              | 2.0    | 0.5            | 2.5         | 95.0         | 17.5            | 5.0            |
| T5    | 0.12 | С           | 54%        | 0.48           | 0.70             | 30    | 33.0%             | 1.9   | 65             | 1.0%           | 20.0              | 2.0    | 0.5            | 2.5         | 95.0         | 17.5            | 5.0            |
| T6    | 0.14 | С           | 54%        | 0.48           | 0.71             | 30    | 33.0%             | 1.9   | 65             | 1.0%           | 20.0              | 2.0    | 0.5            | 2.5         | 95.0         | 17.4            | 5.0            |
| T7    | 0.12 | С           | 54%        | 0.48           | 0.70             | 30    | 0.5%              | 7.7   | 65             | 1.0%           | 20.0              | 2.0    | 0.5            | 8.3         | 95.0         | 17.5            | 8.3            |
| T8    | 0.12 | С           | 54%        | 0.48           | 0.70             | 30    | 0.5%              | 7.7   | 65             | 1.0%           | 20.0              | 2.0    | 0.5            | 8.3         | 95.0         | 17.5            | 8.3            |
| Т9    | 0.09 | С           | 16%        | 0.17           | 0.55             | 10    | 0.5%              | 6.7   | 50             | 0.5%           | 7.0               | 0.5    | 1.7            | 8.4         | 60.0         | 24.3            | 8.4            |
| T10   | 0.13 | С           | 12%        | 0.13           | 0.53             | 10    | 0.5%              | 6.9   | 50             | 0.5%           | 7.0               | 0.5    | 1.7            | 8.6         | 60.0         | 25.1            | 8.6            |
| T11   | 0.02 | С           | 2%         | 0.05           | 0.49             | 10    | 0.5%              | 7.5   | 50             | 0.5%           | 7.0               | 0.5    | 1.7            | 9.2         | 60.0         | 26.9            | 9.2            |
| T12   | 0.06 | С           | 2%         | 0.05           | 0.49             | 10    | 0.5%              | 7.5   | 50             | 0.5%           | 7.0               | 0.5    | 1.7            | 9.2         | 60.0         | 26.9            | 9.2            |
| T13   | 0.03 | С           | 2%         | 0.05           | 0.49             | 10    | 0.5%              | 7.5   | 50             | 0.5%           | 7.0               | 0.5    | 1.7            | 9.2         | 60.0         | 26.9            | 9.2            |
| T14   | 0.04 | С           | 2%         | 0.05           | 0.49             | 10    | 0.5%              | 7.5   | 50             | 0.5%           | 7.0               | 0.5    | 1.7            | 9.2         | 60.0         | 26.9            | 9.2            |
| T15   | 0.05 | С           | 28%        | 0.26           | 0.60             | 50    | 33.0%             | 3.4   | 20             | 0.5%           | 20.0              | 1.4    | 0.2            | 3.6         | 70.0         | 21.6            | 5.0            |
| T16   | 0.23 | С           | 87%        | 0.75           | 0.84             | 10    | 33.0%             | 0.6   | 134            | 0.5%           | 20.0              | 1.4    | 1.6            | 2.2         | 144.0        | 12.7            | 5.0            |
| T17   | 0.14 | С           | 79%        | 0.68           | 0.81             | 10    | 33.0%             | 0.8   | 113            | 2.5%           | 20.0              | 3.2    | 0.6            | 1.3         | 123.0        | 13.2            | 5.0            |
| T18   | 0.34 | С           | 65%        | 0.57           | 0.75             | 50    | 33.0%             | 2.1   | 148            | 2.5%           | 20.0              | 3.2    | 0.8            | 2.9         | 198.0        | 15.8            | 5.0            |
| T19   | 0.43 | С           | 57%        | 0.50           | 0.72             | 50    | 33.0%             | 2.4   | 286            | 2.5%           | 20.0              | 3.2    | 1.5            | 3.9         | 336.0        | 18.2            | 5.0            |
| T20   | 0.07 | С           | 58%        | 0.51           | 0.72             | 50    | 33.0%             | 2.4   | 286            | 2.5%           | 20.0              | 3.2    | 1.5            | 3.9         | 336.0        | 17.9            | 5.0            |
| T21   | 0.08 | С           | 2%         | 0.05           | 0.49             | 10    | 25.0%             | 2.1   | 150            | 2.0%           | 7.0               | 1.0    | 2.5            | 4.6         | 160.0        | 27.6            | 5.0            |
| T22   | 0.03 | С           | 2%         | 0.05           | 0.49             | 10    | 25.0%             | 2.1   | 41             | 2.0%           | 7.0               | 1.0    | 0.7            | 2.8         | 51.0         | 26.2            | 5.0            |
| T23   | 0.10 | С           | 2%         | 0.05           | 0.49             | 10    | 2.0%              | 4.8   | 220            | 2.0%           | 7.0               | 1.0    | 3.7            | 8.5         | 230.0        | 28.5            | 8.5            |
| C1    | 0.44 | С           | 65%        | 0.57           | 0.75             | 25    | 2.0%              | 3.8   | 322            | 2.5%           | 20.0              | 3.2    | 1.7            | 5.5         | 347.0        | 16.8            | 5.5            |
| C2    | 0.86 | С           | 56%        | 0.49           | 0.71             | 50    | 33.0%             | 2.4   | 410            | 2.5%           | 20.0              | 3.2    | 2.2            | 4.6         | 460.0        | 19.1            | 5.0            |
| C3    | 0.11 | С           | 82%        | 0.71           | 0.82             | 50    | 33.0%             | 1.6   | 87             | 2.3%           | 20.0              | 3.0    | 0.5            | 2.1         | 137.0        | 12.5            | 5.0            |
| C4    | 0.14 | С           | 50%        | 0.44           | 0.69             | 40    | 2.0%              | 6.0   | 45             | 2.0%           | 20.0              | 2.8    | 0.3            | 6.2         | 85.0         | 17.9            | 6.2            |
| C5    | 0.77 | С           | 66%        | 0.58           | 0.75             | 40    | 33.0%             | 1.9   | 400            | 2.5%           | 20.0              | 3.2    | 2.1            | 4.0         | 440.0        | 17.1            | 5.0            |
| C6    | 0.57 | С           | 11%        | 0.13           | 0.53             | 55    | 33.0%             | 4.1   | 613            | 2.0%           | 15.0              | 2.1    | 4.8            | 8.9         | 668.0        | 31.0            | 8.9            |
| C7    | 0.84 | С           | 64%        | 0.56           | 0.75             | 45    | 2.0%              | 5.2   | 641            | 2.3%           | 20.0              | 3.0    | 3.5            | 8.7         | 686.0        | 19.0            | 8.7            |

### STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Ridgegate

Location: Douglas County - Zone 1

Project Name: Lyric Condos Project No.: 15950.10 Calculated By: MJP Checked By: Date: 12/27/22

Equation 6-3

Equation 6-5

|       |      | SUB-I       | BASIN      |                |                  | INITL | AL/OVER           | LAND  |                | T              | RAVEL TIN         | 1E     |                |                      | tc CHECK    |                 |                |
|-------|------|-------------|------------|----------------|------------------|-------|-------------------|-------|----------------|----------------|-------------------|--------|----------------|----------------------|-------------|-----------------|----------------|
|       |      | DA          | ATA        |                |                  |       | (T <sub>i</sub> ) |       |                |                | (T <sub>t</sub> ) |        |                | (U                   | RBANIZED BA | SINS)           | FINAL          |
| BASIN | D.A. | Hydrologic  | Impervious | C <sub>5</sub> | C <sub>100</sub> | L     | S <sub>o</sub>    | t i   | L <sub>t</sub> | S <sub>t</sub> | K                 | VEL.   | t <sub>t</sub> | COMP. t <sub>c</sub> | TOTAL       | Urbanized $t_c$ | t <sub>c</sub> |
| ID    | (ac) | Soils Group | (%)        |                |                  | (ft)  | (%)               | (min) | (ft)           | (%)            |                   | (ft/s) | (min)          | (min)                | LENGTH (ft) | (min)           | (min)          |
| C8    | 0.09 | С           | 21%        | 0.21           | 0.57             | 45    | 33.0%             | 3.4   | 65             | 1.0%           | 20.0              | 2.0    | 0.5            | 3.9                  | 110.0       | 23.3            | 5.0            |
| C9    | 0.12 | С           | 20%        | 0.20           | 0.57             | 45    | 33.0%             | 3.4   | 98             | 1.0%           | 20.0              | 2.0    | 0.8            | 4.3                  | 143.0       | 24.0            | 5.0            |
| C10   | 0.02 | С           | 2%         | 0.05           | 0.49             | 20    | 33.0%             | 2.7   | 65             | 1.0%           | 20.0              | 2.0    | 0.5            | 3.2                  | 85.0        | 26.8            | 5.0            |
| C11   | 0.11 | С           | 25%        | 0.24           | 0.59             | 40    | 33.0%             | 3.1   | 70             | 1.0%           | 20.0              | 2.0    | 0.6            | 3.7                  | 110.0       | 22.6            | 5.0            |
| C12   | 0.09 | С           | 31%        | 0.29           | 0.61             | 40    | 33.0%             | 2.9   | 70             | 1.0%           | 20.0              | 2.0    | 0.6            | 3.5                  | 110.0       | 21.7            | 5.0            |
| C13   | 0.07 | С           | 20%        | 0.20           | 0.57             | 40    | 33.0%             | 3.2   | 70             | 1.0%           | 20.0              | 2.0    | 0.6            | 3.8                  | 110.0       | 23.5            | 5.0            |
| C14   | 0.70 | С           | 63%        | 0.55           | 0.74             | 55    | 33.0%             | 2.3   | 276            | 2.3%           | 20.0              | 3.0    | 1.5            | 3.8                  | 331.0       | 17.1            | 5.0            |
| C15   | 0.31 | С           | 62%        | 0.54           | 0.74             | 55    | 33.0%             | 2.4   | 116            | 2.4%           | 20.0              | 3.1    | 0.6            | 3.0                  | 171.0       | 16.3            | 5.0            |
| C16   | 0.86 | С           | 63%        | 0.55           | 0.74             | 55    | 33.0%             | 2.3   | 382            | 2.5%           | 20.0              | 3.2    | 2.0            | 4.3                  | 437.0       | 17.6            | 5.0            |
| C17   | 0.16 | С           | 40%        | 0.36           | 0.65             | 32    | 33.0%             | 2.4   | 30             | 1.0%           | 20.0              | 2.0    | 0.3            | 2.6                  | 62.0        | 19.6            | 5.0            |
| C18   | 0.13 | С           | 38%        | 0.35           | 0.64             | 32    | 33.0%             | 2.4   | 30             | 1.0%           | 20.0              | 2.0    | 0.3            | 2.7                  | 62.0        | 19.8            | 5.0            |
| C19   | 1.51 | С           | 2%         | 0.05           | 0.49             | 10    | 5.0%              | 3.5   | 765            | 2.0%           | 7.0               | 1.0    | 12.9           | 16.4                 | 775.0       | 35.4            | 16.4           |
| C20   | 0.05 | С           | 2%         | 0.05           | 0.49             | 10    | 5.0%              | 3.5   | 54             | 2.0%           | 7.0               | 1.0    | 0.9            | 4.4                  | 64.0        | 26.3            | 5.0            |
| C21   | 0.04 | С           | 2%         | 0.05           | 0.49             | 10    | 2.0%              | 4.8   | 70             | 2.0%           | 7.0               | 1.0    | 1.2            | 5.9                  | 80.0        | 26.5            | 5.9            |
| C22   | 0.13 | С           | 37%        | 0.34           | 0.63             | 40    | 33.0%             | 2.7   | 80             | 2.0%           | 7.0               | 1.0    | 1.3            | 4.1                  | 120.0       | 20.4            | 5.0            |
| C23   | 0.28 | С           | 27%        | 0.26           | 0.60             | 40    | 33.0%             | 3.0   | 80             | 2.0%           | 7.0               | 1.0    | 1.3            | 4.4                  | 120.0       | 22.1            | 5.0            |
| C24   | 0.91 | С           | 67%        | 0.58           | 0.76             | 40    | 33.0%             | 1.9   | 400            | 2.5%           | 20.0              | 3.2    | 2.1            | 4.0                  | 440.0       | 16.9            | 5.0            |
| 01    | 0.13 | С           | 2%         | 0.05           | 0.49             | 10    | 1.0%              | 6.0   | 20             | 2.0%           | 7.0               | 1.0    | 0.3            | 6.3                  | 30.0        | 25.9            | 6.3            |
| 02    | 0.24 | С           | 5%         | 0.08           | 0.50             | 10    | 33.0%             | 1.8   | 40             | 33.0%          | 7.0               | 4.0    | 0.2            | 2.0                  | 50.0        | 25.3            | 5.0            |
| 03    | 0.07 | С           | 2%         | 0.05           | 0.49             | 10    | 33.0%             | 1.9   | 40             | 33.0%          | 7.0               | 4.0    | 0.2            | 2.1                  | 50.0        | 25.8            | 5.0            |
| TES:  | 0.07 | Ŭ           | 2,0        | 0.00           | 0.17             |       | 00.070            | ,     | 10             | 00.070         |                   | 1.0    | 5.2            | 2.1                  | 20.0        | 20.0            | 0.0            |

 $t_c = t_i + t_t$ 

Where:

 $t_e$  = computed time of concentration (minutes)

t<sub>i</sub> = overland (initial) flow time (minutes)

 $t_t$  = channelized flow time (minutes).

L, L,  $t_t =$  $=\frac{L_t}{60K\sqrt{S_o}}=\frac{L_t}{60V_t}$ 

Where:

 $t_t$  = channelized flow time (travel time, min)  $L_t$  = waterway length (ft)  $L_1 - \text{waterway length}(n)$   $S_0 = \text{waterway slope}(ft/ft)$   $V_i = \text{travel time velocity}(ft/sec) = K \sqrt{S_0}$  K = NRCS conveyance factor (see Table 6-2).  $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.033}}$ 

Where:

 $t_i = \text{overland}$  (initial) flow time (minutes)  $C_5 = \text{runoff coefficient}$  for 5-year frequency (from Table 6-4)  $L_i = \text{length}$  of overland flow (ff)  $S_0 = \text{average}$  slope along the overland flow path (ft/ft).

 $t_{e} = (26 - 17i) + \frac{L_{f}}{60(14i + 9)\sqrt{S_{t}}}$ 

Where:

Equation 6-2

Equation 6-4

 $t_c = \min t_c$  from Equation 6-1.  $L_r = length of channelized flow path (ft)$  I = impervisoness (expressed as a decimal)  $S_r = slope of the channelized flow path (ft/ft).$ 

Use a minimum t<sub>c</sub> value of 5 minutes for urbanized areas and a minimum t<sub>c</sub> value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

| Type of Land Surface                 | Conveyance Factor, K |
|--------------------------------------|----------------------|
| Heavy meadow                         | 2.5                  |
| Tillage/field                        | 5                    |
| Short pasture and lawns              | 7                    |
| Nearly bare ground                   | 10                   |
| Grassed waterway                     | 15                   |
| Paved areas and shallow paved swales | 20                   |

X:\1590000.all\1595010\Excel\Drainage\15950.10 Drainage\_Calcs\_Template\_v2.07.xlsm

| Subdivision<br>Location<br>Design Storm | : Dougla<br>: 5-Year | s Coun   | -         | ie 1          |                      |          |           |          |          |          |           |         |                           |          |           | Ca                      | lculate<br>Checke | Vame: <u>l</u><br>ct No.:<br>ed By: <u>f</u><br>ed By: <u></u> | MJP                |             | S              |                      |                                                                                |
|-----------------------------------------|----------------------|----------|-----------|---------------|----------------------|----------|-----------|----------|----------|----------|-----------|---------|---------------------------|----------|-----------|-------------------------|-------------------|----------------------------------------------------------------|--------------------|-------------|----------------|----------------------|--------------------------------------------------------------------------------|
| P <sub>1</sub>                          | . 1.43               | Inches   | ŝ         |               |                      |          |           |          |          |          |           |         |                           |          |           |                         |                   | Date:                                                          | 12/2/              |             |                |                      |                                                                                |
|                                         |                      |          | -         | DIREC         | CT RUI               | NOFF     | 1         | 1        | ٦        | OTAL F   | RUNOF     | FF      |                           | STREE    | Г         |                         | PI                | T                                                              |                    | TRAV        | EL TIM         | 1E                   |                                                                                |
| STREET                                  | Design Point         | Basin ID | Area (Ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (Ac) | l (in/hr) | Q (cfs)  | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | O <sub>street</sub> (cfs) | C*A (ac) | Slope (%) | O <sub>pipe</sub> (cfs) | C*A (ac)          | Slope (%)                                                      | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                        |
|                                         | 1                    | C1       | 0.44      | 0.57          | 5.5                  | 0.25     | 4.83      | 1.21     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Basin C1 flows routed via curb & gutter<br>to on-grade inlet at DP01           |
|                                         | 2                    | C2       | 0.86      | 0.49          | 5.0                  | 0.42     | 4.95      | 2.08     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Basin Ĉ2 flows routed via curb & gutter<br>to on-grade inlet at DP02           |
|                                         | 3                    | C3       |           | 0.71          | 5.0                  |          |           |          |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to sump inlet DP03<br>to sump inlet DP03                                       |
|                                         |                      | U3       | 0.11      | 0.71          | 5.0                  | 0.08     | 4.95      | 0.40     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Combined flows routed via pipe                                                 |
|                                         | 2.1                  |          |           |               |                      |          |           |          | 5.5      | 0.75     | 4.83      | 3.62    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to DP4.1<br>Basin C04 flows routed via drainage swale                          |
|                                         | 4                    | C4       | 0.14      | 0.44          | 6.2                  | 0.06     | 4.65      | 0.28     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to 24-inch nyoplast inlet at DP04<br>Combined flows routed via pipe            |
|                                         | 4.1                  |          |           |               |                      |          |           |          | 6.2      | 0.81     | 4.65      | 3.77    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to DP24.1<br>Basin C24 flows routed via curb & gutter                          |
|                                         | 24                   | C24      | 0.91      | 0.58          | 5.0                  | 0.53     | 4.95      | 2.62     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to on-grade inlet at DP24                                                      |
|                                         | 24.1                 |          |           |               |                      |          |           |          | 6.2      | 1.34     | 4.65      | 6.23    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Combined flows routed via pipe<br>to DP21.1                                    |
|                                         | 21                   | C21      | 0.04      | 0.05          | 5.9                  | 0.00     | 4.72      | 0.00     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Basin C21 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP21 |
|                                         | 21.1                 |          |           |               |                      |          |           |          | 6.2      | 13/      | 4.65      | 6.23    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Combined flows routed via pipe<br>to DP22.1                                    |
|                                         |                      | C22      | 0.12      | 0.34          | 5.0                  | 0.04     | 4.05      | 0.20     |          | 1.04     | 4.00      | 0.20    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Basin C22 flows routed via drainage swale                                      |
|                                         | 22                   | 622      | 0.13      | 0.34          | 5.0                  | 0.04     | 4.95      | 0.20     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to 24-inch nyoplast inlet at DP22<br>Combined flows routed via pipe            |
|                                         | 22.1                 |          |           |               |                      |          |           |          | 6.2      | 1.38     | 4.65      | 6.42    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to DP23.1<br>Basin C23 flows routed via drainage swale                         |
|                                         | 23                   | C23      | 0.28      | 0.26          | 5.0                  | 0.07     | 4.95      | 0.35     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to 24-inch nyoplast inlet at DP23<br>Combined flows routed via pipe            |
|                                         | 23.1                 |          |           |               |                      |          |           |          | 6.2      | 1.45     | 4.65      | 6.74    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to DP7.1<br>Basin C5 flows routed via curb & gutter                            |
|                                         | 5                    | C5       | 0.77      | 0.58          | 5.0                  | 0.44     | 4.95      | 2.18     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to on-grade inlet at DP05                                                      |
|                                         | 7                    | C7       | 0.84      | 0.56          | 8.7                  | 0.47     | 4.16      | 1.96     |          |          |           |         |                           |          |           | 1.85                    | 0.44              | 1 2.2                                                          | 18                 |             |                |                      | Basin Ĉ7 flows routed via curb & gutter<br>to on-grade inlet at DP07           |
|                                         |                      |          |           |               |                      |          |           |          |          |          |           |         | 0.11                      | 0.026    | 2.2       |                         |                   |                                                                |                    | 84          | 3.0            | 0.5                  |                                                                                |
|                                         | 7.1                  |          |           |               |                      |          |           |          | 8.7      | 2.33     | 4.16      | 9.71    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Combined flows routed via pipe<br>to DP15.2                                    |
|                                         | 14                   | C14      | 0.70      | 0.55          | 5.0                  | 0.38     | 4.95      | 1.88     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Basin C14 flows routed via curb & gutter<br>to sump inlet at DP14              |
|                                         |                      |          |           |               |                      |          |           |          |          | 0.41     | 4.90      | 1.99    |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Basin C15 flows routed via curb & gutter                                       |
|                                         | 15                   | C15      | 0.31      | 0.54          | 5.0                  | 0.17     | 4.95      | 0.84     |          |          |           |         |                           |          |           |                         |                   | +                                                              |                    |             |                |                      | to sump inlet at DP15<br>Combined flows routed via pipe                        |
|                                         | 15.1                 | <u> </u> |           |               |                      |          |           | <u> </u> | 5.0      | 0.58     | 4.95      | 2.85    |                           |          |           | <u> </u>                |                   |                                                                |                    |             |                |                      | to DP15.2<br>Combined flows routed via pipe                                    |
|                                         | 15.2                 |          |           |               |                      |          |           |          | 8.7      | 2.91     | 4.16      | 12.11   |                           |          |           |                         |                   | +                                                              |                    |             |                |                      | to DP16.2<br>Basin C20 flows routed via drainage swale                         |
|                                         | 20                   | C20      | 0.05      | 0.05          | 5.0                  | 0.00     | 4.95      | 0.00     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | to 24-inch nyoplast inlet at DP20                                              |
|                                         | 16                   | C16      | 0.86      | 0.55          | 5.0                  | 0.47     | 4.95      | 2.33     |          |          |           |         |                           |          |           |                         |                   |                                                                |                    |             |                |                      | Basin C16 flows routed via alley to sump inlet at DP16                         |

| Subdivision<br>Location<br>Design Storm<br>P <sub>1</sub> | : Dougla     | s Coun   | -         | ne 1          |                      |          |           |         |          |          |           |         |                           |          |           | Ca                      | Projec<br>Iculate<br>Checke | ame: <u>L</u><br>t No.: <u>1</u><br>d By: <u>N</u><br>d By: <u></u><br>Date: <u>1</u> | 5950<br>ЛЈР        | ).10        | S              |                      |                                                                                |
|-----------------------------------------------------------|--------------|----------|-----------|---------------|----------------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------------|----------|-----------|-------------------------|-----------------------------|---------------------------------------------------------------------------------------|--------------------|-------------|----------------|----------------------|--------------------------------------------------------------------------------|
|                                                           |              |          |           | DIRE          | CT RUI               | NOFF     |           |         | Т        | OTAL F   |           | F       | (                         | STREET   | -         |                         | PI                          | PF                                                                                    | 1                  | TRAVI       | FL TIN         | ЛF                   |                                                                                |
|                                                           |              |          |           | DIRE          |                      |          |           |         | i        | OTAL     |           |         |                           |          |           |                         |                             | г г                                                                                   | -                  | 110.00      |                |                      |                                                                                |
| STREET                                                    | Design Point | Basin ID | Area (Ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (Ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | Q <sub>street</sub> (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)                    | Slope (%)                                                                             | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                        |
|                                                           | 16.1         |          |           |               |                      |          |           |         | 5.0      | 0.47     | 4.95      | 2.33    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe<br>to DP16.2                                    |
|                                                           | 16.2         |          |           |               |                      |          |           |         | 8.7      |          | 4.16      |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe<br>to DP18.2                                    |
|                                                           | 10.2         |          |           |               |                      |          |           |         | 8.7      | 3.38     | 4.10      | 14.00   |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Basin C06 flows routed via drainage swale                                      |
|                                                           | 6            | C6       | 0.57      | 0.13          | 8.9                  | 0.07     | 4.12      | 0.29    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP06<br>Basin C08 flows routed via drainage swale |
|                                                           | 8            | C8       | 0.09      | 0.21          | 5.0                  | 0.02     | 4.95      | 0.10    |          | <u> </u> |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP08                                              |
|                                                           | 8.1          |          |           |               |                      |          |           |         | 8.9      | 0 00     | 4.12      | 0.37    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe<br>to DP9.1                                     |
|                                                           |              |          |           |               |                      |          |           |         |          | 0.07     | 7.12      | 0.57    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Basin C09 flows routed via drainage swale                                      |
|                                                           | 9            | C9       | 0.12      | 0.20          | 5.0                  | 0.02     | 4.95      | 0.10    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP09<br>Combined flows routed via pipe            |
|                                                           | 9.1          |          |           |               |                      |          |           |         | 8.9      | 0.11     | 4.12      | 0.45    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to DP10.1                                                                      |
|                                                           | 10           | C10      | 0.02      | 0.05          | 5.0                  | 0.00     | 4.95      | 0.00    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Basin C10 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP10 |
|                                                           |              |          |           |               |                      |          |           |         |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe                                                 |
|                                                           | 10.1         |          |           |               |                      |          |           |         | 8.9      | 0.11     | 4.12      | 0.45    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to DP11.1<br>Basin C11 flows routed via drainage swale                         |
|                                                           | 11           | C11      | 0.11      | 0.24          | 5.0                  | 0.03     | 4.95      | 0.15    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP11                                              |
|                                                           | 11.1         |          |           |               |                      |          |           |         | 8.9      | 0.14     | 4.12      | 0.58    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe to DP12.1                                       |
|                                                           | 10           | C12      | 0.00      | 0.29          | 5.0                  | 0.02     | 4.05      | 0.15    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Basin C12 flows routed via drainage swale                                      |
|                                                           | 12           | CIZ      | 0.09      | 0.29          | 5.0                  | 0.03     | 4.95      | 0.15    |          |          |           |         | -                         |          |           | -                       |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP12<br>Combined flows routed via pipe            |
|                                                           | 12.1         |          |           |               |                      |          |           |         | 8.9      | 0.17     | 4.12      | 0.70    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to DP13.1<br>Basin C13 flows routed via drainage swale                         |
|                                                           | 13           | C13      | 0.07      | 0.20          | 5.0                  | 0.01     | 4.95      | 0.05    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP13                                              |
|                                                           | 13.1         |          |           |               |                      |          |           |         | 8.9      | 0.10     | 4.12      | 0.74    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe to DP18.2                                       |
|                                                           |              |          |           |               |                      |          |           |         | 0.9      | 0.16     | 4.1Z      | 0.74    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Basin C17 flows routed via drainage swale                                      |
|                                                           | 17           | C17      | 0.16      | 0.36          | 5.0                  | 0.06     | 4.95      | 0.30    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP17<br>Basin C18 flows routed via drainage swale |
|                                                           | 18           | C18      | 0.13      | 0.35          | 5.0                  | 0.05     | 4.95      | 0.25    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP18                                              |
|                                                           | 18.1         |          |           |               |                      |          |           |         | 5.0      | 0.11     | 4.95      | 0.54    |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe to DP18.2                                       |
|                                                           |              |          |           |               |                      |          |           |         |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe                                                 |
|                                                           | 18.2         |          |           |               |                      |          |           |         | 8.9      | 3.67     | 4.12      | 15.12   |                           |          |           |                         |                             |                                                                                       |                    |             |                | <u> </u>             | to DP19.1<br>Basin C19 flows routed via drainage swale                         |
|                                                           | 19           | C19      | 1.51      | 0.05          | 16.4                 | 0.08     | 3.18      | 0.25    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to 24-inch nyoplast inlet at DP19                                              |
|                                                           | 19.1         |          |           |               |                      |          |           |         | 16.4     | 3 75     | 3.18      | 11 93   |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Combined flows routed via pipe<br>to existing 36" RCP stub                     |
|                                                           |              |          |           |               |                      |          |           |         |          | 0.70     | 0.10      |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      |                                                                                |
|                                                           |              |          |           |               |                      |          |           |         |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Basin T3 flows routed via alley                                                |
|                                                           | 103          | T3       | 0.10      | 0.48          | 5.0                  | 0.05     | 4.95      | 0.25    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | to sump inlet at DP103                                                         |
|                                                           | 109          | Т9       | 0.09      | 0.17          | 8.4                  | 0.02     | 4.22      | 0.08    |          |          |           |         |                           |          |           |                         |                             |                                                                                       |                    |             |                |                      | Basin T9 flows routed via property swales<br>to area inlet at DP109            |

| Subdivision<br>Location<br>Design Storm<br><b>P</b> 1 | i: Dougla    | s Coun   | ,         | ne 1          |             |          |           |         |          |          |           |         |                           |          |           | Ca                      | lculate<br>Checke | ct No.:<br>ed By: | 1595<br>MJP        | 0.10        | IS             |                      |                                                                                 |
|-------------------------------------------------------|--------------|----------|-----------|---------------|-------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------------|----------|-----------|-------------------------|-------------------|-------------------|--------------------|-------------|----------------|----------------------|---------------------------------------------------------------------------------|
|                                                       | 1            |          |           | DIRE          | CT RU       | NOFE     |           |         | 1        | FOTAL F  |           | F       |                           | STREET   | r         |                         | PI                | DF                |                    | TRAV        | EL TI          | ME                   |                                                                                 |
|                                                       |              |          |           | DIKL          |             |          |           |         |          |          |           |         |                           |          |           |                         |                   |                   |                    | TRAV        |                |                      |                                                                                 |
| STREET                                                | Design Point | Basin ID | Area (Ac) | Runoff Coeff. | $t_c$ (min) | C*A (Ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | Q <sub>street</sub> (cfs) | C*A (ac) | Slope (%) | O <sub>pipe</sub> (cfs) | C*A (ac)          | Slope (%)         | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                         |
|                                                       | 109.1        |          |           |               |             |          |           |         | 8.4      | 0.07     | 4.22      | 0.30    |                           |          |           |                         |                   |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP110.1                                    |
|                                                       |              |          |           |               |             |          |           |         |          | 0.07     |           | 0.00    |                           |          |           |                         |                   |                   |                    |             |                |                      | Basin T4 flows routed via alley                                                 |
|                                                       | 104          | T4       | 0.12      | 0.48          | 5.0         | 0.06     | 4.95      | 0.30    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to sump inlet at DP104<br>Basin T10 flows routed via property swales            |
|                                                       | 110          | T10      | 0.13      | 0.13          | 8.6         | 0.02     | 4.18      | 0.08    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to area inlet at DP110                                                          |
|                                                       | 110.1        |          |           |               |             |          |           |         | 8.6      | 0.15     | 4.18      | 0.63    |                           |          |           |                         |                   |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP111.1                                    |
|                                                       |              |          |           |               |             |          |           |         |          | 0.10     | 4.10      | 0.00    |                           |          |           |                         |                   |                   |                    |             |                |                      | Basin T5 flows routed via alley                                                 |
|                                                       | 105          | T5       | 0.12      | 0.48          | 5.0         | 0.06     | 4.95      | 0.30    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to sump inlet at DP105<br>Basin T11 flows routed via property swales            |
|                                                       | 111          | T11      | 0.02      | 0.05          | 9.2         | 0.00     | 4.08      | 0.00    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to area inlet at DP111                                                          |
|                                                       | 111.1        |          |           |               |             |          |           |         | 9.2      | 0.21     | 4.08      | 0.86    |                           |          |           |                         |                   |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP112.1                                    |
|                                                       |              |          |           |               |             |          |           |         | 7.2      | 0.21     |           | 0.00    |                           |          |           |                         |                   |                   |                    | l           |                |                      | Basin T1 flows routed via alley                                                 |
|                                                       | 101          | T1       | 1.06      | 0.51          | 5.0         | 0.54     | 4.95      | 2.67    |          |          |           |         | 0.93                      | 0.188    | 2.7       | 1.7                     | 0.35              | 2.8               | 18                 | 587<br>446  |                |                      | to valley inlet at DP101                                                        |
|                                                       |              |          |           |               |             |          |           |         |          |          |           |         | 0.70                      | 0.100    | 2         |                         |                   |                   |                    | 110         | 0.0            | 2.0                  |                                                                                 |
|                                                       | 106          | T6       | 0.14      | 0.48          | 5.0         | 0.07     | 4.95      | 0.35    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | Basin T6 flows routed via alley to sump inlet at DP106                          |
|                                                       |              |          |           |               |             |          |           |         |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | Combined flows routed via pipe                                                  |
|                                                       | 106.1        | -        |           |               |             |          |           |         | 5.0      | 0.42     | 4.95      | 2.09    | -                         |          |           | -                       |                   |                   |                    |             |                |                      | to DP112.1<br>Basin T12 flows routed via property swales                        |
|                                                       | 112          | T12      | 0.06      | 0.05          | 9.2         | 0.00     | 4.08      | 0.00    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to area inlet at DP112                                                          |
|                                                       | 112.1        |          |           |               |             |          |           |         | 9.2      | 0.63     | 4.08      | 2.58    |                           |          |           |                         |                   |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP113.1                                    |
|                                                       |              |          |           |               |             |          |           |         |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | Basin T7 flows routed via alley                                                 |
|                                                       | 107          | T7       | 0.12      | 0.48          | 8.3         | 0.06     | 4.24      | 0.25    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to sump inlet at DP107<br>Basin T13 flows routed via property swales            |
|                                                       | 113          | T13      | 0.03      | 0.05          | 9.2         | 0.00     | 4.08      | 0.00    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to area inlet at DP113                                                          |
|                                                       | 113.1        |          |           |               |             |          |           |         | 9.2      | 0.69     | 4.08      | 2.82    |                           |          |           |                         |                   |                   |                    | 1           |                |                      | Combined flows routed via pipe<br>to DP114.1                                    |
|                                                       |              | то       | 0.10      | 0.40          |             | 0.01     | 4.94      | 0.05    |          |          |           |         |                           |          |           |                         | İ                 | 1                 |                    | l I         |                |                      | Basin T8 flows routed via alley                                                 |
|                                                       | 108          | T8       | 0.12      | 0.48          | 8.3         | 0.06     | 4.24      | 0.25    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to sump inlet at DP108<br>Basin T14 flows routed via property swales            |
|                                                       | 114          | T14      | 0.04      | 0.05          | 9.2         | 0.00     | 4.08      | 0.00    |          |          |           |         |                           |          |           |                         |                   |                   |                    | <u> </u>    |                |                      | to area inlet at DP114                                                          |
|                                                       | 114.1        |          |           |               |             |          |           |         | 9.2      | 0.75     | 4.08      | 3.07    |                           |          |           |                         |                   |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP118.2                                    |
|                                                       | 100          | TOO      | 0.00      | 0.05          |             | 0.00     | 4.05      | 0.00    |          |          |           |         |                           | l        |           |                         | l                 | 1                 |                    | 1           |                | 1                    | Basin T22 flows routed via drainage swale                                       |
|                                                       | 122          | T22      | 0.03      | 0.05          | 5.0         | 0.00     | 4.95      | 0.00    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                | +                    | to 24-inch nyoplast inlet at DP122<br>Basin T15 flows routed via property swale |
|                                                       | 115          | T15      | 0.05      | 0.26          | 5.0         | 0.01     | 4.95      | 0.05    |          |          |           |         |                           |          |           |                         |                   |                   |                    | <u> </u>    |                |                      | to 24-inch area inlet at DP115                                                  |
|                                                       | 115.1        |          |           |               |             |          |           |         | 5.0      | 0.01     | 4.95      | 0.05    |                           |          |           |                         |                   |                   |                    | 1           |                |                      | Combined flows routed via pipe<br>to DP116.2                                    |
|                                                       | 101          | T01      | 0.00      | 0.05          | F 0         | 0.00     | 4.05      | 0.00    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | Basin T21 flows routed via drainage swale                                       |
|                                                       | 121          | T21      | 0.08      | 0.05          | 5.0         |          |           | 0.00    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to 24-inch nyoplast inlet at DP121<br>Basin T116 flows routed via alley         |
|                                                       | 116          | T16      | 0.23      | 0.75          | 5.0         | 0.17     | 4.95      | 0.84    |          |          |           |         |                           |          |           |                         |                   |                   |                    |             |                |                      | to sump inlet at DP116                                                          |

| Subdivision:<br>Location:<br>Design Storm:<br>P <sub>1:</sub> | Douglas      | s Coun   | 1         | ne 1          |                      |          |           |         |          |          |           |         |                           |          |           | Ca                      | oject N<br>Projec<br>Iculate<br>Checke<br>I | t No.:<br>d By: | 1595<br>MJP        | 0.10        | IS             |                      |                                                                         |
|---------------------------------------------------------------|--------------|----------|-----------|---------------|----------------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------------|----------|-----------|-------------------------|---------------------------------------------|-----------------|--------------------|-------------|----------------|----------------------|-------------------------------------------------------------------------|
|                                                               |              |          |           | DIRE          | CT RUI               | NOFF     |           |         | Т        | OTAL R   | UNOF      | F       | S                         | TREET    |           |                         | PIF                                         | ΡE              |                    | TRAV        | EL TIM         | E                    |                                                                         |
| STREET                                                        | Design Point | Basin ID | Area (Ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (Ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | O <sub>street</sub> (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)                                    | Slope (%)       | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                 |
|                                                               | 116.1        |          |           |               |                      |          |           |         | 5.0      | 0 17     | 4.95      | 0.84    |                           |          |           |                         |                                             |                 |                    |             |                |                      | Combined flows routed via pipe<br>to DP116.2                            |
|                                                               | 110.1        |          |           |               |                      |          |           |         | 5.0      | 0.17     | 4.75      | 0.04    |                           |          |           |                         |                                             |                 |                    |             |                |                      | Combined flows routed via pipe                                          |
|                                                               | 116.2        |          |           |               |                      |          |           |         | 5.0      | 0.18     | 4.95      | 0.89    |                           |          |           |                         |                                             |                 |                    |             |                |                      | to DP117.1                                                              |
|                                                               | 117          | T17      | 0 14      | 0.68          | 5.0                  | 0 10     | 4.95      | 0.50    |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                |                      | Basin T117 flows routed via alley<br>to sump inlet at DP117             |
|                                                               | ,            | ,        | 0.14      | 0.00          | 0.0                  | 0.10     | 4.75      | 0.00    |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                | (                    | Combined flows routed via pipe                                          |
|                                                               | 117.1        |          |           |               |                      |          |           |         | 5.0      | 0.28     | 4.95      | 1.39    |                           |          |           |                         |                                             |                 |                    |             |                |                      | to DP118.1                                                              |
|                                                               | 118          | T18      | 0.34      | 0.57          | 5.0                  | 0 19     | 4.95      | 0.94    |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                |                      | Basin T118 flows routed via alley<br>to sump inlet at DP118             |
|                                                               |              | 110      | 0.54      | 0.07          | 0.0                  | 0.17     | 4.75      | 0.74    |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                | (                    | Combined flows routed via pipe                                          |
|                                                               | 118.1        |          |           |               |                      |          |           |         | 5.0      | 0.47     | 4.95      | 2.33    |                           |          |           |                         |                                             |                 |                    |             |                |                      | to DP118.2                                                              |
|                                                               | 118.2        |          |           |               |                      |          |           |         | 9.2      | 1 22     | 4.08      | 4 99    |                           |          |           |                         |                                             |                 |                    |             |                |                      | Combined flows routed via pipe<br>to DP102.1                            |
|                                                               |              |          |           |               |                      |          |           |         |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                | 1                    | Basin T2 flows routed via curb & gutter                                 |
|                                                               | 102          | T2       | 1.57      | 0.54          | 5.0                  | 0.84     | 4.95      | 4.16    | 5.0      | 1.03     | 4.95      | 5.09    | 0.40                      | 0.004    | 0.5       | 4.7                     | 0.95                                        | 2.0             | 24                 |             |                |                      | to on-grade inlet at DP102                                              |
|                                                               |              |          |           |               |                      |          |           |         |          |          |           |         | 0.40                      | 0.081    | 3.5       |                         |                                             |                 |                    | 70          | 3.7            | 0.3                  |                                                                         |
|                                                               |              |          |           |               |                      |          |           |         |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                |                      | Combined flows routed via pipe                                          |
| -                                                             | 102.1        |          |           |               |                      |          |           |         | 9.2      | 2.17     | 4.08      | 8.85    |                           |          |           |                         |                                             |                 |                    |             |                |                      | to DP120.1<br>Basin T119 flows routed via curb & gutter                 |
|                                                               | 119          | T19      | 0.43      | 0.50          | 5.0                  | 0.21     | 4.95      | 1.04    |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                |                      | Basin 1119 flows routed via curb & gutter<br>to on-grade inlet at DP119 |
|                                                               |              |          |           |               |                      |          |           |         |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                |                      |                                                                         |
|                                                               | 123          | T23      | 0.10      |               |                      |          |           |         |          |          |           |         |                           |          |           |                         |                                             |                 |                    |             |                |                      | Basin T20 flows routed via curb & gutter                                |
|                                                               | 120          | T20      | 0.07      | 0.51          | 5.0                  | 0.04     | 4.95      | 0.20    | 5.0      | 0.12     | 4.95      | 0.60    |                           |          |           |                         |                                             |                 |                    |             |                |                      | to on-grade inlet at DP120                                              |
|                                                               | 120.1        |          |           |               |                      |          |           |         | 9.2      | 2.51     | 4.08      | 10.24   |                           |          |           |                         |                                             |                 |                    |             |                |                      | Combined flows routed via pipe<br>to Existing 24-inch stub              |

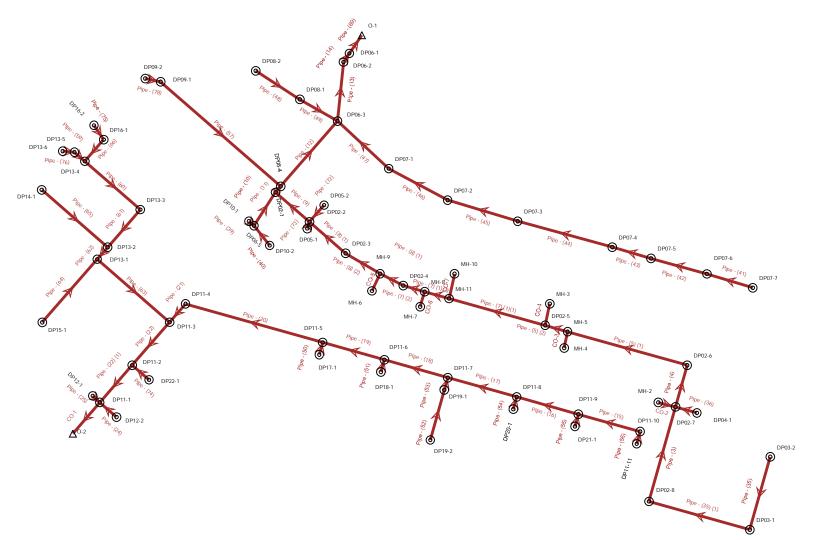
Street and Pipe C\*A values are determined by Q/i using the catchment's intensity value.

| P <sub>1:</sub> | 2.60         |          |           |               |                      |          |           |         |          |                       | _       |                           |          |           | Ca                      | Project<br>Ilculatec<br>Checkec | l By: <u>N</u><br>l By: | MJP                |             |                |                      |                                                                                |
|-----------------|--------------|----------|-----------|---------------|----------------------|----------|-----------|---------|----------|-----------------------|---------|---------------------------|----------|-----------|-------------------------|---------------------------------|-------------------------|--------------------|-------------|----------------|----------------------|--------------------------------------------------------------------------------|
|                 |              | inches   |           |               |                      |          |           |         |          |                       |         |                           |          |           |                         | D                               | ate: <u>1</u>           | 12/27              | /22         |                |                      |                                                                                |
|                 |              |          |           | DIRE          | CT RUI               | NOFF     |           |         | T(       | OTAL RUN              | OFF     | 5                         | STREET   |           |                         | PIPE                            | 1                       |                    | TRAVE       | L TIN          | 1E                   |                                                                                |
| STREET          | Design Point | Basin ID | Area (ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac)<br>I (in/hr) | Q (cfs) | O <sub>street</sub> (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)                        | Slope (%)               | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                        |
|                 | 1            | C1       | 0.44      | 0.75          | 5.5                  | 0.33     | 8.59      | 2.83    |          |                       |         |                           |          |           |                         |                                 |                         |                    |             |                |                      | Basin C1 flows routed via curb & gutter<br>to on-grade inlet at DP01           |
|                 | 2            | C2       | 0.86      | 0.71          | 5.0                  | 0.61     | 8.82      | 5.38    |          |                       |         |                           |          |           | 5.2                     | 0.59                            | 2.2                     | 18                 | 119         | 7.9            | 0.3                  | Basin Ĉ2 flows routed via curb & gutter<br>to on-grade inlet at DP02           |
|                 | 2            | 02       | 0.00      | 0.71          | 5.0                  | 0.01     | 0.02      | 0.00    |          |                       |         | 0.16                      | 0.02     | 2.5       | 0.2                     | 0.07                            | 2.2                     | 10                 | 84          | 3.2            |                      |                                                                                |
|                 |              |          |           |               |                      |          |           |         |          |                       |         |                           |          |           |                         |                                 |                         |                    |             |                |                      | Basin C3 flows routed via alley                                                |
|                 | 3            | C3       | 0.11      | 0.82          | 5.0                  | 0.09     | 8.82      | 0.79    |          |                       |         |                           |          |           |                         |                                 |                         |                    |             |                |                      | to sump inlet DP03<br>Combined flows routed via pipe                           |
|                 | 2.1          |          |           |               |                      |          |           |         | 5.5      | 1.01 8.5              | 9 8.6   | 9                         |          |           |                         |                                 |                         |                    |             |                |                      | to DP4.1<br>Basin C04 flows routed via drainage swale                          |
|                 | 4            | C4       | 0.14      | 0.69          | 6.2                  | 0.10     | 8.29      | 0.83    |          |                       |         |                           |          |           |                         |                                 |                         |                    |             |                |                      | to 24-inch nyoplast inlet at DP04                                              |
|                 | 4.1          |          |           |               |                      |          |           |         | 6.2      | 1.11 8.2              | 9 9.2   | 2                         |          |           |                         |                                 |                         |                    |             |                |                      | Combined flows routed via pipe<br>to DP24.1                                    |
|                 | 24           | C24      | 0.91      | 0.76          | 5.0                  | 0.69     | 8.82      | 6.09    | 5.0      | 0.85 7.3              | 5 6.2   | 5                         |          |           | 5.8                     | 0.79                            | 2.2                     | 18                 | 119         | 8.1            | 0.2                  | Basin C24 flows routed via curb & gutter<br>to on-grade inlet at DP24          |
|                 |              |          |           |               |                      |          |           |         |          |                       |         | 0.43                      | 0.06     | 2.2       |                         |                                 |                         |                    | 84          | 3.0            |                      |                                                                                |
|                 | 24.1         |          |           |               |                      |          |           |         | ( )      | 1.80 8.2              | 0 14.0  |                           |          |           |                         |                                 |                         |                    |             |                |                      | Combined flows routed via pipe<br>to DP21.1                                    |
|                 | 24.1         |          |           |               |                      |          |           |         | 6.2      | 1.80 8.2              | 9 14.94 | +                         |          |           |                         |                                 |                         |                    |             |                |                      | Basin C21 flows routed via drainage swale                                      |
|                 | 21           | C21      | 0.04      | 0.49          | 5.9                  | 0.02     | 8.41      | 0.17    |          |                       |         |                           |          |           |                         |                                 |                         |                    |             |                |                      | to 24-inch nyoplast inlet at DP21<br>Combined flows routed via pipe            |
|                 | 21.1         |          |           |               |                      |          |           |         | 6.2      | 1.82 8.2              | 9 15.10 | )                         |          |           |                         |                                 |                         |                    |             |                |                      | to DP22.1<br>Basin C22 flows routed via drainage swale                         |
|                 | 22           | C22      | 0.13      | 0.63          | 5.0                  | 0.08     | 8.82      | 0.71    |          |                       |         |                           |          |           |                         |                                 |                         |                    |             |                |                      | to 24-inch nyoplast inlet at DP22                                              |
|                 | 22.1         |          |           |               |                      |          |           |         | 6.2      | 1.90 8.2              | 9 15.7  | 7                         |          |           |                         |                                 |                         |                    |             |                |                      | Combined flows routed via pipe<br>to DP23.1                                    |
|                 | 23           | C23      | 0.28      | 0.60          | 5.0                  | 0.17     | 8.82      | 1.50    |          |                       |         |                           |          |           |                         |                                 |                         |                    |             |                |                      | Basin C23 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP23 |
|                 | 23.1         |          |           |               |                      |          |           |         | 6.2      | 2.07 8.2              | 9 17 1  | 2                         |          |           |                         |                                 |                         |                    |             |                |                      | Combined flows routed via pipe<br>to DP7.1                                     |
|                 |              | 05       | 0.77      | 0.75          | 5.0                  | 0.50     | 0.00      | 5.40    |          |                       |         | _                         |          |           | 5.0                     | 0.50                            |                         | 10                 | 440         | 7.0            |                      | Basin C5 flows routed via curb & gutter                                        |
|                 | 5            | C5       | 0.77      | 0.75          | 5.0                  | 0.58     | 8.82      | 5.12    | 5.0      | 0.60 9.2              | 7 5.5   | 0.20                      | 0.02     | 2.2       | 5.3                     | 0.58                            | 2.2                     | 18                 | 119<br>84   | 7.9<br>3.0     |                      | to on-grade inlet at DP05                                                      |
|                 |              |          |           |               |                      |          |           |         | $\vdash$ |                       |         |                           |          |           |                         |                                 |                         |                    |             |                |                      | Basin C7 flows routed via curb & gutter                                        |
|                 | 7            | C7       | 0.84      | 0.75          | 8.7                  | 0.63     | 7.41      | 4.67    |          |                       | _       | 1.58                      | 0.21     | 2.2       | 3.1                     | 0.42                            | 2.2                     | 18                 | 119<br>84   | 6.7<br>3.0     |                      | to on-grade inlet at DP07                                                      |
|                 |              |          |           |               |                      |          |           |         |          |                       |         | 1.50                      | 0.21     | 2.2       |                         |                                 |                         |                    | τU          | 5.0            | 0.5                  |                                                                                |
|                 | 7.1          |          |           |               |                      |          |           |         | 8.7      | 3.07 7.4              | 1 22.7  | 1                         |          |           |                         |                                 |                         |                    |             |                |                      | Combined flows routed via pipe<br>to DP15.2                                    |
| Т               | 14           | C14      | 0.70      | 0.74          | 5.0                  | 0.52     | 8.82      | 4.59    | 8.7      | 0.75 8                | 4 6.3   | 7                         |          |           |                         | T                               |                         |                    |             |                |                      | Basin C14 flows routed via curb & gutter<br>to sump inlet at DP14              |
|                 | 15           |          |           |               |                      |          | 8.82      |         |          |                       | 0.0     |                           |          |           |                         |                                 |                         |                    |             |                |                      | Basin C15 flows routed via curb & gutter<br>to sump inlet at DP15              |

| Location:<br>Design Storm: |              | County<br>r |           | e 1           |                      |          |           |         |          |          |           |         |                           |          |           | Ca                      | oject N<br>Projec<br>Iculate<br>Checke | et No.:<br>ed By: | 15950<br>MJP       | 0.10        | OS             |                      |                                                                                |
|----------------------------|--------------|-------------|-----------|---------------|----------------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------------|----------|-----------|-------------------------|----------------------------------------|-------------------|--------------------|-------------|----------------|----------------------|--------------------------------------------------------------------------------|
|                            |              |             |           | DIRE          | CT RUI               | NOFF     |           |         | Т        | OTAL R   | RUNOF     | F       | S                         | STREET   |           |                         | PIF                                    | PE                |                    | TRAV        | EL TIN         | ME                   |                                                                                |
| STREET                     | Design Point | Basin ID    | Area (ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | Q <sub>street</sub> (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)                               | Slope (%)         | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                        |
|                            | 15.1         |             |           |               |                      |          |           |         | 8.7      | 0.98     | 7.41      | 7.30    |                           |          |           |                         |                                        |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP15.2                                    |
|                            | 15.2         |             |           |               |                      |          |           |         | 8.7      |          | 7.41      |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP16.2                                    |
|                            |              | 000         | 0.05      | 0.40          | 5.0                  | 0.00     | 0.00      | 0.10    | 0.7      | 4.05     | 7.41      | 30.01   |                           |          |           |                         |                                        |                   |                    |             |                |                      | Basin C20 flows routed via drainage swale                                      |
|                            | 20           | C20         | 0.05      | 0.49          |                      |          | 8.82      |         |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | to 24-inch nyoplast inlet at DP20<br>Basin C16 flows routed via alley          |
|                            | 16           | C16         | 0.86      | 0.74          | 5.0                  | 0.64     | 8.82      | 5.64    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | to sump inlet at DP16<br>Combined flows routed via pipe                        |
|                            | 16.1         |             |           |               |                      |          |           |         | 5.0      | 0.66     | 8.82      | 5.82    |                           |          |           |                         |                                        |                   |                    |             |                |                      | to DP16.2<br>Combined flows routed via pipe                                    |
|                            | 16.2         |             |           |               |                      |          |           |         | 8.7      | 4.71     | 7.41      | 34.90   |                           |          |           |                         |                                        |                   |                    |             |                |                      | to DP18.2                                                                      |
|                            | 6            | C6          | 0.57      | 0.53          | 8.9                  | 0.30     | 7.34      | 2.20    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | Basin C06 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP06 |
|                            | 8            | C8          | 0.09      | 0.57          | 5.0                  | 0.05     | 8.82      | 0.44    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | Basin C08 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP08 |
|                            | 8.1          |             |           |               |                      |          |           |         | 8.9      | 0.35     | 7 24      | 2.57    |                           |          |           |                         |                                        |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP9.1                                     |
|                            |              |             | 0.40      | 0.57          | 5.0                  | 0.07     | 0.00      | 0.40    | 0.7      | 0.33     | 7.54      | 2.57    |                           |          |           |                         |                                        |                   |                    |             | -              |                      | Basin C09 flows routed via drainage swale                                      |
|                            | 9            | C9          | 0.12      | 0.57          | 5.0                  | 0.07     | 8.82      | 0.62    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | to 24-inch nyoplast inlet at DP09<br>Combined flows routed via pipe            |
|                            | 9.1          |             |           |               |                      |          |           |         | 8.9      | 0.42     | 7.34      | 3.08    |                           |          |           |                         |                                        |                   |                    |             | -              |                      | to DP10.1<br>Basin C10 flows routed via drainage swale                         |
|                            | 10           | C10         | 0.02      | 0.49          | 5.0                  | 0.01     | 8.82      | 0.09    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | to 24-inch nyoplast inlet at DP10                                              |
|                            | 10.1         |             |           |               |                      |          |           |         | 8.9      | 0.43     | 7.34      | 3.16    |                           |          |           |                         |                                        |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP11.1                                    |
|                            | 11           | C11         | 0.11      | 0.59          | 5.0                  | 0.06     | 8.82      | 0.53    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | Basin C11 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP11 |
|                            | 11.1         |             |           |               |                      |          |           |         | 8.9      | 0.49     | 7.24      | 3.60    |                           |          |           |                         |                                        |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP12.1                                    |
|                            |              |             |           |               |                      |          |           |         | 0.7      | 0.47     | 7.54      | 3.00    |                           |          |           |                         |                                        |                   |                    |             |                |                      | Basin C12 flows routed via drainage swale                                      |
|                            | 12           | C12         | 0.09      | 0.61          | 5.0                  | 0.05     | 8.82      | 0.44    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | to 24-inch nyoplast inlet at DP12<br>Combined flows routed via pipe            |
|                            | 12.1         |             |           |               |                      |          |           |         | 8.9      | 0.54     | 7.34      | 3.96    |                           |          | <u> </u>  |                         |                                        |                   |                    |             |                |                      | to DP13.1<br>Basin C13 flows routed via drainage swale                         |
|                            | 13           | C13         | 0.07      | 0.57          | 5.0                  | 0.04     | 8.82      | 0.35    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | to 24-inch nyoplast inlet at DP13<br>Combined flows routed via pipe            |
|                            | 13.1         |             |           |               |                      |          |           |         | 8.9      | 0.58     | 7.34      | 4.26    |                           |          |           |                         |                                        |                   |                    |             |                |                      | to DP18.2                                                                      |
|                            | 17           | C17         | 0.16      | 0.65          | 5.0                  | 0.10     | 8.82      | 0.88    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | Basin C17 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP17 |
|                            | 18           | C18         | 0.13      | 0.64          | 5.0                  | 0.08     | 8.82      | 0.71    |          |          |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | Basin C18 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP18 |
|                            | 18.1         |             |           |               |                      |          |           |         | 5.0      | 0 19     | 8.82      | 1.59    |                           |          |           |                         |                                        |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP18.2                                    |
|                            | 18.2         |             |           |               |                      |          |           |         | 8.9      | 5.47     |           |         |                           |          |           |                         |                                        |                   |                    |             |                |                      | Combined flows routed via pipe<br>to DP19.1                                    |

| Subdivision:<br>Location:<br>Design Storm:<br>P1: | : Douglas    | County<br>r | ,         | e 1           |                      |          |           |         |          |          |                         |         |                           |          |           | Ca                      | Project<br>alculate<br>Checke | Vame: <u>L</u><br>ct No.: <u>1</u><br>ed By: <u>M</u><br>ed By: <u></u><br>Date: 1 | 15950<br>MJP | 0.10        | S                                      |                                                                                |
|---------------------------------------------------|--------------|-------------|-----------|---------------|----------------------|----------|-----------|---------|----------|----------|-------------------------|---------|---------------------------|----------|-----------|-------------------------|-------------------------------|------------------------------------------------------------------------------------|--------------|-------------|----------------------------------------|--------------------------------------------------------------------------------|
| DIRECT RUNOFF TOTAL RUNOFF                        |              |             |           |               |                      |          |           |         |          | F        | STREET PIPE TRAVEL TIME |         |                           |          |           |                         |                               |                                                                                    | EL TIME      |             |                                        |                                                                                |
| STREET                                            | Design Point | Basin ID    | Area (ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr)               | Q (cfs) | O <sub>street</sub> (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)                      | 1 1                                                                                | iches)       | Length (ft) | Velocity (fps)<br>t <sub>t</sub> (min) | REMARKS                                                                        |
|                                                   | 19           | C19         | 1.51      | 0.49          | 16.4                 | 0.74     | 5.65      | 4.18    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Basin C19 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP19 |
|                                                   | 19.1         |             | 1101      | 0.17          | 10.11                | 0.71     | 0.00      |         | 16.4     | 6.21     | 5.65                    | 35.09   |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Combined flows routed via pipe<br>to existing 36" RCP stub                     |
|                                                   | 103          | Т3          | 0.10      | 0.71          | 5.0                  | 0.07     | 8.82      | 0.62    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Basin T3 flows routed via alley<br>to sump inlet at DP103                      |
|                                                   | 109          | Т9          | 0.09      | 0.55          | 8.4                  | 0.05     | 7.52      | 0.38    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Basin T9 flows routed via property swales<br>to area inlet at DP109            |
|                                                   | 109.1        |             |           |               |                      |          |           |         | 8.4      | 0.12     | 7.52                    | 0.90    |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Combined flows routed via pipe<br>to DP110.1                                   |
|                                                   | 104          | T4          | 0.12      | 0.70          | 5.0                  | 0.08     | 8.82      | 0.71    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Basin T4 flows routed via alley<br>to sump inlet at DP104                      |
|                                                   |              |             |           |               |                      |          |           |         |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Basin T10 flows routed via property swales                                     |
|                                                   | 110          | 110         | 0.13      | 0.53          | 8.6                  | 0.07     | 7.44      | 0.52    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | to area inlet at DP110<br>Combined flows routed via pipe                       |
|                                                   | 110.1        |             |           |               |                      |          |           |         | 8.6      | 0.27     | 7.44                    | 2.01    |                           |          |           |                         |                               |                                                                                    |              |             |                                        | to DP111.1<br>Basin T5 flows routed via alley                                  |
|                                                   | 105          | T5          | 0.12      | 0.70          | 5.0                  | 0.08     | 8.82      | 0.71    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | to sump inlet at DP105<br>Basin T11 flows routed via property swales           |
|                                                   | 111          | T11         | 0.02      | 0.49          | 9.2                  | 0.01     | 7.26      | 0.07    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | to area inlet at DP111                                                         |
|                                                   | 111.1        |             |           |               |                      |          |           |         | 9.2      | 0.36     | 7.26                    | 2.61    |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Combined flows routed via pipe to DP112.1                                      |
|                                                   | 101          | T1          | 1.06      | 0.72          | 5.0                  | 0.76     | 8.82      | 6.70    |          |          |                         |         |                           |          |           | 2.9                     | 0.33                          | 3 2.8                                                                              | 18           | 587         | 7.2 1.4                                | Basin T1 flows routed via alley<br>4 to valley inlet at DP101                  |
|                                                   | 101          |             |           | 0.72          | 0.0                  | 0.70     | 0.02      | 0.70    |          |          |                         |         | 3.78                      | 0.43     | 2.7       | 2.7                     | 0.00                          | 2.0                                                                                | 10           | 446         |                                        |                                                                                |
|                                                   |              |             |           |               |                      |          |           |         |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Basin T6 flows routed via alley                                                |
|                                                   | 106          | T6          | 0.14      | 0.71          | 5.0                  | 0.10     | 8.82      | 0.88    |          |          |                         |         |                           |          |           |                         |                               | +                                                                                  |              |             |                                        | to sump inlet at DP106<br>Combined flows routed via pipe                       |
|                                                   | 106.1        |             |           |               |                      |          |           |         | 5.0      | 0.43     | 8.82                    | 3.81    |                           |          |           |                         |                               | $\left  \right $                                                                   |              |             |                                        | to DP112.1<br>Basin T12 flows routed via property swales                       |
|                                                   | 112          | T12         | 0.06      | 0.49          | 9.2                  | 0.03     | 7.26      | 0.22    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | to area inlet at DP112                                                         |
|                                                   | 112.1        |             |           |               |                      |          |           |         | 9.2      | 0.82     | 7.26                    | 5.96    |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Combined flows routed via pipe<br>to DP113.1                                   |
|                                                   | 107          | T7          | 0.12      | 0.70          | 8.3                  | 0.08     | 7.55      | 0.60    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Basin T7 flows routed via alley<br>to sump inlet at DP107                      |
|                                                   | 113          |             |           | 0.49          |                      |          |           |         |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Basin T13 flows routed via property swales<br>to area inlet at DP113           |
|                                                   |              | 113         | 0.03      | 0.49          | 7. <u>Z</u>          | 0.01     | 1.20      | 0.07    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Combined flows routed via pipe                                                 |
|                                                   | 113.1        |             |           |               |                      |          |           |         | 9.2      | 0.91     | 1.26                    | 6.62    |                           |          |           |                         |                               |                                                                                    |              |             |                                        | to DP114.1<br>Basin T8 flows routed via alley                                  |
|                                                   | 108          | T8          | 0.12      | 0.70          | 8.3                  | 0.08     | 7.55      | 0.60    |          |          |                         |         |                           |          |           |                         |                               | +                                                                                  |              |             |                                        | to sump inlet at DP108<br>Basin T14 flows routed via property swales           |
|                                                   | 114          | T14         | 0.04      | 0.49          | 9.2                  | 0.02     | 7.26      | 0.15    |          |          |                         |         |                           |          |           |                         |                               |                                                                                    |              |             |                                        | Combined flows routed via pipe                                                 |
|                                                   | 114.1        |             |           |               |                      |          |           |         | 9.2      | 1.01     | 7.26                    | 7.34    |                           |          |           |                         |                               |                                                                                    |              |             |                                        | to DP118.2                                                                     |

| Design Storm | : Douglas<br>: 100-Yea | County<br>r   |           | e 1           |                      |          |           |              |          |          |           |         |                           |          |           | Ca                      | Projec<br>Ilculate<br>Checke | et No.:<br>ed By:<br>ed By: | 1595<br>MJP        |             | ŝ              |             |                                                                                 |
|--------------|------------------------|---------------|-----------|---------------|----------------------|----------|-----------|--------------|----------|----------|-----------|---------|---------------------------|----------|-----------|-------------------------|------------------------------|-----------------------------|--------------------|-------------|----------------|-------------|---------------------------------------------------------------------------------|
| P1           | : 2.60                 | Inches        |           |               |                      |          |           |              |          |          |           |         |                           |          |           |                         |                              | Date:                       | 12/27              | 7/22        |                |             |                                                                                 |
|              |                        | DIRECT RUNOFF |           |               |                      |          |           | TOTAL RUNOFF |          |          |           | STREET  |                           |          | PIPE      |                         |                              | TRAVEL TIME                 |                    |             |                |             |                                                                                 |
| STREET       | Design Point           | Basin ID      | Area (ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (ac) | l (in/hr) | Q (cfs)      | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | O <sub>street</sub> (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)                     | Slope (%)                   | Pipe Size (inches) | Length (ft) | Velocity (fps) | $t_t$ (min) | REMARKS                                                                         |
|              | 122                    | T22           | 0.03      | 0.49          | 5.0                  | 0.01     | 8.82      | 0.09         |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | Basin T22 flows routed via drainage swale<br>to 24-inch nyoplast inlet at DP122 |
|              |                        | T15           |           | 0.60          |                      | 0.03     |           |              |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | Basin T15 flows routed via property swale<br>to 24-inch area inlet at DP115     |
|              |                        | 115           | 0.05      | 0.60          | 5.0                  | 0.03     | 8.82      | 0.26         |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | Combined flows routed via pipe                                                  |
|              | 115.1                  |               |           |               |                      |          |           |              | 5.0      | 0.04     | 8.82      | 0.35    |                           |          |           |                         |                              |                             |                    |             |                |             | to DP116.2<br>Basin T21 flows routed via drainage swale                         |
|              | 121                    | T21           | 0.08      | 0.49          | 5.0                  | 0.04     | 8.82      | 0.35         |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | to 24-inch nyoplast inlet at DP121<br>Basin T116 flows routed via alley         |
|              | 116                    | T16           | 0.23      | 0.84          | 5.0                  | 0.19     | 8.82      | 1.68         |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | to sump inlet at DP116                                                          |
|              | 116.1                  |               |           |               |                      |          |           |              | 5.0      | 0.23     | 8.82      | 2.03    |                           |          |           |                         |                              |                             |                    |             |                |             | Combined flows routed via pipe to DP116.2                                       |
|              | 116.2                  |               |           |               |                      |          |           |              | 5.0      | 0.27     | 8.82      | 2.38    |                           |          |           |                         |                              |                             |                    |             |                |             | Combined flows routed via pipe to DP117.1                                       |
|              | 117                    | T17           | 0.14      | 0.01          | E O                  | 0.11     | 8.82      | 0.07         |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | Basin T117 flows routed via alley<br>to sump inlet at DP117                     |
|              |                        | 117           | 0.14      | 0.01          | 5.0                  | 0.11     | 0.02      | 0.77         |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | Combined flows routed via pipe                                                  |
|              | 117.1                  |               |           |               |                      |          |           |              | 5.0      | 0.38     | 8.82      | 3.35    |                           |          |           |                         |                              |                             |                    |             |                |             | to DP118.1<br>Basin T118 flows routed via alley                                 |
|              | 118                    | T18           | 0.34      | 0.75          | 5.0                  | 0.26     | 8.82      | 2.29         |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | to sump inlet at DP118<br>Combined flows routed via pipe                        |
|              | 118.1                  |               |           |               |                      |          |           |              | 5.0      | 0.64     | 8.82      | 5.64    |                           |          |           |                         |                              |                             |                    |             |                |             | to DP118.2                                                                      |
|              | 118.2                  |               |           |               |                      |          |           |              | 9.2      | 1.65     | 7.26      | 11.99   |                           |          |           |                         |                              |                             |                    |             |                |             | Combined flows routed via pipe<br>to DP102.1                                    |
|              | 102                    | T2            | 1.57      | 0.74          | 5.0                  | 1.15     | 8.82      | 10.14        | 5.0      | 1.58     | 8.82      | 13.92   |                           |          |           | 8.2                     | 0.93                         | 2.0                         | 24                 | 69          | 8.5            |             | Basin T2 flows routed via curb & gutter<br>to on-grade inlet at DP102           |
|              |                        |               |           |               |                      |          |           |              |          |          |           |         | 5.75                      | 0.65     | 3.5       |                         |                              |                             |                    | 70          | 3.7            |             |                                                                                 |
|              | 102.1                  |               |           |               |                      |          |           |              | 9.2      | 2.50     | 7.26      | 10.70   |                           |          |           |                         |                              |                             |                    |             |                |             | Combined flows routed via pipe<br>to DP120.1                                    |
|              |                        |               |           |               |                      |          |           |              | 9.2      | 2.58     | 1.20      | 10.72   |                           |          |           |                         |                              |                             |                    |             |                |             | Basin T119 flows routed via curb & gutter                                       |
|              | 119                    |               |           |               |                      |          | 8.82      |              |          |          |           |         |                           |          |           | <u> </u>                |                              |                             |                    |             |                |             | to on-grade inlet at DP119                                                      |
|              | 123                    | T23           | 0.10      | 0.49          | 8.5                  | 0.05     | 7.49      | 0.37         |          |          |           |         |                           |          |           |                         |                              |                             |                    |             |                |             | Basin T20 flows routed via curb & gutter                                        |
|              | 120                    | T20           | 0.07      | 0.72          | 5.0                  | 0.05     | 8.82      | 0.44         | 5.0      | 0.70     | 8.82      | 6.19    |                           |          |           |                         |                              |                             |                    |             |                |             | Combined flows routed via pipe                                                  |
|              | 120.1                  |               |           |               |                      |          |           |              | 9.2      | 3.64     | 7.26      | 26.43   |                           |          |           |                         |                              |                             |                    |             |                |             | to Existing 24-inch stub                                                        |

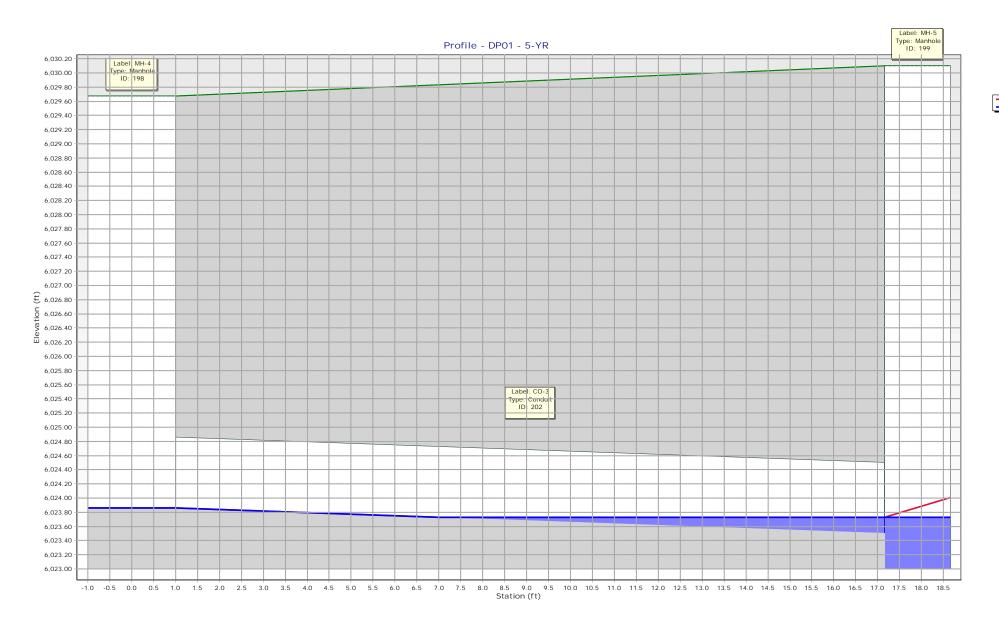

Notes:

Street and Pipe C\*A values are determined by Q/i using the catchment's intensity value.

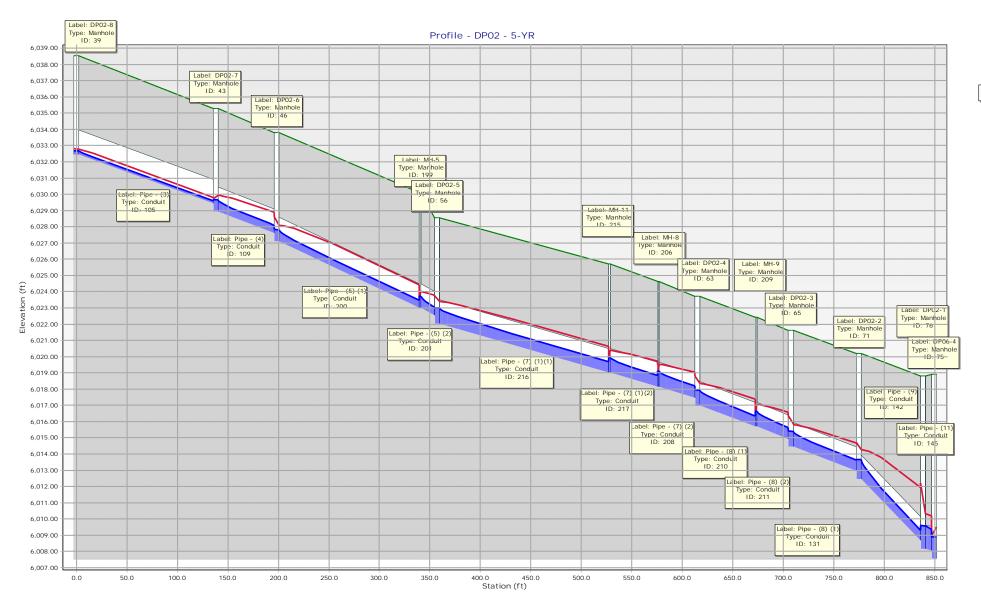
# ATTACHMENT C

## HYDRAULIC CALCULATIONS

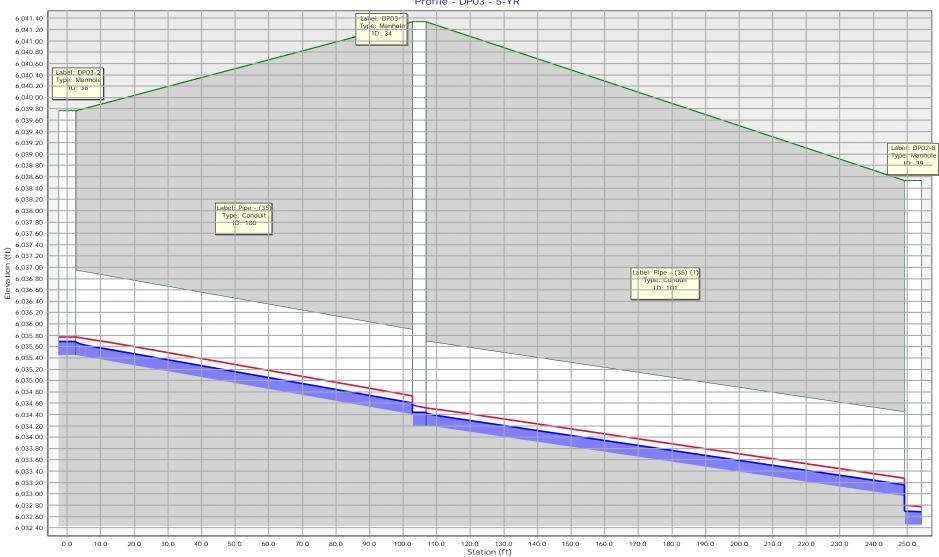
## Scenario: 100-YR



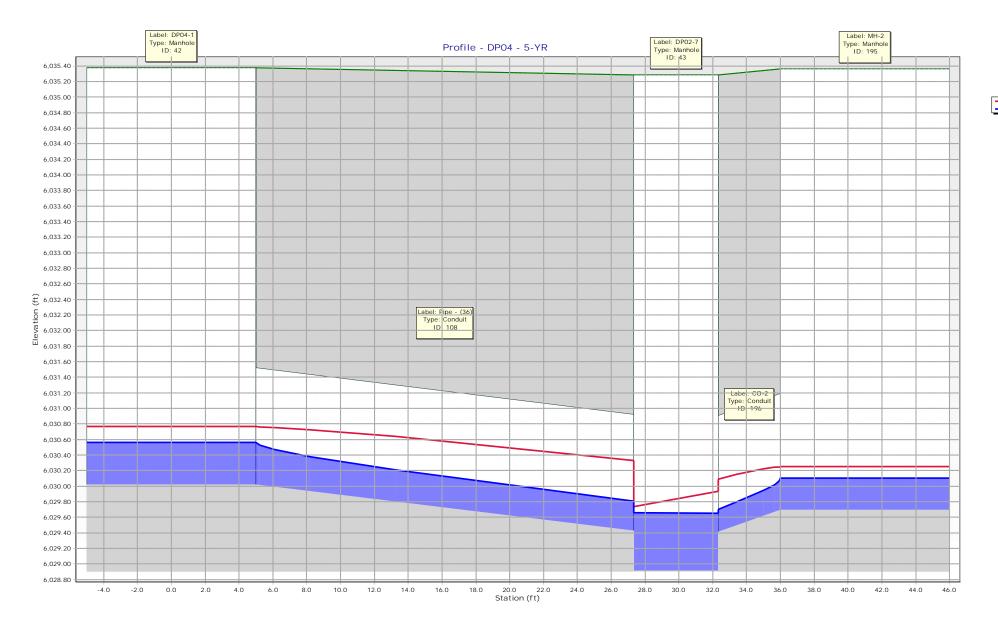

StormCAD [10.03.02.04] Page 1 of 1

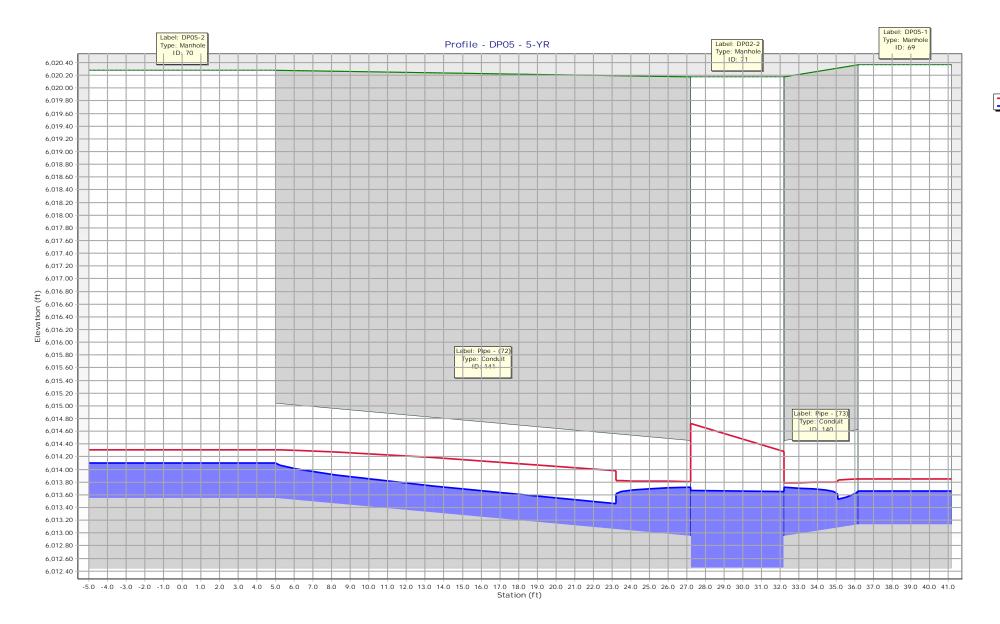

Scenario: 5-YR Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Label                      | Slope<br>(Calculated)<br>(ft/ft) | Diameter<br>(in) | Capacity<br>(Full<br>Flow)<br>(cfs) | Length<br>(User<br>Defined)<br>(ft) | Invert<br>(Start)<br>(ft) | Invert<br>(Stop)<br>(ft) | Flow<br>(cfs) | HGL (In)<br>(ft) | HGL<br>(Out) (ft) | Velocity<br>(ft/s) | Energy<br>Grade<br>Line (In)<br>(ft) | Energy<br>Grade<br>Line<br>(Out) (ft) | Manning's<br>n | Upstream<br>Structure<br>Headloss<br>Coefficient |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|------------------|-------------------------------------|-------------------------------------|---------------------------|--------------------------|---------------|------------------|-------------------|--------------------|--------------------------------------|---------------------------------------|----------------|--------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO-1                       | 0.011                            | 24.0             |                                     |                                     | 6.005.59                  | 6.004.94                 | 10.24         | 6.006.74         | 6.005.86          | 7.34               |                                      |                                       | 0.013          | 0.013                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                  |                  | 16.63                               | 11.2                                | 6,029.69                  | 6,029.41                 |               |                  |                   |                    | 6,030.25                             | 6,030.09                              | 0.013          | 0.000                                            |
| $ \begin{array}{cccccc} C & 0.020 & 12.0 & 5.07 & 15.3 & 0.016.48 & 0.016.18 & 0.00 & 0.016.6 & 0.016.6 & 0.016.6 & 0.016.8 & 0.013 & 0.011 & 0.010 & 0.016.9 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.011 & 0.0110 & 0.0110 & 0.011 & 0.0110 & 0.0110 & 0.011 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 & 0.0110 $                                                                                                                                                                                       |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO-4                       |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000 0.000                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     | 6.032.45                  |                          |               |                  |                   | 3.76               |                                      |                                       |                | 0.000                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.021                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.081                                            |
| $ \begin{array}{c} Pipe-(7) (1)(2) \\ Pipe-(7) (1)(2) \\ Pipe-(7) (1)(2) \\ Pipe-(7) (1)(2) \\ Pipe-(8) (1) \\ Pipe-(8) (1) \\ Pipe-(8) \\ Pipe-(8) \\ Pipe-(9) \\ Pipe-(8) \\ Pipe-(9) \\ Pipe-(1) \\ Pipe-(2) \\ Pipe-(1) \\ Pipe-(2) \\ Pipe-(1) \\ Pipe-(2) \\ $ |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.030 0.000                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.033                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pipe - (8) (1)             | 0.022                            | 18.0             | 15.58                               | 67.2                                | 6,014.43                  | 6,012.95                 | 6.23          | 6,015.40         | 6,013.62          | 8.32               | 6,015.81                             | 6,014.68                              | 0.013          | 0.033                                            |
| Pipe         (ii)         0.028         18.0         17.52         55.8         6.010.20         6.008.46         2.25         6.010.48         6.009.56         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.36         6.009.37         6.009.36         6.009.37         6.001.31         6.001.31         6.001.31         6.001.31         6.001.31         6.001.31         6.001.31         6.001.31         6.001.31         6.001.31         6.002.31         6.002.31         6.002.31         6.002.31         6.001.31         6.002.31         6.002.31         6.002.31         6.002.31         6.002.31         6.002.31         6.002.31         6.002.31         6.002.31         6.002.31         6.002.31         6.002.31         6.001.31         6.002.31         6.001.31         6.002.31         6.001.31         6.001.31         6.001.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.001                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.022                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.101<br>0.038                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.038                                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pipe - (13)                | 0.020                            | 24.0             | 31.99                               | 83.2                                | 5,992.31                  | 5,990.64                 | 15.12         | 5,993.71         | 5,991.63          | 10.04              | 5,994.35                             | 5,993.12                              | 0.013          | 0.063                                            |
| Pipe (16)         0.010         18.0         19.00         6.027.33         6.027.32         6.027.32         6.027.32         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.42         6.027.43         6.0013           Pipe - (20)         0.031         18.0         18.37         2001         6.016.44         6.017.37         6.017.66         6.017.97         7.71         6.017.46         6.017.46         6.003.40         6.008.60         6.007.66         6.007.66         0.013         Pipe - (22)         10.020         14.0         14.485         9.1         6.006.60         10.04         6.003.47         6.007.48         6.007.48         0.013           Pipe - (25)         0.020         18.0         14.485         9.1         6.006.20         10.04         6.003.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                  |                  |                                     |                                     | 5,989.64                  | 5,989.35                 |               |                  |                   |                    |                                      |                                       |                | 0.033                                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.057                                            |
| Pipe (18)         0.030         18.0         18.19         92.5         6.022.42         6.022.05         2.28         6.024.03         6.024.26         6.027.46         0.013           Pipe (20)         0.031         18.0         18.37         2001         6.016.49         6.017.37         3.07         6.017.16         6.017.97         7.71         6.017.41         6.011.71         6.003.97           Pipe (21)         0.020         24.0         31.99         7.93         6.008.99         6.009.77         6.008.26         7.39         6.010.66         6.0013           Pipe (22)         0.020         24.0         31.99         7.93         6.006.89         6.008.26         7.39         6.010.66         6.0013           Pipe (22)         0.020         18.0         14.45         31.2         6.007.43         6.006.80         6.006         6.003.56         6.006.56         6.034.40         0.44         6.007.27         6.0013           Pipe (35)         0.010         18.0         14.85         2.98         6.030.40         6.032.66         6.030.56         6.030.36         6.030.37         6.030.32         6.030.32         6.030.32         6.030.32         6.030.32         6.030.32         6.030.32         6.030.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.033<br>0.009                                   |
| Pipe (19)         0.035         18.0         19.64         90.1         6,021.46         6,017.38         7,78         6,021.02         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,017.41         6,010.61         0.013           Pipe (22)         0.020         14.0         31.99         64.4         6,007.43         6,006.80         8.00         6,007.71         6,007.41         4,017.41         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80         6,007.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.009                                            |
| Pipe - (20)         0.031         18.0         18.7         2001         6,016.49         6,010.79         5,017.16         6,017.99         7.77         6,017.41         6,017.11         0.013           Pipe - (22)         0.020         24.0         31.99         7.93         6,007.39         4.94         30.7         6,008.26         7.39         6,010.64         6,003.78           Pipe - (22)         0.020         24.0         31.99         7.93         6,007.39         6,007.73         6,007.14         4.11         6,007.76         0,013           Pipe - (24)         0.020         18.0         14.85         31.2         6,007.43         6,008.26         6,003.77         6,007.50         6,007.79         0,013           Pipe - (25)         0.020         18.0         14.85         31.6         6,034.20         6,032.66         6,034.60         2.26         6,035.77         6,037.47         6,007.43         0,013           Pipe - (36)         0.020         18.0         14.85         34.1         6,010.26         6,020.26         6,030.66         6,027.44         6,031.26         6,033.37         0,013           Pipe - (40)         0.020         18.0         14.85         34.1         6,010.26 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.017</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.017                                            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           | 6,010.37                 |               |                  |                   |                    |                                      |                                       |                | 0.012                                            |
| Pipe (22) (1)         0.020         24.0         31.99         69.4         6.007.19         6.005.80         6.006.80         6.007.01         4.11         6.007.66         6.007.61           Pipe (25)         0.020         18.0         14.85         9.1         6.007.83         6.007.71         6.007.01         4.14         6.007.39         6.007.39         0.013           Pipe (35)         0.010         18.0         14.85         9.1         6.035.40         0.203         6.033.45         6.035.69         6.033.45         6.033.42         0.033         6.033.45         6.033.45         6.033.45         6.033.45         6.033.45         6.033.45         6.033.45         6.033.45         6.030.56         6.022.81         5.03         6.031.30         0.013           Pipe (30)         0.020         18.0         14.85         9.5         6.010.70         1.99         6.031.97         4.53         6.032.91         6.031.39         0.010           Pipe (41)         0.025         12.0         7.32         67.7         6.022.49         6.027.47         6.027.48         4.63         6.031.71         6.022.84         4.87         6.031.39         0.010           Pipe (41)         0.025         12.0         7.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pipe - (21)                |                                  |                  |                                     |                                     | 6,010.17                  | 6,009.49                 |               |                  |                   |                    |                                      |                                       |                | 0.071                                            |
| Pipe         (24)         0.020         18.0         14.85         31.2         6.007.33         6.006.80         6.007.17         6.007.09         4.41         6.007.27         6.007.37           Pipe         (35)         0.010         18.0         14.85         9.16         6.008.80         1.04         6.007.37         6.033.16         2.26         6.035.77         6.034.73         0.013           Pipe         (35)         1.009         18.0         14.85         2.98         6.032.26         0.40         6.034.26         6.034.26         6.034.26         6.034.26         6.014.96         6.011.95         6.014.55         6.011.23         6.011.96         4.44         6.011.35         6.011.96         6.44         6.011.35         6.011.90         6.011.80         6.011.60         0.013           Pipe         (40)         0.020         18.0         14.85         9.41         6.012.13         6.011.92         6.011.90         6.011.80         5.031.07         6.33         6.022.10         0.013           Pipe         (41)         0.025         12.0         7.32         137.8         6.027.40         6.027.45         6.027.45         6.027.45         6.027.40         0.010         Pipe         6.021.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.011                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.013<br>0.000                                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe - (35) (1)         0.009         18.0         9.69         147.0         6.034.20         6.032.42         6.034.44         6.033.16         2.70         6.034.52         6.030.33         0.013           Pipe - (39)         0.020         18.0         14.85         29.8         6.030.64         6.030.76         6.030.76         6.030.33         0.013           Pipe - (40)         0.020         18.0         14.85         34.1         6.011.20         6.011.23         6.011.35         6.011.23         0.013           Pipe - (41)         0.025         12.0         7.32         81.4         6.032.84         6.032.84         6.031.07         4.53         6.032.94         6.027.24         5.17         6.028.24         6.027.76         6.027.24         5.17         6.027.46         0.010         Pipe - (43)         0.025         12.0         7.32         93.7         6.023.45         6.023.45         6.027.45         6.027.45         6.027.46         6.027.42         5.17         6.027.46         6.027.43         0.041         0.025         12.0         7.32         93.7         6.024.66         6.028.55         6.020.85         5.66         6.023.55         6.022.94         6.027.45         6.027.45         6.027.45         6.027.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe - (39)         0.020         18.0         14.85         9.5         6,010.89         6,010.70         0.84         6,011.23         6,010.36         4.54         6,011.35         6,011.23         0,013           Pipe - (41)         0.025         12.0         7.32         67.3         6,032.61         6,030.33         0.29         6,032.84         6,031.07         4.53         6,032.91         6,031.39         0.010           Pipe - (42)         0.025         12.0         7.32         56.7         6,028.49         0.47         6,027.47         5,17         6,027.48         6,027.48         5,17         6,027.48         6,027.55         6,024.40         0.010           Pipe - (44)         0.025         12.0         7.32         137.8         6,026.88         6,027.35         6,020.80         5.56         6,023.60         5.57         6,024.40         0.010           Pipe - (46)         0.025         12.0         7.32         137.8         6,021.48         10.77         6,018.83         5.88         6,018.33         5.88         6,021.33         0.010           Pipe - (46)         0.022         18.0         14.85         98.1         6,017.78         6,018.48         6,011.78         6,011.84         6,011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                  | 18.0             | 9.69                                |                                     | 6,034.20                  | 6,032.95                 | 0.40          |                  |                   |                    | 6,034.52                             |                                       | 0.013          | 0.040                                            |
| Pipe (40)         0.020         18.0         14.85         34.1         6.011.32         6.011.92         6.011.92         6.011.06         5.85         6.012.11         6.011.60         0.013           Pipe (41)         0.025         12.0         7.32         87.3         6.032.61         6.030.98         6.030.84         6.031.07         4.87         6.031.07         6.022.84         6.031.07         6.022.81         6.031.07         6.022.81         6.031.07         6.022.81         6.031.07         6.022.81         6.017.24         5.17         6.022.85         6.027.60         5.17         6.022.85         6.027.46         0.010           Pipe (45)         0.025         12.0         7.32         102.8         6.023.23         6.020.81         6.018.33         5.88         6.022.48         6.018.33         5.88         6.022.48         6.011.83         5.011         6.011.83         5.011         6.027.46         0.010           Pipe (46)         0.025         12.0         7.32         93.7         6.020.46         0.716         6.017.94         6.016.83         5.86         6.021.33         0.010           Pipe (47)         0.020         18.0         14.85         93.7         6.027.18         6.010.84         6.017.43<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe (41)         0.025         12.0         7.32         67.3         6.032.61         6.032.84         6.031.07         4.53         6.032.91         6.031.39         0.010           Pipe (43)         0.025         12.0         7.32         81.4         6.037.37         6.028.47         6.032.84         4.67.37         6.028.77         6.027.24         5.17         6.027.26         6.027.66         0.010           Pipe (43)         0.025         12.0         7.32         137.8         6.026.88         6.023.45         6.022.55         6.027.26         6.024.02         0.010           Pipe (44)         0.025         12.0         7.32         137.8         6.026.48         6.023.45         6.020.85         5.56         6.022.86         6.021.55         6.024.02         0.010           Pipe (46)         0.025         12.0         7.32         93.7         6.021.46         0.018.12         0.70         6.020.81         6.018.33         5.88         6.021.46         6.018.7         0.016         8.010.18         0.011         6.011.61         0.013           Pipe (48)         0.015         18.0         12.86         6.11         6.010.77         0.30         6.021.72         6.027.75         4.35         6.011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe (42)         0.025         12.0         7.32         81.4         6,028.69         0.37         6,039.88         6,028.44         4.87         6,031.07         6,029.21         0.010           Pipe (43)         0.025         12.0         7.32         137.8         6,028.44         6,027.15         6,027.24         51.7         6,027.25         6,024.02         0.010           Pipe (44)         0.025         12.0         7.32         137.8         6,028.48         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,027.45         6,017.18         6,017.18         6,017.18         6,017.17         6,017.45         6,017.18         6,012.11         6,017.48         6,017.18         6,017.18         6,017.18         6,017.18         6,017.48         6,017.18         6,017.18         6,017.46         6,017.45         6,017.45         6,027.47         6,026.44         6,027.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000 0.000                                      |
| Pipe - (43)         0.025         12.0         7.32         56.7         6.027.07         0.45         6.027.75         6.027.24         51.7         6.027.86         0.010           Pipe - (44)         0.025         12.0         7.32         137.8         6.026.48         6.023.43         0.45         6.027.55         6.027.85         6.023.86         5.55         6.023.46         0.010           Pipe - (46)         0.025         12.0         7.32         93.7         6.020.46         0.18.2         0.70         6.020.85         6.020.84         6.018.33         5.88         6.022.46         0.018           Pipe - (46)         0.025         12.0         7.32         93.7         6.020.46         6.017.40         6.018.33         5.88         6.021.45         6.016.81         0.016         6.016.18         0.016         6.016.18         0.016         6.016.18         0.016         6.011.46         0.010         0.016         6.011.47         0.030         6.017.18         4.335         6.016.81         6.016.97         0.013         Pipe - (50)         0.050         18.0         23.47         17.9         6.021.53         6.026.44         6.025.91         6.027.75         4.336         6.027.18         6.021.40         0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.018                                            |
| Pipe - (45)         0.025         12.0         7.32         102.8         6.023.26         6.020.66         0.58         6.023.55         6.020.85         5.56         6.023.66         6.021.33         0.010           Pipe - (46)         0.025         12.0         7.32         93.7         6.020.46         6.018.20         7.6         6.020.85         5.56         6.023.46         6.018.67         0.010           Pipe - (47)         0.020         18.0         14.85         98.1         6.017.62         6.015.66         0.74         6.017.94         6.015.88         6.020.94         6.011.7         0.010           Pipe - (44)         0.015         12.0         5.67         73.8         6.011.28         6.015.96         0.09.57         3.60         6.016.46         6.009.77         0.013           Pipe - (50)         0.050         18.0         23.47         17.9         6.021.83         6.022.94         6.025.31         5.86         6.021.78         6.021.48         0.013           Pipe - (52)         0.020         18.0         14.85         73.0         6.024.54         2.09         6.025.24         4.025         6.022.72         6.026.88         0.013           Pipe - (55)         0.035         18.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipe - (43)                | 0.025                            | 12.0             | 7.32                                | 56.7                                | 6,028.49                  | 6,027.07                 |               | 6,028.77         | 6,027.24          | 5.17               |                                      | 6,027.66                              | 0.010          | 0.032                                            |
| Pipe - (46)         0.025         12.0         7.32         93.7         6.020.46         6.018.12         0.70         6.020.81         6.018.33         5.88         6.020.94         6.018.87         0.010           Pipe - (47)         0.020         18.0         14.85         98.1         6.017.62         6.015.66         0.74         6.017.94         6.010.93         3.83         6.012.19         6.011.8         0.013           Pipe - (48)         0.015         18.0         12.86         6.11.8         6.010.27         6.009.36         0.54         6.010.55         6.009.57         3.60         6.010.64         6.009.77         0.013           Pipe - (50)         0.050         18.0         23.47         17.9         6.021.53         6.020.44         0.25         6.017.18         4.35         6.021.73         6.021.74         6.025.29         6.024.95         0.013           Pipe - (51)         0.050         18.0         23.47         17.9         6.027.02         6.026.94         6.025.31         5.86         6.027.13         6.025.85         0.013           Pipe - (55)         0.050         18.0         23.47         17.9         6.022.25         0.25         6.022.97         6.228.33         6.027.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.008                                            |
| Pipe (47)         0.020         18.0         14.85         98.1         6.011.82         6.017.86         0.74         6.017.94         6.015.88         4.38         6.018.05         6.016.18         0.013           Pipe (49)         0.015         18.0         12.86         61.1         6.010.27         6.009.36         0.54         6.010.55         6.009.57         3.83         6.012.19         6.011.44         0.013           Pipe (51)         0.050         18.0         23.47         17.9         6.021.58         6.022.64         6.025         6.021.72         6.020.77         6.013           Pipe (51)         0.050         18.0         14.85         73.0         6.022.494         2.00         6.025.99         6.024.77         7.24         6.025.29         6.024.85         0.013           Pipe (53)         0.035         18.0         14.85         73.0         6.024.94         2.00         6.025.94         6.027.23         6.026.55         4.59         6.027.29         6.026.88         0.013           Pipe (55)         0.050         18.0         23.47         17.9         6.024.24         2.02         6.026.97         6.026.25         4.59         6.027.23         6.026.60         0.13         9.026.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.046                                            |
| Pipe - (48)         0.015         12.0         5.67         73.8         6.011.87         6.010.77         0.30         6.012.11         6.010.93         3.83         6.012.19         6.011.16         0.010           Pipe - (49)         0.015         18.0         12.86         61.1         6.010.27         6.009.36         0.54         6.010.55         6.009.57         3.60         6.010.64         6.009.77         0.013           Pipe - (51)         0.050         18.0         23.47         17.9         6.021.53         6.026.40         0.625.41         5.86         6.021.73         6.021.73         6.022.58         0.013           Pipe - (53)         0.020         18.0         14.85         73.0         6.022.42         2.09         6.025.09         6.024.27         7.24         6.025.29         6.024.95         0.013           Pipe - (54)         0.050         18.0         23.47         17.9         6.027.23         0.030         6.022.40         6.027.55         4.59         6.027.68         0.013           Pipe - (56)         0.030         18.0         18.19         17.8         6.029.27         0.25         6.028.33         6.027.35         4.59         6.029.58         0.013           Pipe - (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipe - (46)<br>Pipe - (47) |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.078<br>0.014                                   |
| Pipe - (49)         0.015         18.0         12.86         61.1         6.010.27         6.009.36         0.54         6.010.55         6.009.57         3.60         6.010.64         6.009.77         0.013           Pipe - (50)         0.050         18.0         23.47         17.9         6.017.88         6.016.99         0.25         6.018.07         6.017.18         4.35         6.018.13         6.017.24         0.013           Pipe - (52)         0.020         18.0         14.85         73.0         6.024.56         6.023.92         2.00         6.025.09         6.024.27         7.24         6.025.29         6.024.95         0.013           Pipe - (53)         0.050         18.0         23.47         17.9         6.027.02         6.026.13         0.30         6.027.23         6.026.25         4.59         6.027.29         6.026.58         0.013           Pipe - (56)         0.050         18.0         23.47         17.9         6.027.02         6.022.25         0.22         6.027.35         4.59         6.026.48         6.013         6.013.04         6.025.80         0.013           Pipe - (56)         0.050         18.0         7.40         222.1         6.009.42         6.013.38         6.013.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe - (50)         0.050         18.0         23.47         17.9         6.017.88         6.016.99         0.25         6.018.07         6.017.18         4.35         6.018.13         6.017.24         0.013           Pipe - (51)         0.050         18.0         23.47         17.9         6.021.53         6.020.64         0.25         6.027.72         6.020.75         4.35         6.021.78         6.021.83         0.013           Pipe - (52)         0.025         18.0         19.64         17.8         6.022.45         6.022.92         2.09         6.025.09         6.024.27         7.24         6.025.29         6.024.95         0.013           Pipe - (56)         0.050         18.0         23.47         17.9         6.022.12         6.027.23         0.30         6.027.35         4.59         6.028.40         6.027.68         0.013           Pipe - (56)         0.050         18.0         23.47         17.9         6.029.25         0.25         6.029.73         4.59         6.028.40         6.027.68         0.013           Pipe - (57)         0.005         18.0         7.40         6.029.45         6.023.32         6.009.72         6.008.95         3.71         6.009.93         6.0013         0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pipe - (49)                |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.006                                            |
| Pipe - (52)         0.020         18.0         14.85         73.0         6.024.94         2.00         6.026.94         6.025.31         5.86         6.027.13         6.025.85         0.013           Pipe - (53)         0.035         18.0         19.64         17.8         6.024.94         2.09         6.025.09         6.024.27         7.24         6.025.29         6.024.95         0.013           Pipe - (55)         0.050         18.0         23.47         17.9         6.022.12         6.022.25         6.029.73         6.026.25         4.59         6.027.28         6.026.78         0.013           Pipe - (56)         0.050         18.0         23.47         17.9         6.028.12         6.029.25         0.29.27         6.028.93         3.63         6.030.04         6.029.58         0.013           Pipe - (57)         0.005         18.0         7.40         222.1         6.009.44         6.013.86         6.013.15         3.56         6.013.50         6.003.04         0.013           Pipe - (60)         0.010         18.0         10.50         17.9         6.012.86         0.84         6.013.28         6.013.16         6.013.24         6.013.24         0.013           Pipe - (61)         0.007 <t< td=""><td>Pipe - (50)</td><td></td><td></td><td></td><td></td><td>6,017.88</td><td>6,016.99</td><td></td><td>6,018.07</td><td>6,017.18</td><td></td><td>6,018.13</td><td>6,017.24</td><td></td><td>0.000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipe - (50)                |                                  |                  |                                     |                                     | 6,017.88                  | 6,016.99                 |               | 6,018.07         | 6,017.18          |                    | 6,018.13                             | 6,017.24                              |                | 0.000                                            |
| Pipe - (53)         0.035         18.0         19.64         17.8         6.024.55         6.023.82         2.09         6.025.09         6.024.27         7.24         6.025.29         6.024.95         0.013           Pipe - (54)         0.050         18.0         23.47         17.9         6.027.23         6.026.13         0.30         6.027.23         6.026.25         4.59         6.027.29         6.026.56         0.013           Pipe - (56)         0.030         18.0         18.19         17.8         6.029.79         6.029.97         6.023.38         6.027.35         4.59         6.029.58         0.013           Pipe - (57)         0.005         18.0         7.40         222.1         6.009.44         6.003.44         6.013.38         6.013.35         5.66         6.013.34         0.013           Pipe - (57)         0.010         18.0         10.50         103.3         6.012.86         0.84         6.013.38         6.011.92         3.62         6.011.41         6.013.44         0.013           Pipe - (61)         0.007         18.0         8.79         70.0         6.011.43         6.011.88         6.010.99         3.63         6.011.43         6.011.44         6.011.94         0.013           P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe - (54)         0.050         18.0         23.47         17.9         6.027.02         6.027.23         6.026.25         4.59         6.027.29         6.026.58         0.013           Pipe - (55)         0.050         18.0         23.47         17.9         6.027.02         6.027.23         0.30         6.027.35         4.59         6.027.29         6.026.58         0.013           Pipe - (56)         0.050         18.0         23.47         17.9         6.028.12         6.027.23         0.30         6.027.35         4.59         6.027.29         6.028.40         6.027.68         0.013           Pipe - (57)         0.005         18.0         7.40         222.1         6.009.44         2.33         6.009.72         6.008.95         3.71         6.009.93         6.009.01         0.013           Pipe - (50)         0.010         18.0         10.50         17.9         6.012.66         0.84         6.013.01         6.011.92         3.62         6.013.14         6.012.13         0.013           Pipe - (61)         0.007         18.0         8.79         70.0         6.011.43         6.019.49         0.89         6.013.01         6.011.26         3.16         6.011.43         6.011.42         0.013      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000<br>0.033                                   |
| Pipe - (55)         0.050         18.0         23.47         17.9         6.028.12         6.027.23         0.30         6.027.35         4.59         6.028.40         6.027.68         0.013           Pipe - (56)         0.030         18.0         18.19         17.8         6.029.25         0.22         6.029.37         6.029.38         3.63         6.030.04         6.029.58         0.013           Pipe - (57)         0.005         18.0         17.9         6.012.86         0.08.44         6.013.26         6.013.50         3.61         6.030.04         6.029.58         0.013           Pipe - (59)         0.010         18.0         10.50         17.9         6.012.86         0.84         6.013.38         6.013.50         6.013.44         0.013           Pipe - (60)         0.010         18.0         8.79         70.0         6.011.43         6.010.94         0.89         6.011.78         6.011.26         3.19         6.011.41         6.013         9.99         6.01.03         4.12         6.011.42         0.013           Pipe - (63)         0.007         18.0         8.79         70.0         6.014.34         6.019.49         2.33         6.010.96         6.010.03         4.12         6.011.42         0.013 </td <td></td> <td>0.000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe - (66)         0.030         18.0         18.19         17.8         6.029.79         6.029.97         6.029.38         3.63         6.030.04         6.029.58         0.013           Pipe - (57)         0.005         18.0         7.40         222.1         6.009.14         6.008.04         2.33         6.009.72         6.008.55         3.71         6.009.33         6.009.01         0.013           Pipe - (57)         0.010         18.0         10.50         17.9         6.012.86         0.84         6.013.38         6.013.15         3.56         6.013.14         6.013.34         0.013           Pipe - (60)         0.010         18.0         10.50         103.3         6.012.86         0.89         6.011.92         3.62         6.011.34         6.012.43         0.013           Pipe - (61)         0.007         18.0         8.79         70.0         6.011.43         6.010.49         1.39         6.011.88         6.010.99         3.63         6.011.44         6.013           Pipe - (62)         0.007         18.0         8.55         134.8         6.010.88         6.010.88         6.010.94         5.08         6.014.01         6.011.70         0.013           Pipe - (65)         0.027         18.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe - (59)         0.010         18.0         10.50         17.9         6,013.04         6,012.86         0.84         6,013.38         6,013.15         3.56         6,013.50         6,013.34         0.013           Pipe - (60)         0.010         18.0         10.50         103.3         6,012.86         0.84         6,013.38         6,013.15         3.56         6,013.50         6,013.34         0.013           Pipe - (61)         0.007         18.0         8.79         22.3         6,010.74         6,010.59         1.39         6,011.168         6,010.94         0.89         6,011.78         6,011.24         6,011.42         0.013           Pipe - (62)         0.007         18.0         8.79         22.3         6,010.58         0.014.84         6,010.99         3.63         6,011.41         6,011.92         0.013           Pipe - (63)         0.007         18.0         8.55         134.8         6,010.58         0.94         6,013.88         6,010.94         4.01         6,011.17         6,011.107         0.013           Pipe - (66)         0.027         18.0         17.42         121.3         6,014.28         6,010.94         0.50         6,014.104         6,011.41         0.013           Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipe - (56)                | 0.030                            | 18.0             | 18.19                               | 17.8                                | 6,029.79                  | 6,029.25                 | 0.25          | 6,029.97         | 6,029.38          | 3.63               | 6,030.04                             | 6,029.58                              | 0.013          | 0.000                                            |
| Pipe - (60)         0.010         18.0         10.50         103.3         6.012.63         0.89         6.013.01         6.011.92         3.62         6.013.14         6.012.13         0.013           Pipe - (61)         0.007         18.0         8.79         70.0         6.011.43         6.010.94         0.89         6.011.78         6.011.26         3.19         6.011.91         6.011.42         0.013           Pipe - (62)         0.007         18.0         8.79         70.0         6.011.74         6.010.59         1.39         6.011.86         6.010.99         3.63         6.011.34         6.011.42         0.013           Pipe - (62)         0.007         18.0         8.55         134.8         6.010.58         6.014.84         6.011.07         0.013           Pipe - (65)         0.027         18.0         17.42         121.3         6.012.82         6.010.84         6.011.12         4.35         6.014.63         6.011.41         0.013           Pipe - (66)         0.006         18.0         8.25         40.3         6.012.86         0.05         6.014.54         6.011.12         4.35         6.013.02         0.013           Pipe - (66)         0.006         18.0         8.25         40.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.044                                            |
| Pipe - (61)         0.007         18.0         8.79         70.0         6.011.43         6.010.94         0.89         6.011.78         6.011.26         3.19         6.011.91         6.011.42         0.013           Pipe - (62)         0.007         18.0         8.79         22.3         6.010.44         6.019.59         1.39         6.011.26         3.19         6.011.91         6.011.42         0.013           Pipe - (63)         0.007         18.0         8.55         134.8         6.010.38         6.010.96         6.010.03         4.12         6.011.17         6.010.29         0.013           Pipe - (64)         0.025         18.0         16.61         117.5         6.013.22         6.010.94         0.05         6.014.54         6.011.12         4.315         6.011.47         0.013           Pipe - (66)         0.006         18.0         8.25         40.3         6.012.86         0.05         6.014.54         6.011.12         4.35         6.013.22         6.013.22         0.013           Pipe - (66)         0.006         18.0         8.25         40.3         5.988.72         11.93         5.990.44         5.988.51         9.18         5.900.52         0.013           Pipe - (72)         0.020 </td <td></td> <td>0.033</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.033                                            |
| Pipe - (62)         0.007         18.0         8.79         22.3         6,010.74         6,010.59         1.39         6,011.18         6,010.99         3.63         6,011.34         6,011.19         0.013           Pipe - (63)         0.007         18.0         8.55         134.8         6,010.58         6,009.49         2.33         6,010.03         4.12         6,011.14         6,011.29         0.013           Pipe - (64)         0.027         18.0         16.61         117.5         6,013.52         6,010.58         0.94         6,013.88         6,010.96         5.08         6,014.01         6,011.107         0.013           Pipe - (65)         0.027         18.0         17.42         121.3         6,014.28         6,010.94         0.50         6,014.54         6,011.12         4.35         6,014.63         6,011.41         0.013           Pipe - (66)         0.006         18.0         8.25         40.3         6,013.18         6,014.54         6,013.19         6,013.29         6,013.22         6,013.20         0,013           Pipe - (69)         0.020         36.0         94.56         30.8         5,988.51         9.15         5,990.52         0.013           Pipe - (72)         0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.002<br>0.053                                   |
| Pipe - (63)         0.007         18.0         8.55         134.8         6.010.38         6.009.49         2.33         6.010.96         6.010.03         4.12         6.011.17         6.012.99         0.013           Pipe - (64)         0.025         18.0         16.61         117.5         6.013.52         6.010.94         6.013.88         6.010.96         6.010.03         4.12         6.011.17         6.012.99         0.013           Pipe - (65)         0.027         18.0         17.42         121.3         6.014.54         6.011.12         4.33         6.014.64         6.011.17         0.013           Pipe - (66)         0.006         18.0         8.25         40.3         6.013.18         6.013.19         6.013.01         1.28         6.013.22         6.013.02         0.013           Pipe - (69)         0.020         36.0         94.56         30.8         5.989.34         5.988.72         11.35         5.990.52         0.013           Pipe - (72)         0.020         18.0         14.85         29.7         6.013.55         6.012.95         2.18         6.014.10         6.013.72         6.01         6.013.81         0.013           Pipe - (73)         0.020         18.0         14.85         9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.033                                            |
| Pipe - (64)         0.025         18.0         16.61         117.5         6.013.52         6.010.58         0.94         6.013.88         6.010.96         5.08         6.014.01         6.011.07         0.013           Pipe - (65)         0.027         18.0         17.42         121.3         6.012.86         6.010.94         0.50         6.014.54         6.011.92         4.35         6.014.63         6.011.41         0.013           Pipe - (66)         0.020         18.0         18.2         5.989.34         5.988.72         11.93         5.990.44         5.989.51         9.15         5.990.84         5.990.52         0.013           Pipe - (72)         0.020         18.0         14.85         29.7         6.013.35         6.012.95         2.18         6.013.72         6.01         6.013.81         0.013           Pipe - (73)         0.020         18.0         14.85         9.0         6.013.35         6.012.95         1.18         6.013.72         6.01         6.013.85         6.013.72         5.90.84         5.93.84         0.013           Pipe - (73)         0.020         18.0         14.85         9.0         6.013.85         6.007.89         5.99         6.013.25         6.013.66         6.013.72         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | 0.007                            |                  |                                     |                                     |                           | 6,009.49                 | 2.33          | 6,010.96         | 6,010.03          | 4.12               | 6,011.17                             |                                       |                | 0.023                                            |
| Pipe - (66)         0.006         18.0         8.25         40.3         6.012.86         0.05         6.013.19         6.013.01         1.28         6.013.22         6.013.02         0.013           Pipe - (66)         0.020         36.0         94.56         30.8         5.989.34         5.988.72         11.93         5.990.44         5.988.51         9.15         5.900.84         5.900.52         0.013           Pipe - (72)         0.020         18.0         14.85         29.7         6.012.95         2.18         6.014.10         6.013.72         6.01         6.014.31         6.013.81         0.013           Pipe - (73)         0.020         18.0         14.85         9.0         6.013.95         6.012.95         1.96         6.013.66         6.013.72         5.83         6.013.81         0.013           Pipe - (73)         0.020         18.0         14.85         9.0         6.013.95         5.90         6.010.32         6.084.0         10.61         6.013.87         0.013           Pipe - (74)         0.050         18.0         23.47         31.3         6.002.89         5.90         6.013.26         6.084.0         10.61         6.013.86         6.003.89         0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pipe - (64)                | 0.025                            | 18.0             | 16.61                               | 117.5                               | 6,013.52                  | 6,010.58                 |               | 6,013.88         | 6,010.96          | 5.08               | 6,014.01                             | 6,011.07                              | 0.013          | 0.000                                            |
| Pipe - (69)         0.020         36.0         94.56         30.8         5,989.34         5,988.72         11.93         5,990.44         5,989.51         9.15         5,990.84         5,990.52         0.013           Pipe - (72)         0.020         18.0         14.85         29.7         6,013.55         6,012.95         2.18         6,014.10         6,013.72         6.01         6,014.31         6,013.81         0.013           Pipe - (73)         0.020         18.0         14.85         9.0         6,013.13         6,012.95         1.96         6,013.66         6,013.72         6.01         6,013.81         0.013           Pipe - (74)         0.050         18.0         23.47         31.3         6,002.89         5.09         6,010.32         6,008.40         10.61         6,010.86         6,003.96         0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe - (72)         0.020         18.0         14.85         29.7         6.013.55         6.012.95         2.18         6.014.10         6.013.72         6.01         6.014.31         6.013.81         0.013           Pipe - (73)         0.020         18.0         14.85         9.0         6.013.13         6.012.95         1.18         6.014.60         6.013.72         5.61         6.014.31         6.013.81         0.013           Pipe - (74)         0.050         18.0         23.47         31.3         6.002.89         5.09         6.010.32         6.008.40         10.61         6.013.68         6.003.89         0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.019<br>0.000                                   |
| Pipe - (73)         0.020         18.0         14.85         9.0         6,013.13         6,012.95         1.96         6,013.66         6,013.72         5.83         6,013.85         6,013.79         0.013           Pipe - (74)         0.050         18.0         23.47         31.3         6,009.45         6,007.89         5.09         6,010.32         6,008.40         10.61         6,010.68         6,009.86         0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
| Pipe - (74) 0.050 18.0 23.47 31.3 6,009.45 6,007.89 5.09 6,010.32 6,008.40 10.61 6,010.68 6,009.86 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   |                    |                                      |                                       |                | 0.000                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                  |                  |                                     |                                     |                           |                          |               |                  |                   | 10.61              |                                      | 6,009.86                              |                | 0.000                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pipe - (75)                | 0.010                            | 12.0             | 4.63                                | 24.2                                | 6,013.85                  | 6,013.61                 | 0.00          | 6,013.85         | 6,013.61          | 0.00               | 6,013.85                             | 6,013.61                              | 0.010          | 0.000                                            |
| Pipe - (76)         0.030         12.0         8.02         15.9         6,014.02         6,013.54         0.00         6,014.02         6,013.54         0.00         6,014.02         6,013.54         0.00         6,014.02         6,013.54         0.00         6,014.02         6,013.54         0.00         6,014.02         6,013.54         0.00         6,014.02         6,013.54         0.00         6,014.02         6,013.54         0.010           Pipe - (78)         0.020         12.0         6.55         21.0         6,010.06         6,009.64         0.00         6,010.06         6,009.73         0.00         6,010.06         6,009.73         0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pipe - (76)                |                                  |                  |                                     |                                     | 6,014.02                  |                          |               |                  |                   |                    |                                      | 6,013.54                              |                | 0.000<br>0.000                                   |

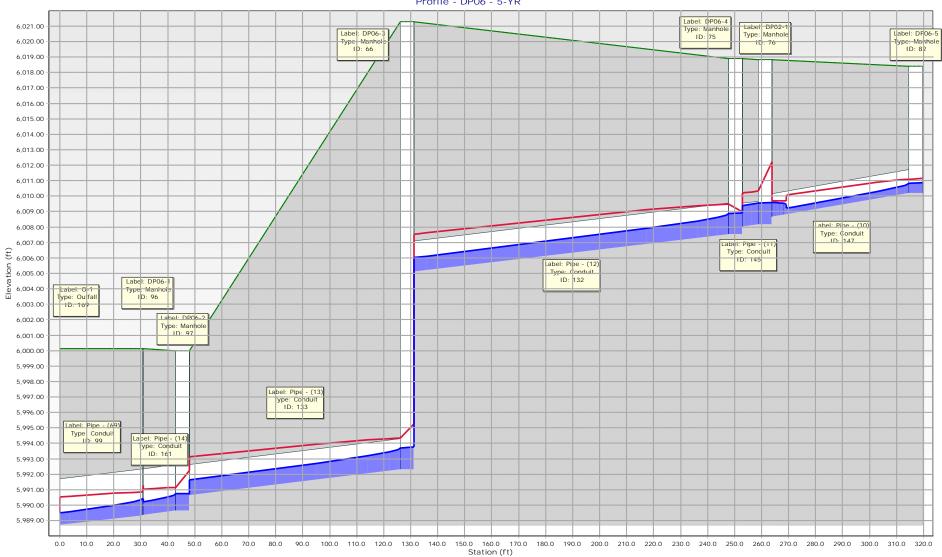

X:\1590000.all\1595010\StormCAD\1595010 StormCAD.stsw




EGLHGL

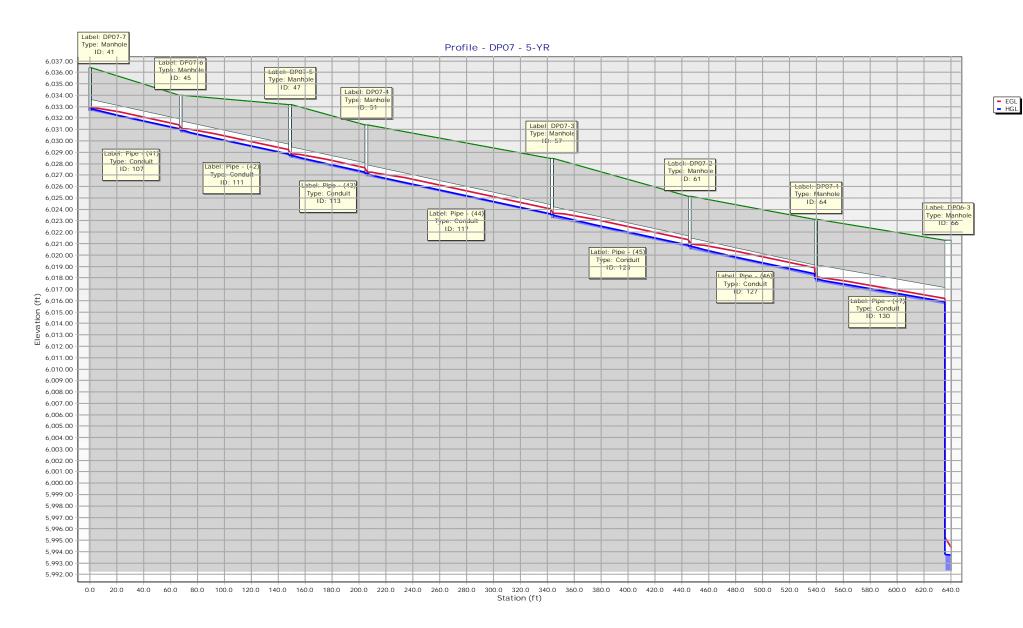


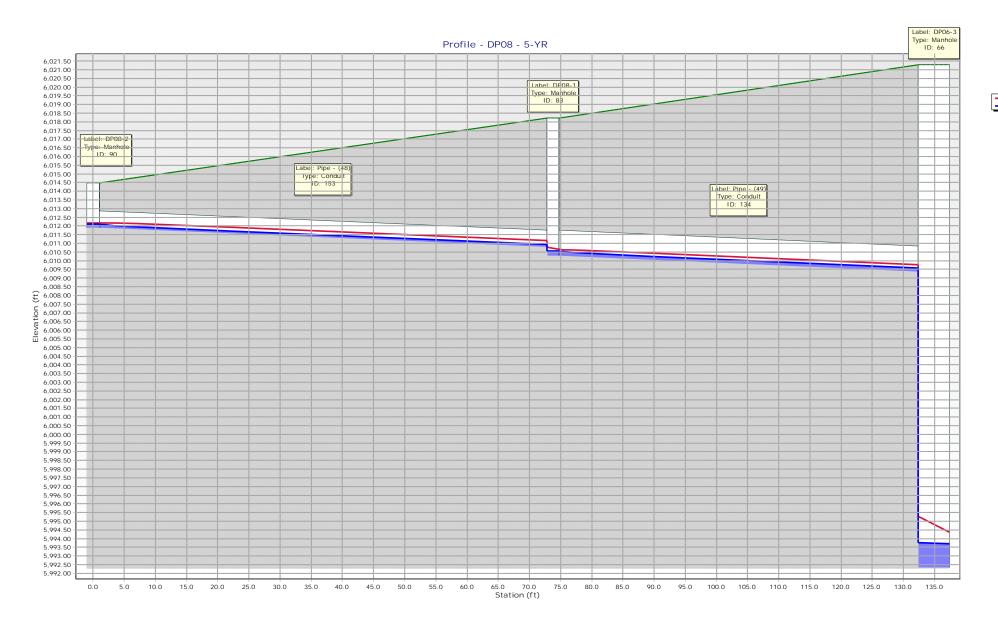

= EGL = HGL

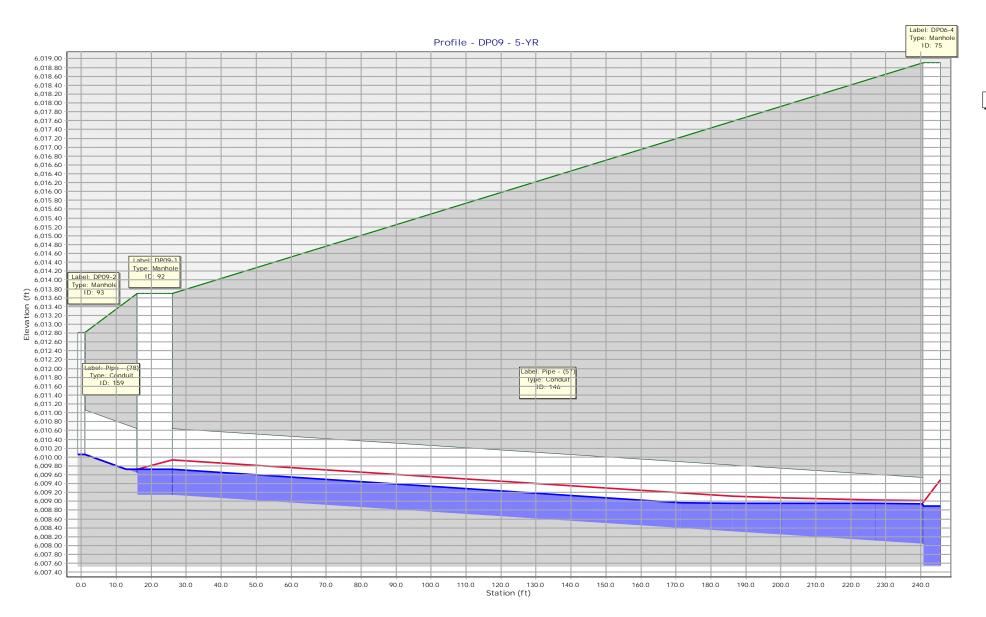


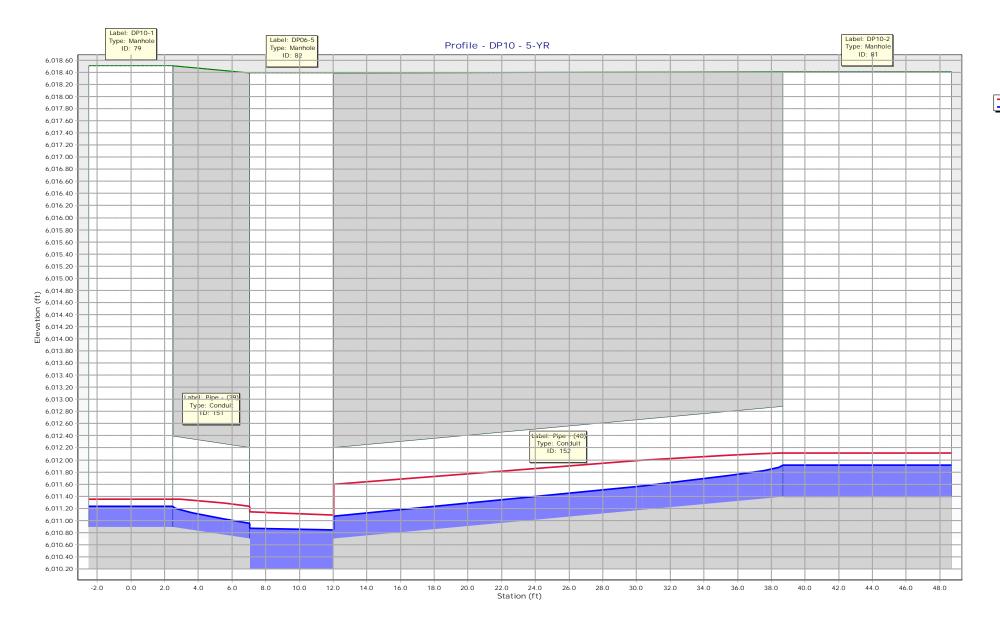

Profile - DP03 - 5-YR

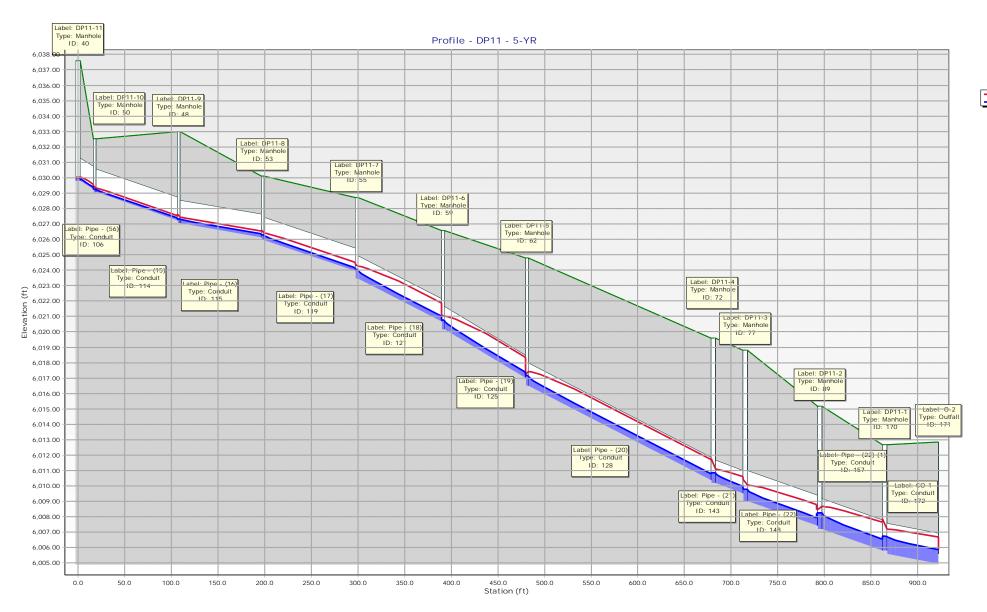


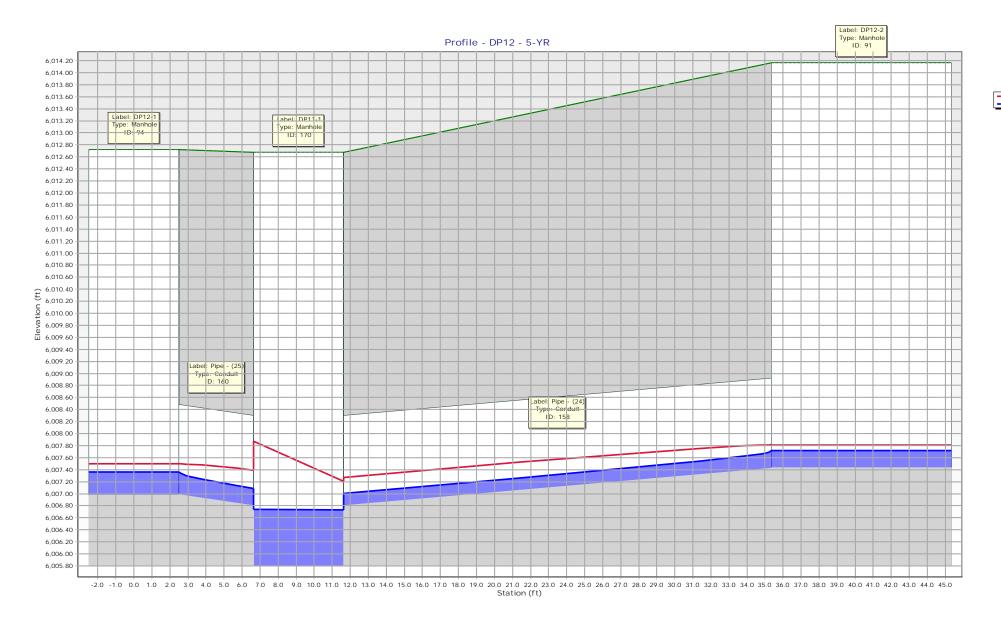


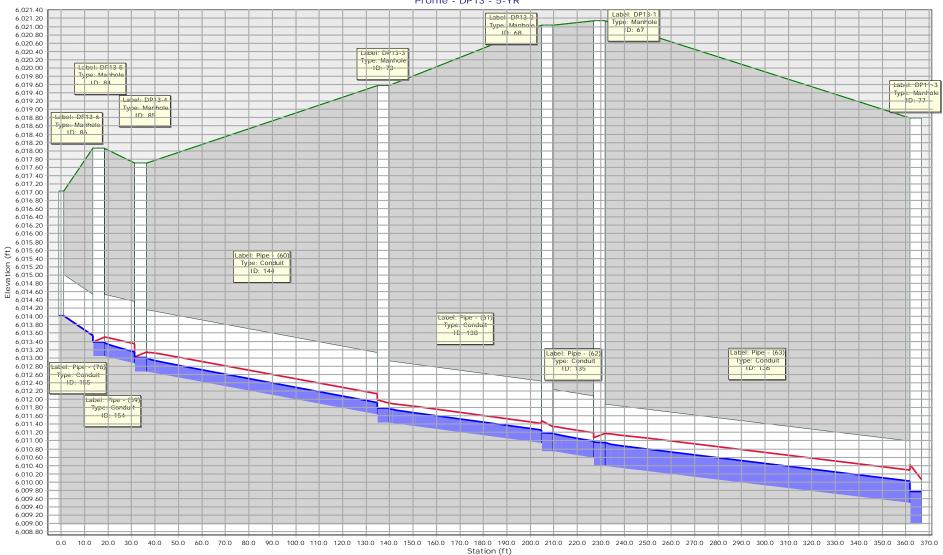


EGLHGL



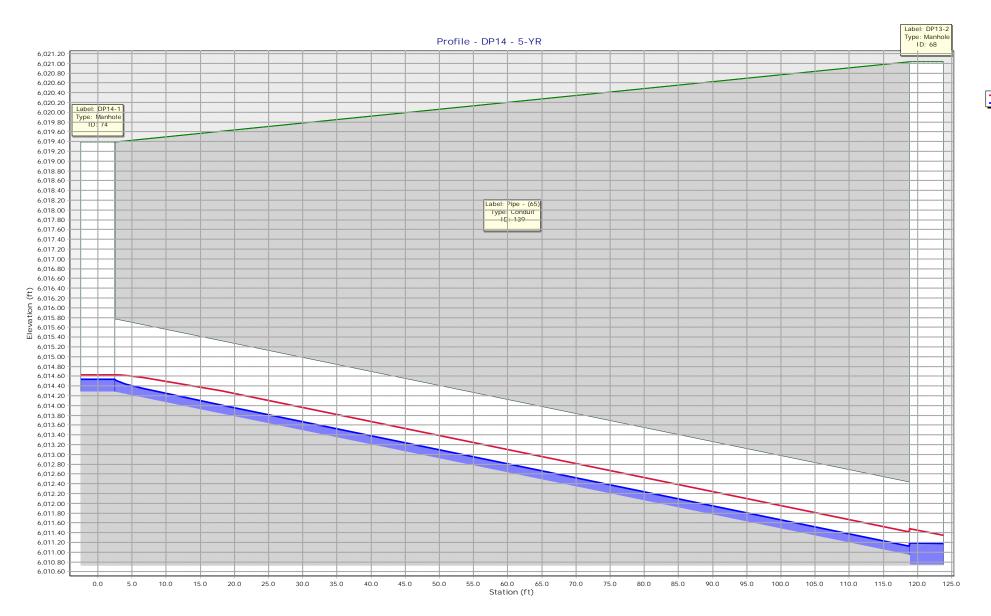


Profile - DP06 - 5-YR

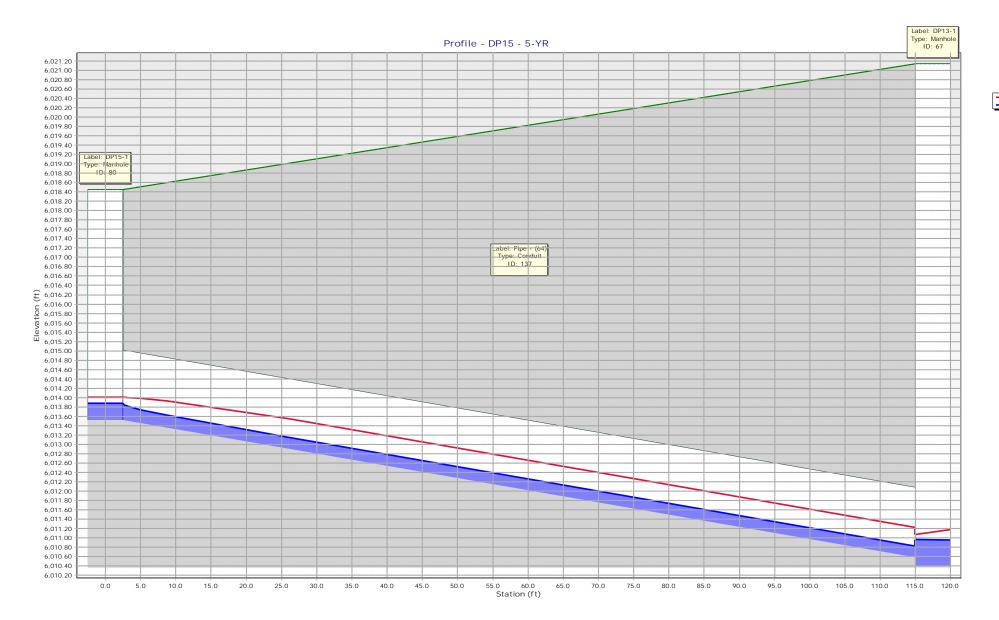

EGLHGL

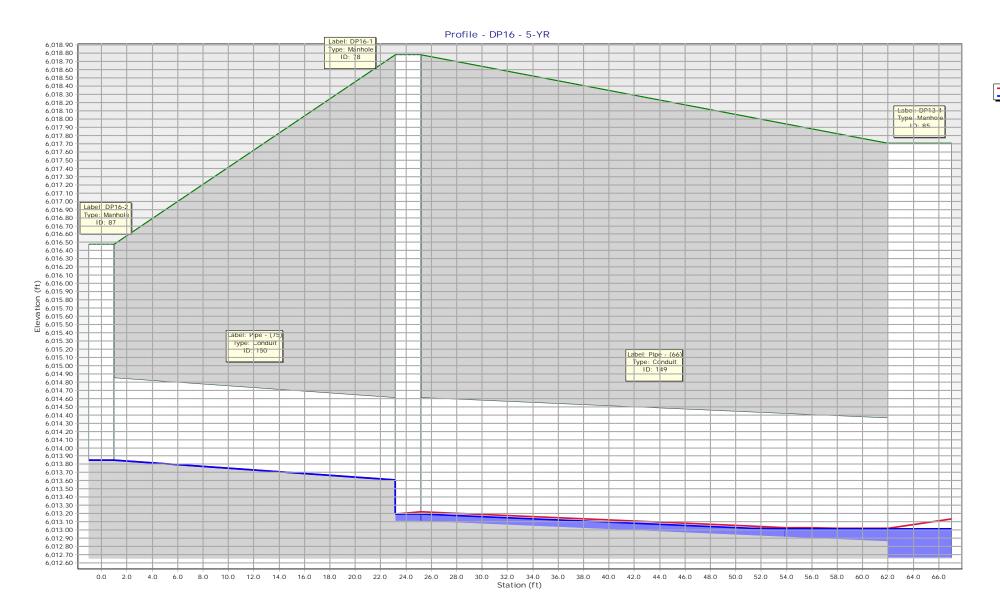




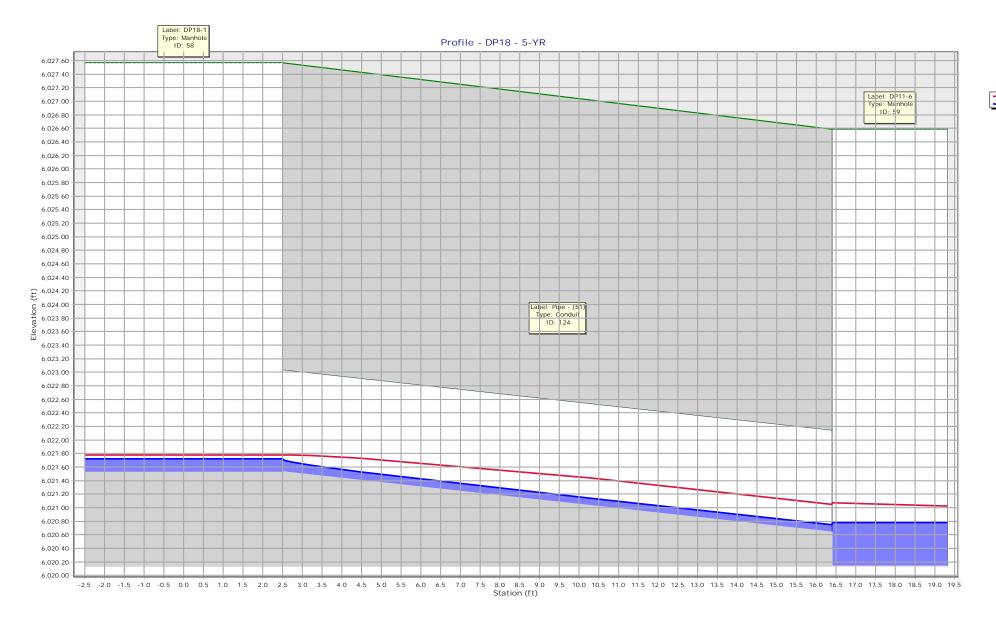



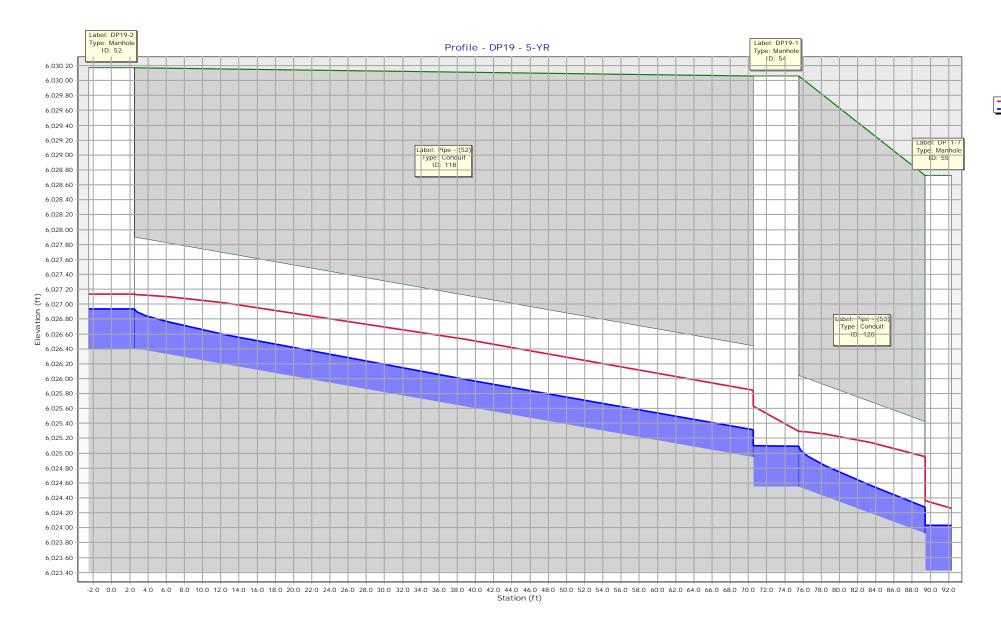






Profile - DP13 - 5-YR

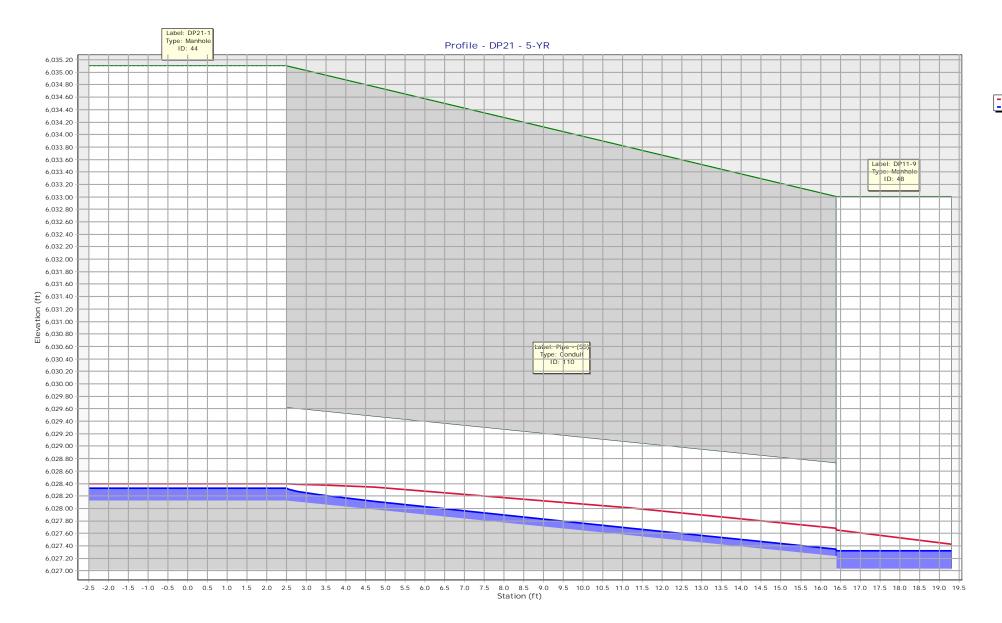


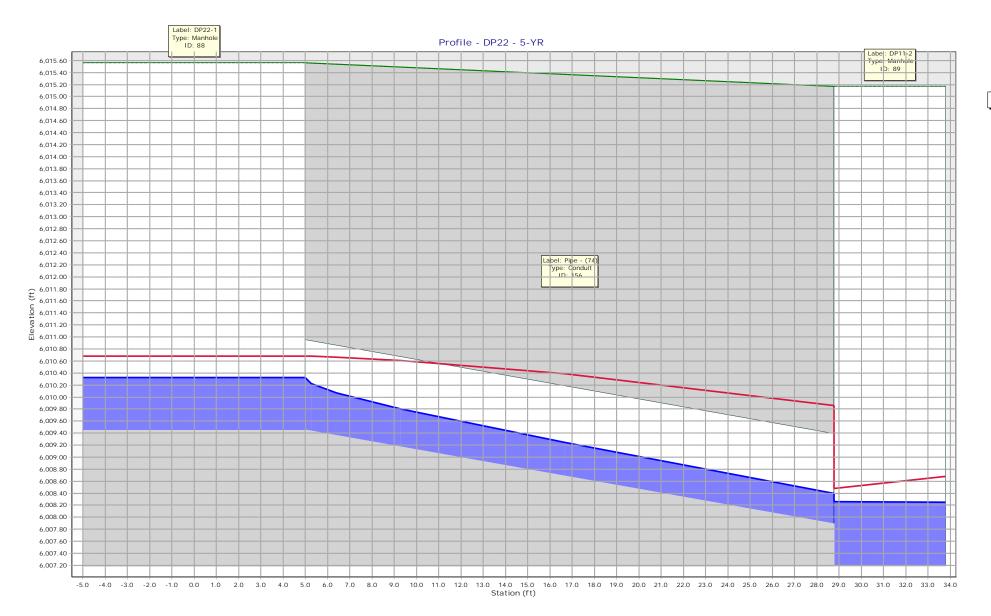





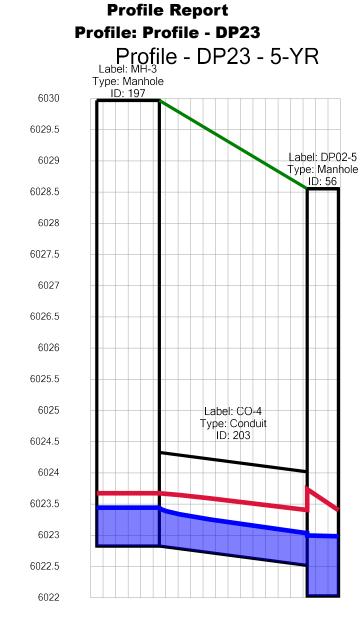


= EGL = HGL







= EGL = HGL



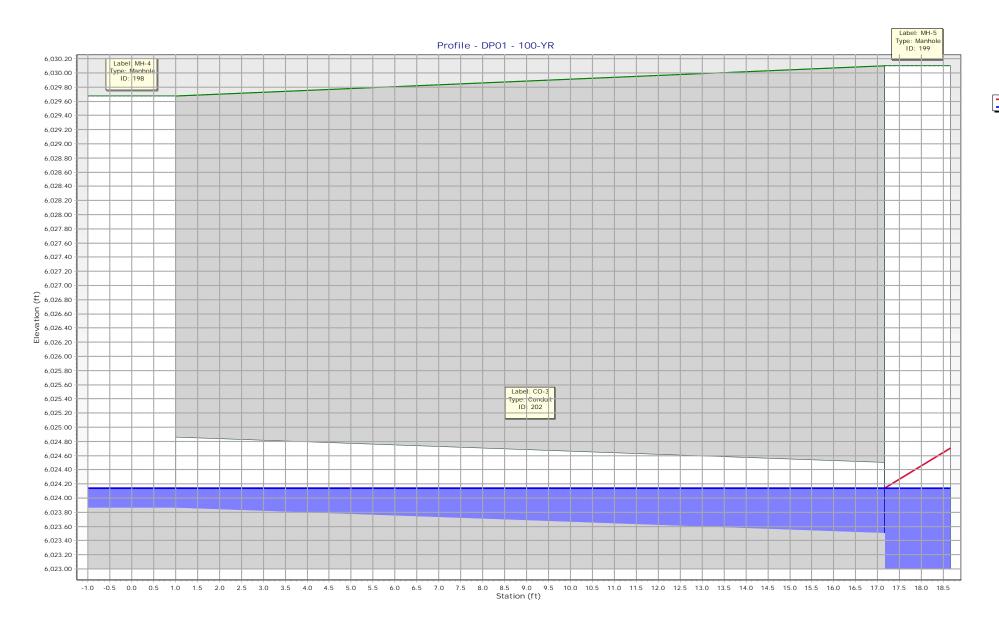


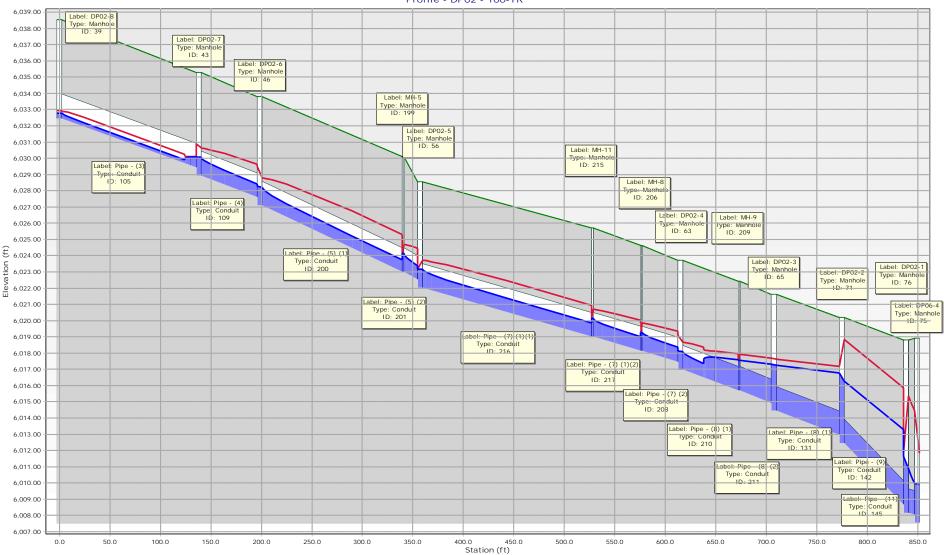




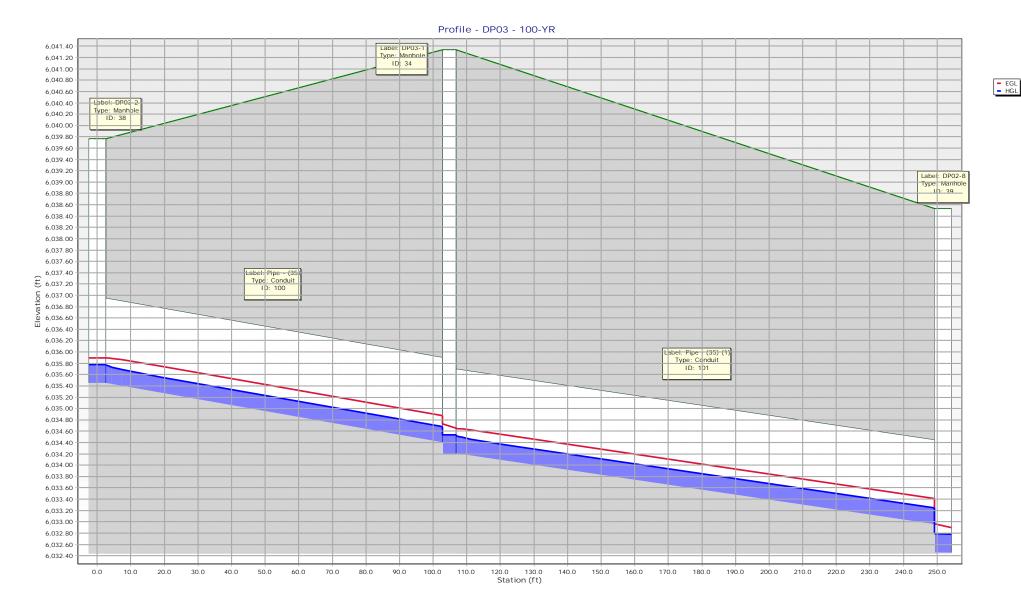


Elevation (ft)


-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34


## Station (ft)

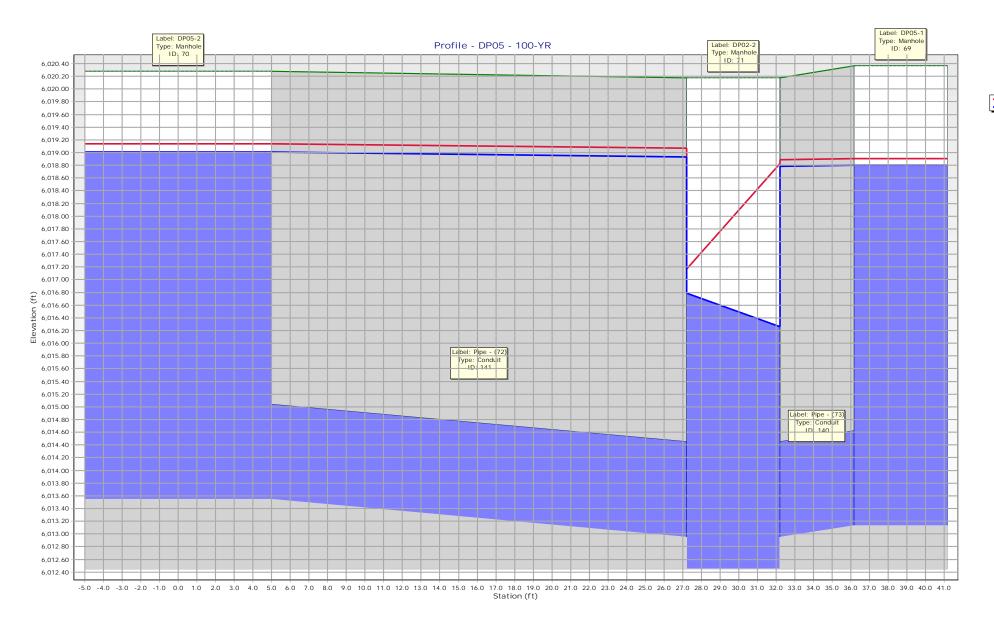
Scenario: 100-YR Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report

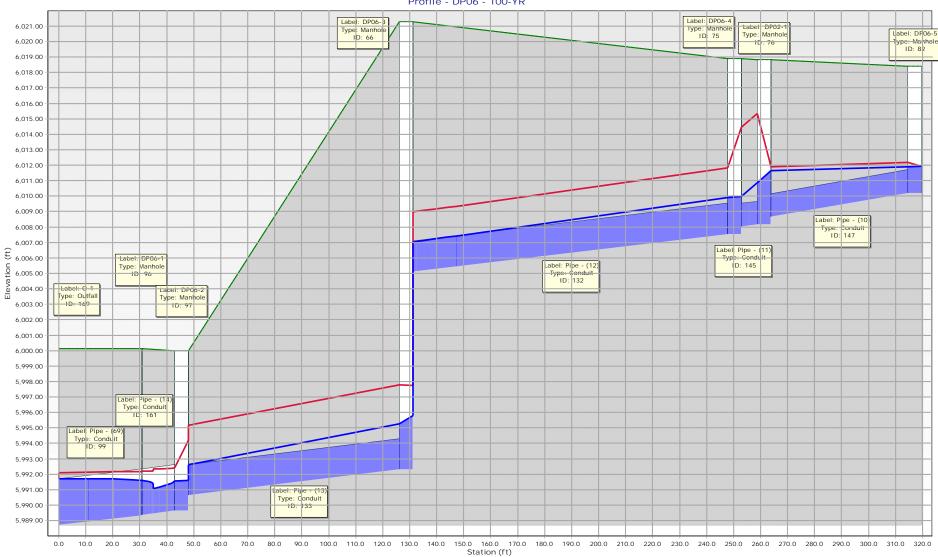

| Label                                  | Slope<br>(Calculated)<br>(ft/ft) | Diameter<br>(in) | Capacity<br>(Full<br>Flow)<br>(cfs) | Length<br>(User<br>Defined)<br>(ft) | Invert<br>(Start)<br>(ft) | Invert<br>(Stop)<br>(ft) | Flow<br>(cfs) | HGL (In)<br>(ft)     | HGL<br>(Out) (ft)    | Velocity<br>(ft/s) | Energy<br>Grade<br>Line (In)<br>(ft) | Energy<br>Grade<br>Line<br>(Out) (ft) | Manning's<br>n | Upstream<br>Structure<br>Headloss<br>Coefficient |
|----------------------------------------|----------------------------------|------------------|-------------------------------------|-------------------------------------|---------------------------|--------------------------|---------------|----------------------|----------------------|--------------------|--------------------------------------|---------------------------------------|----------------|--------------------------------------------------|
| CO-1                                   | 0.011                            | 24.0             | 24.01                               | 57.7                                | 6,005.59                  | 6.004.94                 | 26.43         | 6,007.73             | 6,006.94             | 8.41               | 6,008.83                             | 6.008.04                              | 0.013          | 0.023                                            |
| CO-2                                   | 0.025                            | 18.0             | 16.63                               | 11.2                                | 6,029.69                  | 6,029.41                 | 2.83          | 6,030.33             | 6,030.08             | 7.02               | 6,030.57                             | 6,030.29                              | 0.013          | 0.000                                            |
| CO-3                                   | 0.020                            | 12.0             | 6.57                                | 17.9                                | 6,023.86                  | 6,023.50                 | 0.00          | 6,024.14             | 6,024.14             | 0.00               | 6,024.14                             | 6,024.14                              | 0.010          | 0.000                                            |
| CO-4                                   | 0.010                            | 18.0             | 10.48                               | 31.2                                | 6,022.83                  | 6,022.52                 | 0.00          | 6,023.16             | 6,023.16             | 0.00               | 6,023.16                             | 6,023.16                              | 0.013          | 0.000                                            |
| CO-5<br>CO-6                           | 0.020                            | 12.0             | 5.07                                | 15.3                                | 6,016.49<br>6,018.98      | 6,016.18                 | 0.00<br>0.00  | 6,017.56             | 6,017.56             | 0.00 0.00          | 6,017.56<br>6,019.28                 | 6,017.56                              | 0.013 0.010    | 0.000<br>0.000                                   |
| CO-6<br>CO-7                           | 0.020<br>0.020                   | 12.0<br>12.0     | 6.58<br>6.54                        | 16.8<br>41.1                        | 6,020.32                  | 6,018.64<br>6,019.50     | 0.00          | 6,019.28<br>6,020.32 | 6,019.28<br>6,020.14 | 0.00               | 6,019.28                             | 6,019.28<br>6,020.14                  | 0.010          | 0.000                                            |
| Pipe - (3)                             | 0.020                            | 18.0             | 15.58                               | 137.9                               | 6,032.45                  | 6,029.42                 | 0.79          | 6,032.78             | 6,030.09             | 4.61               | 6,032.90                             | 6,030.11                              | 0.013          | 0.051                                            |
| Pipe - (4)                             | 0.022                            | 18.0             | 15.58                               | 60.7                                | 6,028.93                  | 6,027.59                 | 8.69          | 6,030.07             | 6,028.41             | 9.06               | 6,030.63                             | 6,029.62                              | 0.013          | 0.027                                            |
| Pipe - (5) (1)                         | 0.029                            | 18.0             | 17.81                               | 141.9                               | 6,027.08                  | 6,023.00                 | 8.69          | 6,028.22             | 6,024.15             | 10.02              | 6,028.79                             | 6,024.71                              | 0.013          | 0.107                                            |
| Pipe - (5) (2)                         | 0.029                            | 18.0             | 17.79                               | 16.7                                | 6,023.00                  | 6,022.52                 | 8.69          | 6,024.14             | 6,023.37             | 10.01              | 6,024.71                             | 6,024.47                              | 0.013          | 0.000                                            |
| Pipe - (7) (1)(1)<br>Pipe - (7) (1)(2) | 0.018<br>0.018                   | 18.0<br>18.0     | 13.98<br>13.96                      | 170.5<br>48.7                       | 6,022.02<br>6,019.00      | 6,019.00<br>6,018.14     | 8.69<br>8.69  | 6,023.16<br>6,020.14 | 6,020.15<br>6,019.29 | 8.34<br>8.33       | 6,023.73<br>6,020.71                 | 6,020.71<br>6,019.85                  | 0.013<br>0.013 | 0.000<br>0.000                                   |
| Pipe - (7) (2)                         | 0.018                            | 18.0             | 13.97                               | 38.4                                | 6,018.14                  | 6,017.46                 | 8.69          | 6,019.28             | 6,018.35             | 8.33               | 6,019.85                             | 6,019.33                              | 0.013          | 0.000                                            |
| Pipe - (8) (1)                         | 0.022                            | 18.0             | 15.66                               | 58.0                                | 6,016.97                  | 6,015.68                 | 8.69          | 6,018.11             | 6,017.57             | 9.09               | 6,018.67                             | 6,017.95                              | 0.013          | 0.037                                            |
| Pipe - (8) (1)                         | 0.022                            | 18.0             | 15.58                               | 67.2                                | 6,014.43                  | 6,012.95                 | 8.69          | 6,017.25             | 6,016.79             | 4.92               | 6,017.63                             | 6,017.17                              | 0.013          | 0.198                                            |
| Pipe - (8) (2)                         | 0.022                            | 18.0             | 15.58                               | 34.6                                | 6,015.68                  | 6,014.92                 | 8.69          | 6,017.56             | 6,017.33             | 4.92               | 6,017.94                             | 6,017.70                              | 0.013          | 0.002                                            |
| Pipe - (9)                             | 0.060                            | 18.0             | 25.71                               | 63.4                                | 6,012.45                  | 6,008.65                 | 22.71         | 6,016.26             | 6,013.30             | 12.85              | 6,018.83                             | 6,015.86                              | 0.013          | 0.207                                            |
| Pipe - (10)<br>Pipe - (11)             | 0.028<br>0.010                   | 18.0<br>18.0     | 17.52<br>10.50                      | 55.8<br>11.0                        | 6,010.20<br>6,008.15      | 6,008.65<br>6,008.04     | 7.30<br>30.01 | 6,011.91<br>6,010.88 | 6,011.64<br>6,009.98 | 4.13<br>16.98      | 6,012.17<br>6,015.36                 | 6,011.90<br>6,014.46                  | 0.013 0.013    | 0.042<br>0.169                                   |
| Pipe - (12)                            | 0.020                            | 24.0             | 32.09                               | 121.6                               | 6,007.54                  | 6,005.09                 | 34.90         | 6,009.92             | 6,007.01             | 11.11              | 6,011.84                             | 6,008.98                              | 0.013          | 0.031                                            |
| Pipe - (13)                            | 0.020                            | 24.0             | 31.99                               | 83.2                                | 5,992.31                  | 5,990.64                 | 40.15         | 5,995.25             | 5,992.60             | 12.78              | 5,997.79                             | 5,995.17                              | 0.013          | 0.209                                            |
| Pipe - (14)                            | 0.020                            | 36.0             | 94.31                               | 14.6                                | 5,989.64                  | 5,989.35                 | 35.09         | 5,991.57             | 5,991.60             | 12.36              | 5,992.40                             | 5,992.19                              | 0.013          | 0.046                                            |
| Pipe - (15)                            | 0.020                            | 18.0             | 14.94                               | 90.0                                | 6,029.05                  | 6,027.23                 | 0.90          | 6,029.41             | 6,027.48             | 4.66               | 6,029.53                             | 6,027.82                              | 0.013          | 0.078                                            |
| Pipe - (16)<br>Pipe - (17)             | 0.010<br>0.020                   | 18.0<br>18.0     | 10.50<br>14.85                      | 90.0<br>100.5                       | 6,027.03<br>6,025.93      | 6,026.13<br>6,023.92     | 2.01<br>2.61  | 6,027.56<br>6,026.54 | 6,026.57<br>6,024.35 | 4.58<br>6.33       | 6,027.76<br>6,026.77                 | 6,026.90<br>6,024.97                  | 0.013 0.013    | 0.046<br>0.013                                   |
| Pipe - (17)<br>Pipe - (18)             | 0.020                            | 18.0             | 14.65                               | 92.5                                | 6,023.42                  | 6,023.92                 | 5.96          | 6,026.34             | 6,024.35             | 9.22               | 6,026.77                             | 6,024.97                              | 0.013          | 0.013                                            |
| Pipe - (19)                            | 0.035                            | 18.0             | 19.64                               | 90.1                                | 6,020.14                  | 6,016.99                 | 6.62          | 6,021.14             | 6,017.59             | 10.03              | 6,021.58                             | 6,019.16                              | 0.013          | 0.021                                            |
| Pipe - (20)                            | 0.031                            | 18.0             | 18.37                               | 200.1                               | 6,016.49                  | 6,010.37                 | 7.34          | 6,017.54             | 6,011.03             | 9.81               | 6,018.02                             | 6,012.53                              | 0.013          | 0.084                                            |
| Pipe - (21)                            | 0.020                            | 18.0             | 14.85                               | 34.2                                | 6,010.17                  | 6,009.49                 | 7.34          | 6,011.22             | 6,010.27             | 8.38               | 6,011.70                             | 6,011.24                              | 0.013          | 0.094                                            |
| Pipe - (22)                            | 0.020                            | 24.0             | 31.99                               | 79.9                                | 6,008.99                  | 6,007.39                 | 11.99         | 6,010.23             | 6,008.76             | 9.45               | 6,010.76                             | 6,009.19                              | 0.013          | 0.014                                            |
| Pipe - (22) (1)<br>Pipe - (24)         | 0.020<br>0.020                   | 24.0<br>18.0     | 31.99<br>14.85                      | 69.4<br>31.2                        | 6,007.19<br>6,007.43      | 6,005.80<br>6.006.80     | 18.72<br>6.19 | 6,008.75<br>6.008.39 | 6,007.75<br>6.007.89 | 10.58<br>8.02      | 6,009.54<br>6.008.80                 | 6,008.31<br>6.008.21                  | 0.013 0.013    | 0.016<br>0.000                                   |
| Pipe - (24)<br>Pipe - (25)             | 0.020                            | 18.0             | 14.85                               | 9.1                                 | 6,007.43                  | 6,006.80                 | 2.73          | 6,007.86             | 6,007.89             | 6.41               | 6,007.96                             | 6,007.95                              | 0.013          | 0.000                                            |
| Pipe - (35)                            | 0.010                            | 18.0             | 10.50                               | 104.8                               | 6,035.45                  | 6,034.40                 | 0.79          | 6,035.78             | 6,034.68             | 3.49               | 6,035.90                             | 6,034.87                              | 0.013          | 0.000                                            |
| Pipe - (35) (1)                        | 0.009                            | 18.0             | 9.69                                | 147.0                               | 6,034.20                  | 6,032.95                 | 0.79          | 6,034.53             | 6,033.24             | 3.30               | 6,034.65                             | 6,033.41                              | 0.013          | 0.049                                            |
| Pipe - (36)                            | 0.020                            | 18.0             | 14.85                               | 29.8                                | 6,030.02                  | 6,029.42                 | 5.38          | 6,030.91             | 6,030.08             | 7.73               | 6,031.29                             | 6,030.89                              | 0.013          | 0.000                                            |
| Pipe - (39)                            | 0.020                            | 18.0             | 14.85                               | 9.5<br>34.1                         | 6,010.89<br>6,011.38      | 6,010.70                 | 2.03          | 6,011.91             | 6,011.92<br>6.011.94 | 5.89               | 6,011.95<br>6,012.79                 | 6,011.94<br>6,012.20                  | 0.013          | 0.000<br>0.000                                   |
| Pipe - (40)<br>Pipe - (41)             | 0.020<br>0.025                   | 18.0<br>12.0     | 14.85<br>7.32                       | 67.3                                | 6,011.38                  | 6,010.70<br>6,030.93     | 6.37<br>2.20  | 6,012.36<br>6,033.25 | 6.031.31             | 8.08<br>8.15       | 6,012.79                             | 6,012.20                              | 0.013 0.010    | 0.000                                            |
| Pipe - (42)                            | 0.025                            | 12.0             | 7.32                                | 81.4                                | 6,030.73                  | 6,028.69                 | 2.57          | 6.031.41             | 6.029.10             | 8.50               | 6.031.72                             | 6,030.22                              | 0.010          | 0.030                                            |
| Pipe - (43)                            | 0.025                            | 12.0             | 7.32                                | 56.7                                | 6,028.49                  | 6,027.07                 | 3.08          | 6,029.24             | 6,027.54             | 8.93               | 6,029.61                             | 6,028.68                              | 0.010          | 0.053                                            |
| Pipe - (44)                            | 0.025                            | 12.0             | 7.32                                | 137.8                               | 6,026.88                  | 6,023.43                 | 3.16          | 6,027.64             | 6,023.89             | 8.98               | 6,028.01                             | 6,025.15                              | 0.010          | 0.051                                            |
| Pipe - (45)                            | 0.025                            | 12.0             | 7.32                                | 102.8                               | 6,023.23                  | 6,020.66                 | 3.60          | 6,024.04             | 6,021.16             | 9.29               | 6,024.48                             | 6,022.50                              | 0.010          | 0.073                                            |
| Pipe - (46)<br>Pipe - (47)             | 0.025<br>0.020                   | 12.0<br>18.0     | 7.32<br>14.85                       | 93.7<br>98.1                        | 6,020.46<br>6,017.62      | 6,018.12<br>6,015.66     | 3.96<br>4.26  | 6,021.31<br>6,018.41 | 6,018.65<br>6,016.21 | 9.51<br>7.26       | 6,021.79<br>6,018.73                 | 6,020.04<br>6,017.02                  | 0.010 0.013    | 0.119<br>0.024                                   |
| Pipe - (48)                            | 0.015                            | 12.0             | 5.67                                | 73.8                                | 6,011.88                  | 6,010.77                 | 0.88          | 6,012.27             | 6,011.04             | 5.25               | 6,012.42                             | 6,011.47                              | 0.010          | 0.000                                            |
| Pipe - (49)                            | 0.015                            | 18.0             | 12.86                               | 61.1                                | 6,010.27                  | 6,009.36                 | 1.59          | 6,010.75             | 6,009.71             | 4.95               | 6,010.92                             | 6,010.09                              | 0.013          | 0.008                                            |
| Pipe - (50)                            | 0.050                            | 18.0             | 23.47                               | 17.9                                | 6,017.88                  | 6,016.99                 | 0.60          | 6,018.17             | 6,017.59             | 5.66               | 6,018.27                             | 6,017.60                              | 0.013          | 0.000                                            |
| Pipe - (51)                            | 0.050                            | 18.0             | 23.47                               | 17.9                                | 6,021.53                  | 6,020.64                 | 0.60          | 6,021.82             | 6,021.18             | 5.66               | 6,021.92                             | 6,021.20                              | 0.013          | 0.000                                            |
| Pipe - (52)<br>Pipe - (53)             | 0.020<br>0.035                   | 18.0<br>18.0     | 14.85<br>19.64                      | 73.0<br>17.8                        | 6,026.40<br>6,024.55      | 6,024.94<br>6,023.92     | 3.40<br>3.81  | 6,027.10<br>6,025.29 | 6,025.43<br>6,024.42 | 6.82<br>8.60       | 6,027.38<br>6,025.58                 | 6,026.15<br>6,025.29                  | 0.013<br>0.013 | 0.000<br>0.039                                   |
| Pipe - (53)<br>Pipe - (54)             | 0.035                            | 18.0             | 23.47                               | 17.0                                | 6,024.55                  | 6,025.92                 | 0.71          | 6,025.29             | 6,024.42             | 5.95               | 6,025.56                             | 6,025.29                              | 0.013          | 0.039                                            |
| Pipe - (55)                            | 0.050                            | 18.0             | 23.47                               | 17.9                                | 6,028.12                  | 6,027.23                 | 0.71          | 6,028.44             | 6,027.57             | 5.95               | 6,028.55                             | 6,027.66                              | 0.013          | 0.000                                            |
| Pipe - (56)                            | 0.030                            | 18.0             | 18.19                               | 17.8                                | 6,029.79                  | 6,029.25                 | 0.62          | 6,030.08             | 6,029.44             | 4.79               | 6,030.18                             | 6,029.80                              | 0.013          | 0.000                                            |
| Pipe - (57)                            | 0.005                            | 18.0             | 7.40                                | 222.1                               | 6,009.14                  | 6,008.04                 | 5.82          | 6,010.98             | 6,010.30             | 3.29               | 6,011.15                             | 6,010.47                              | 0.013          | 0.138                                            |
| Pipe - (59)                            | 0.010                            | 18.0             | 10.50                               | 17.9                                | 6,013.04                  | 6,012.86                 | 2.03          | 6,013.58             | 6,013.31             | 4.60               | 6,013.77                             | 6,013.63                              | 0.013          | 0.044                                            |
| Pipe - (60)<br>Pipe - (61)             | 0.010<br>0.007                   | 18.0<br>18.0     | 10.50<br>8.79                       | 103.3<br>70.0                       | 6,012.66<br>6,011.43      | 6,011.63<br>6,010.94     | 2.38<br>2.38  | 6,013.25<br>6,012.02 | 6,012.11<br>6,011.48 | 4.81<br>4.23       | 6,013.46<br>6,012.23                 | 6,012.47<br>6,011.75                  | 0.013<br>0.013 | 0.008<br>0.071                                   |
| Pipe - (62)                            | 0.007                            | 18.0             | 8.79                                | 22.3                                | 6,010.74                  | 6,010.59                 | 3.35          | 6,011.44             | 6,011.32             | 4.23               | 6,012.23                             | 6,011.56                              | 0.013          | 0.153                                            |
| Pipe - (63)                            | 0.007                            | 18.0             | 8.55                                | 134.8                               | 6,010.38                  | 6,009.49                 | 5.64          | 6,011.30             | 6,010.38             | 5.17               | 6,011.68                             | 6,010.79                              | 0.013          | 0.030                                            |
| Pipe - (64)                            | 0.025                            | 18.0             | 16.61                               | 117.5                               | 6,013.52                  | 6,010.58                 | 2.29          | 6,014.09             | 6,011.31             | 6.60               | 6,014.30                             | 6,011.42                              | 0.013          | 0.000                                            |
| Pipe - (65)                            | 0.027                            | 18.0             | 17.42                               | 121.3                               | 6,014.28                  | 6,010.94                 | 0.97          | 6,014.64             | 6,011.48             | 5.30               | 6,014.77                             | 6,011.53                              | 0.013          | 0.000                                            |
| Pipe - (66)                            | 0.006                            | 18.0             | 8.25                                | 40.3<br>30.8                        | 6,013.11<br>5,989.34      | 6,012.86<br>5,988.72     | 0.35          | 6,013.33             | 6,013.25             | 2.32               | 6,013.40<br>5,992.19                 | 6,013.26<br>5,992.10                  | 0.013          | 0.033<br>0.001                                   |
| Pipe - (69)<br>Pipe - (72)             | 0.020<br>0.020                   | 36.0<br>18.0     | 94.56<br>14.85                      | 29.7                                | 5,989.34<br>6,013.55      | 6,012.95                 | 35.09<br>5.12 | 5,991.60<br>6,019.00 | 5,991.72<br>6,018.93 | 12.38<br>2.90      | 6,019.14                             | 6,019.06                              | 0.013 0.013    | 0.001                                            |
| Pipe - (73)                            | 0.020                            | 18.0             | 14.85                               | 9.0                                 | 6,013.13                  | 6,012.95                 | 4.67          | 6,018.80             | 6,018.78             | 2.64               | 6,018.91                             | 6,018.89                              | 0.013          | 0.000                                            |
| Pipe - (74)                            | 0.050                            | 18.0             | 23.47                               | 31.3                                | 6,009.45                  | 6,007.89                 | 13.92         | 6,010.83             | 6,008.83             | 13.85              | 6,011.88                             | 6,011.05                              | 0.013          | 0.000                                            |
| Pipe - (75)                            | 0.010                            | 12.0             | 4.63                                | 24.2                                | 6,013.85                  | 6,013.61                 | 0.09          | 6,013.98             | 6,013.71             | 2.31               | 6,014.02                             | 6,013.79                              | 0.010          | 0.000                                            |
| Pipe - (76)                            | 0.030                            | 12.0             | 8.02                                | 15.9                                | 6,014.02                  | 6,013.54                 | 0.35          | 6,014.26             | 6,013.68             | 5.12               | 6,014.35                             | 6,014.06                              | 0.010          | 0.000                                            |
| Pipe - (78)                            | 0.020                            | 12.0             | 6.55                                | 21.0                                | 6,010.06                  | 6,009.64                 | 0.18          | 6,011.01             | 6,011.00             | 3.63               | 6,011.01                             | 6,011.01                              | 0.010          | 0.000                                            |

X:\1590000.all\1595010\StormCAD\1595010 StormCAD.stsw

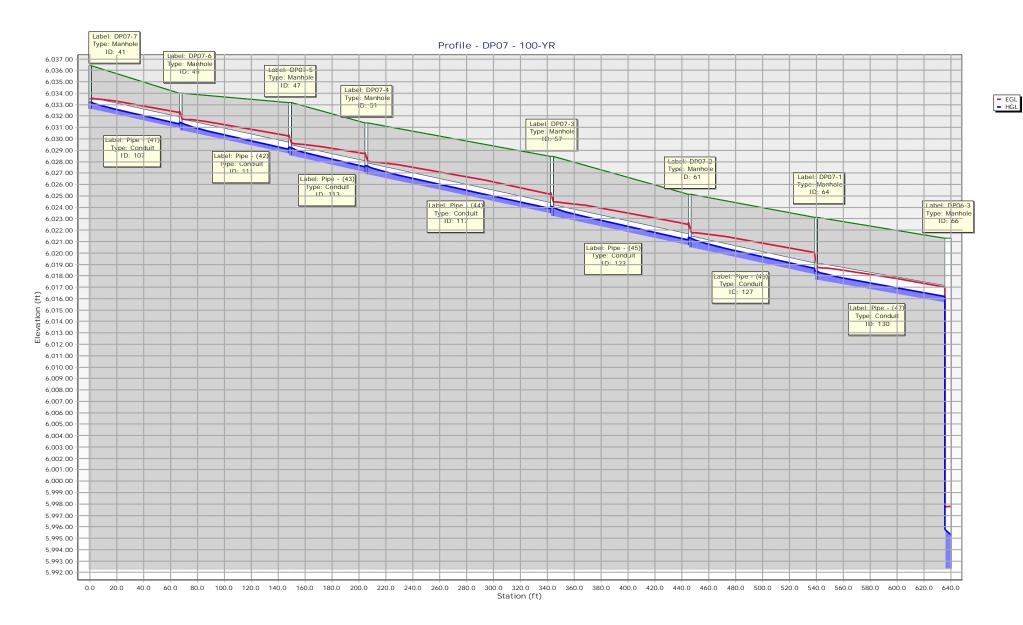


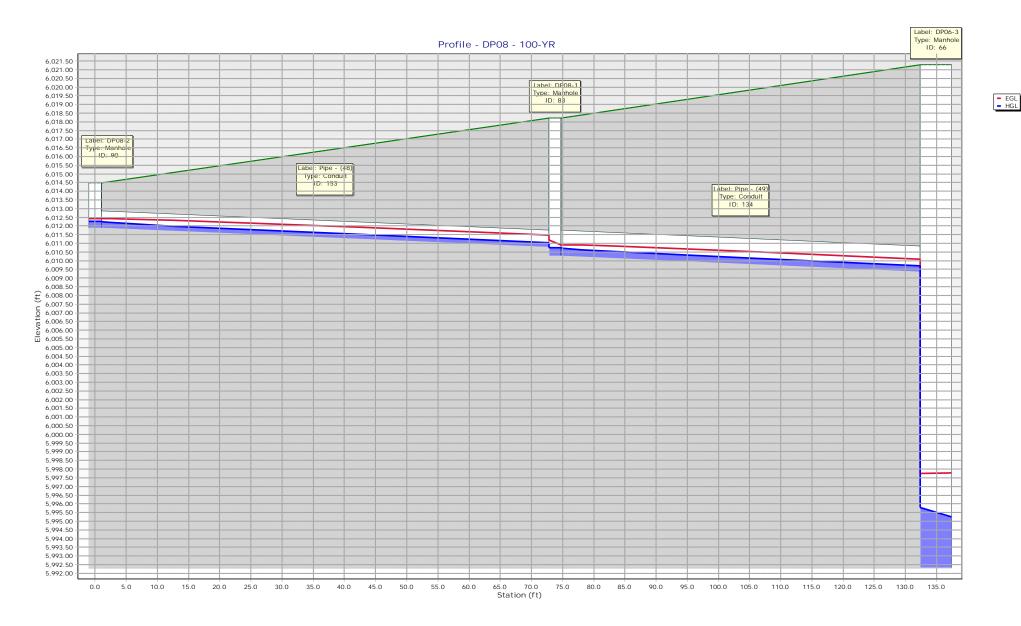


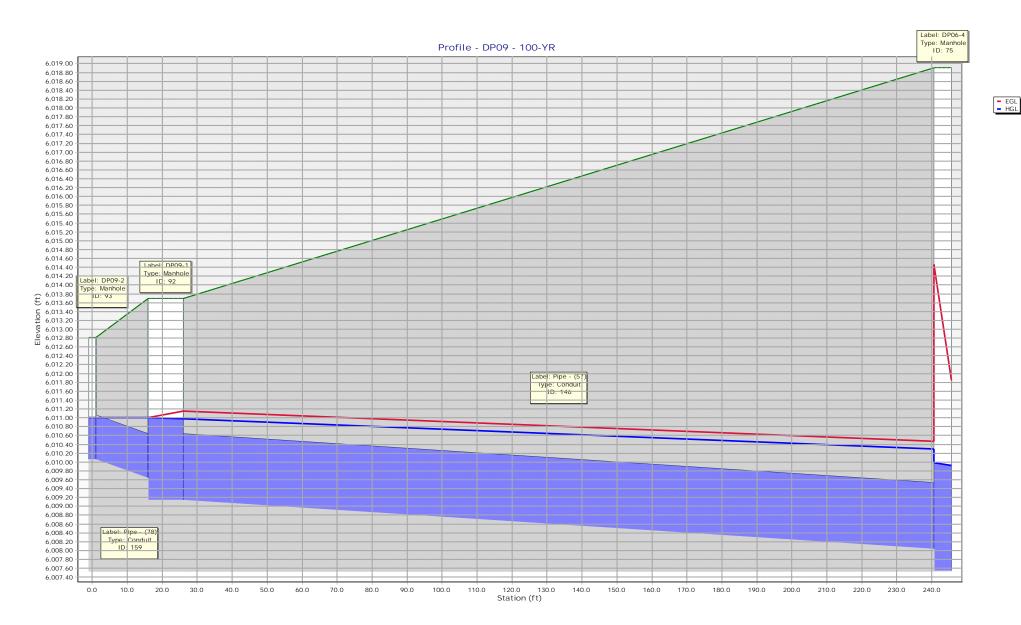

Profile - DP02 - 100-YR

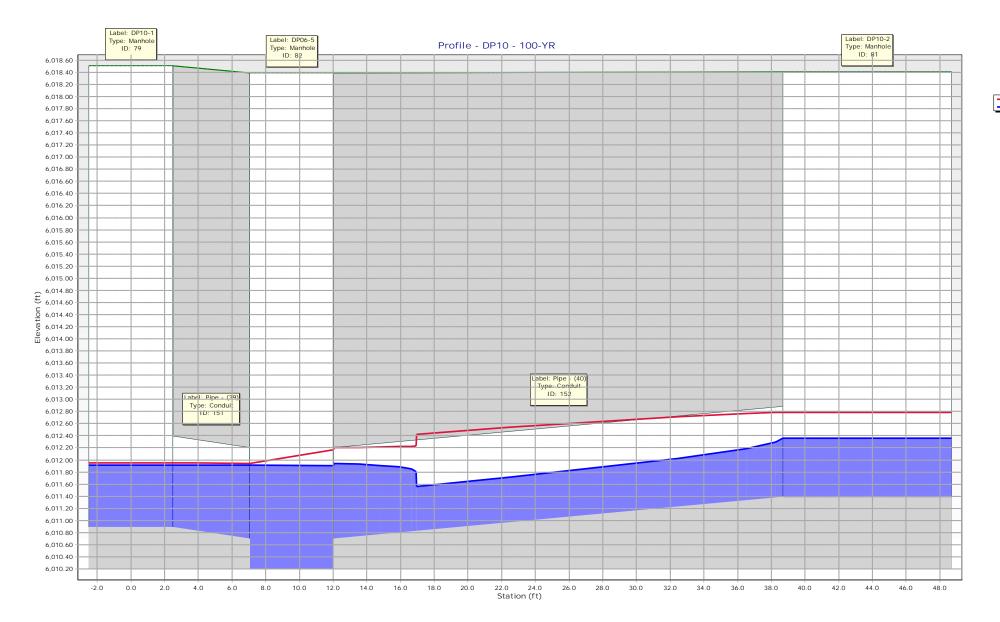



Profile - DP04 - 100-YR





= EGL = HGL

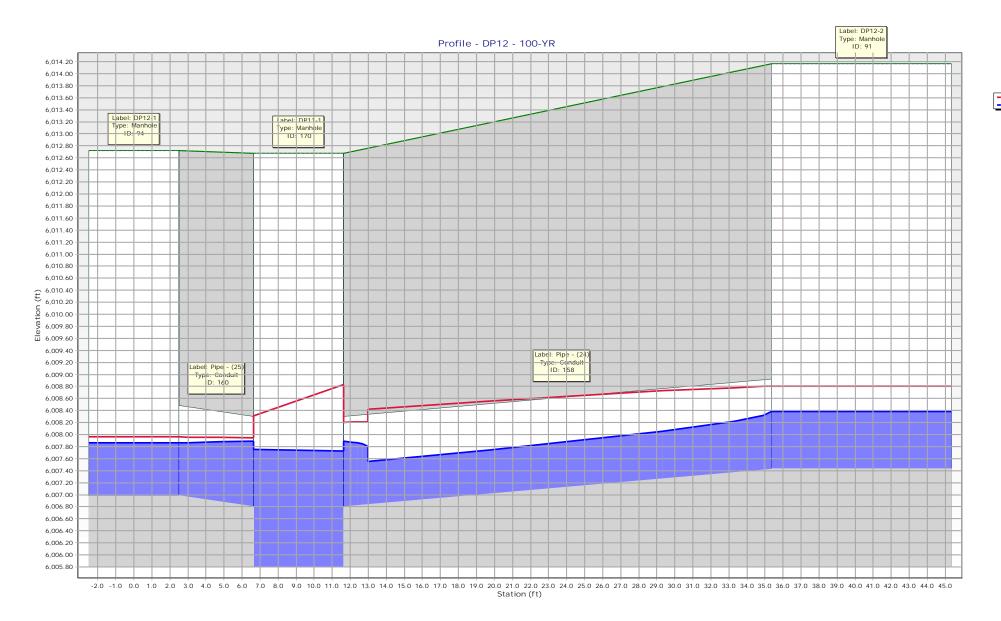


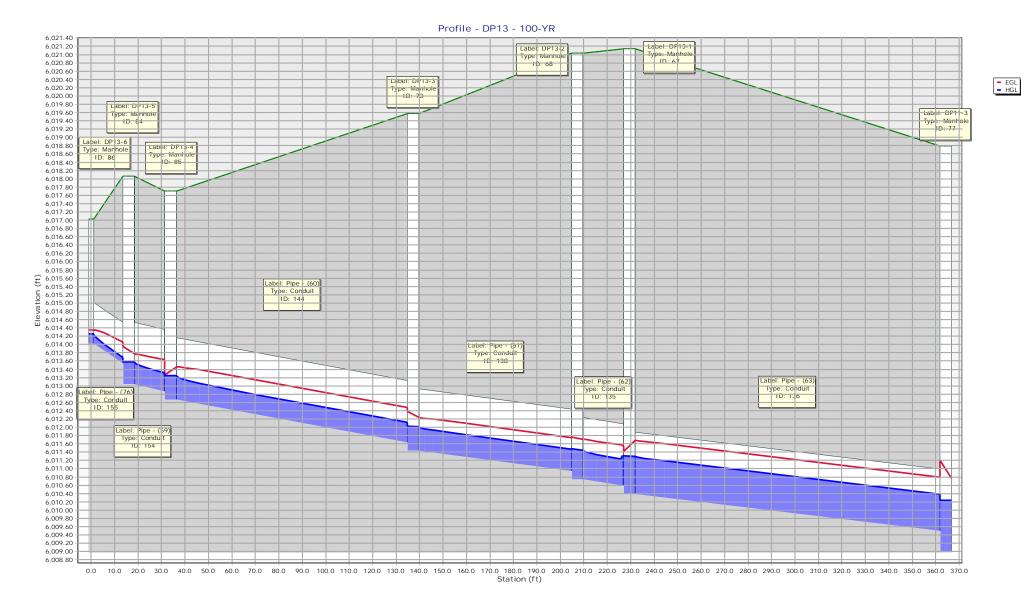



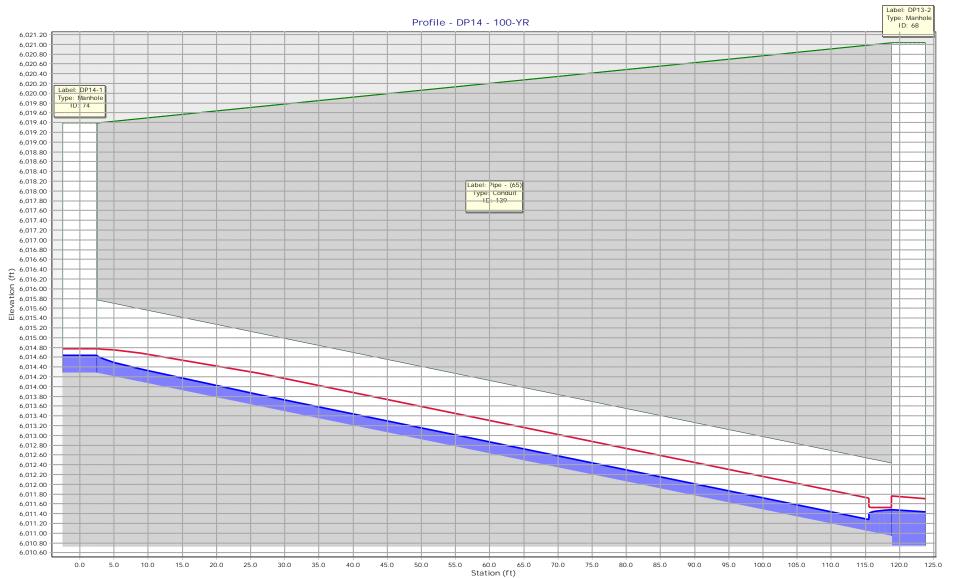


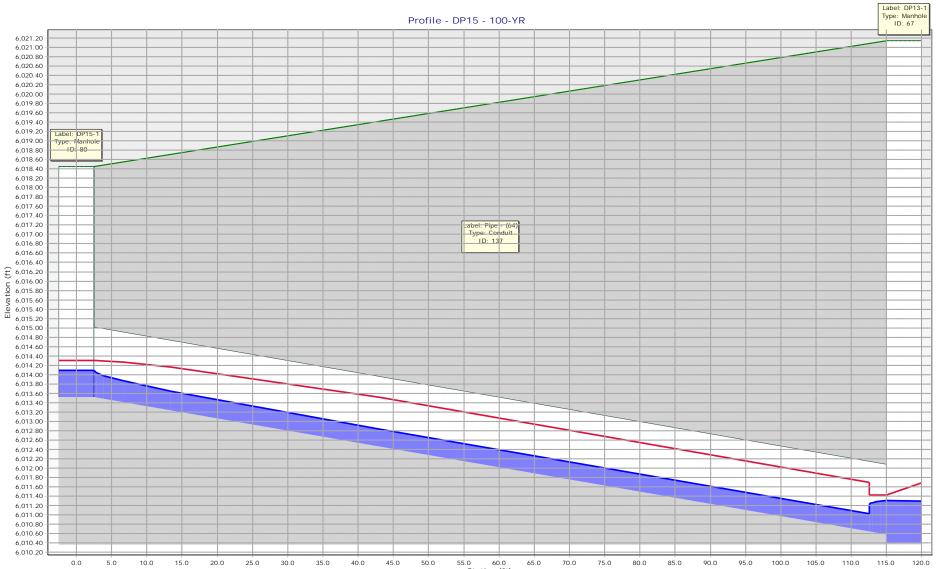
Profile - DP06 - 100-YR

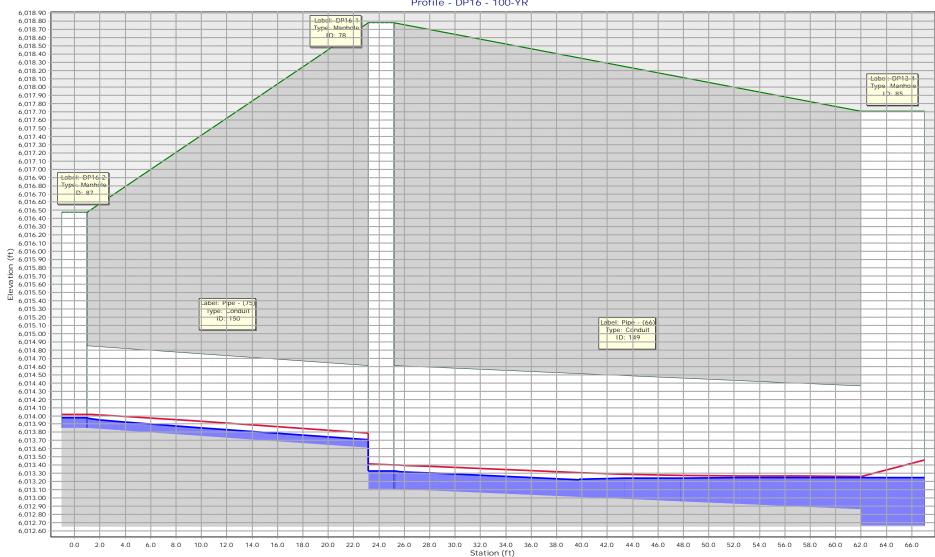




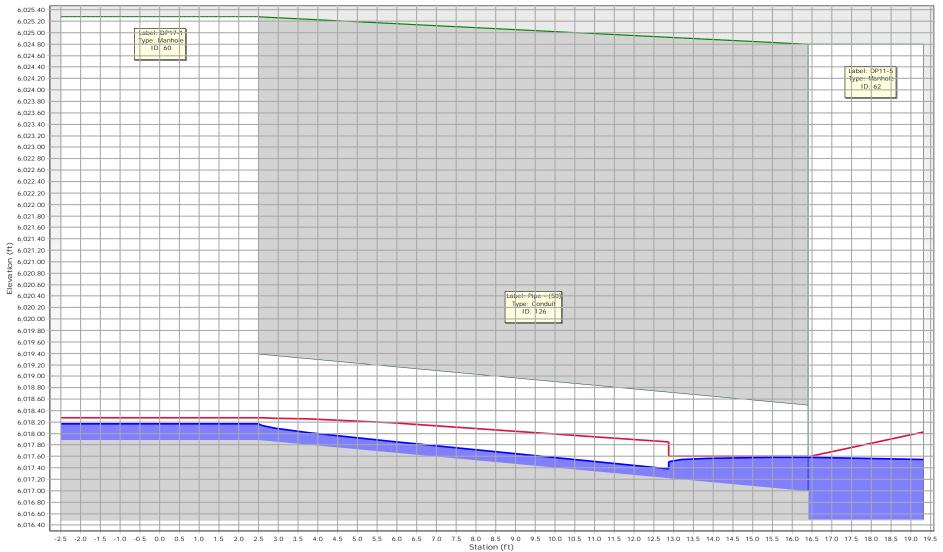



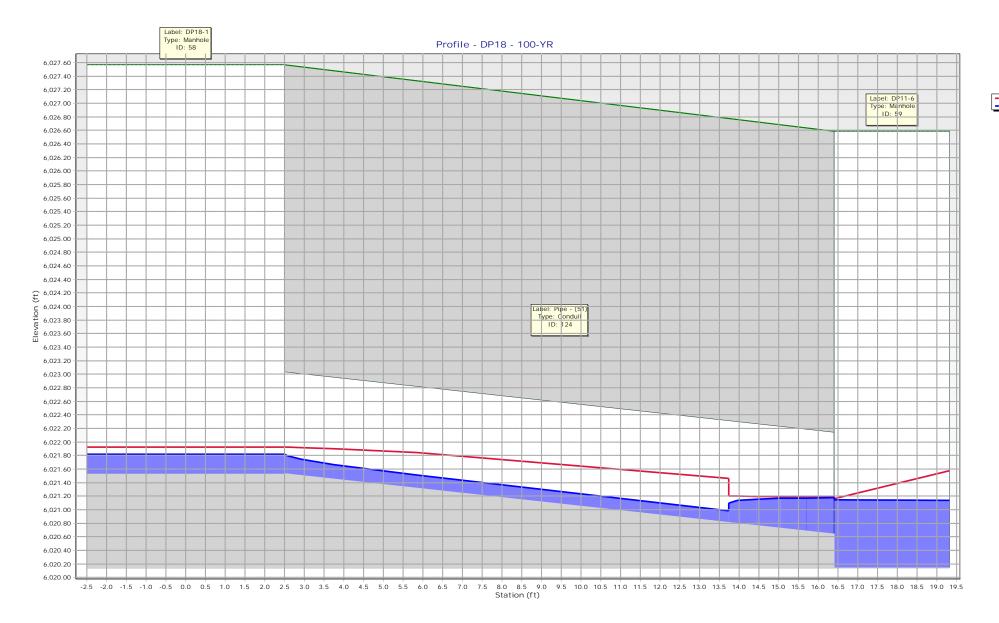



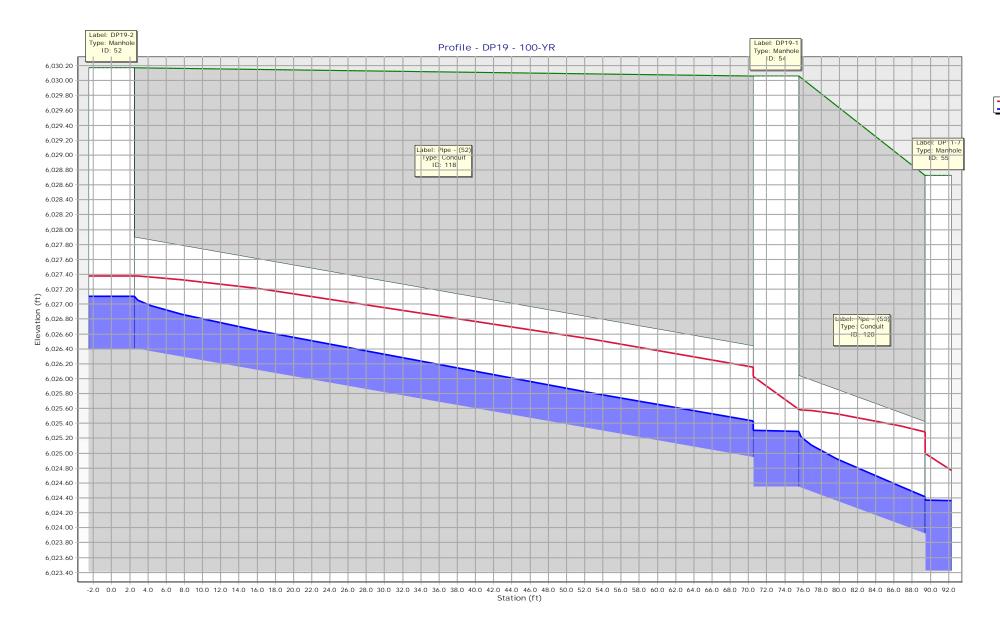


Profile - DP11 - 100-YR



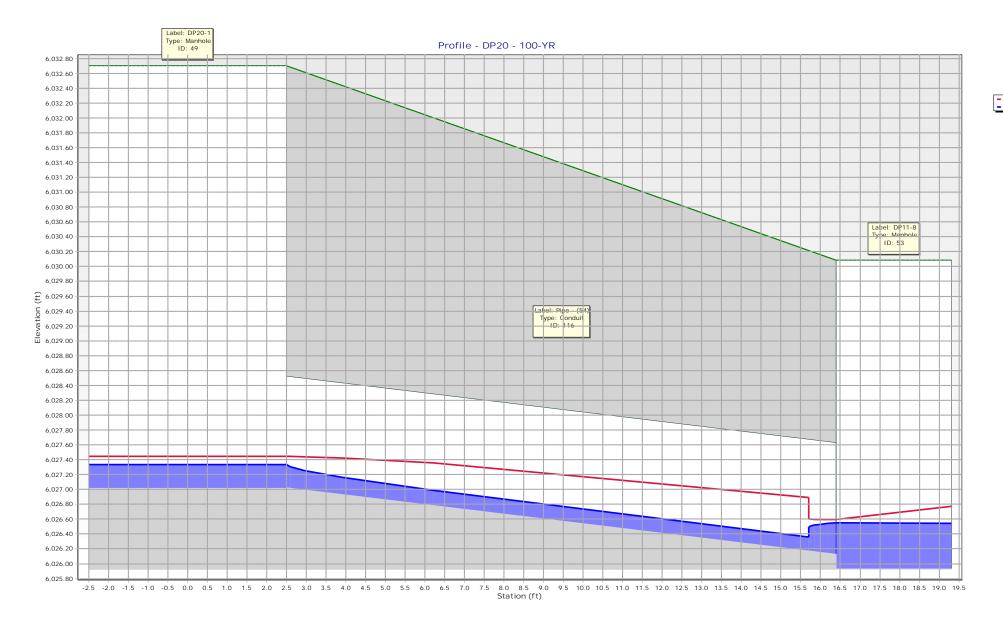


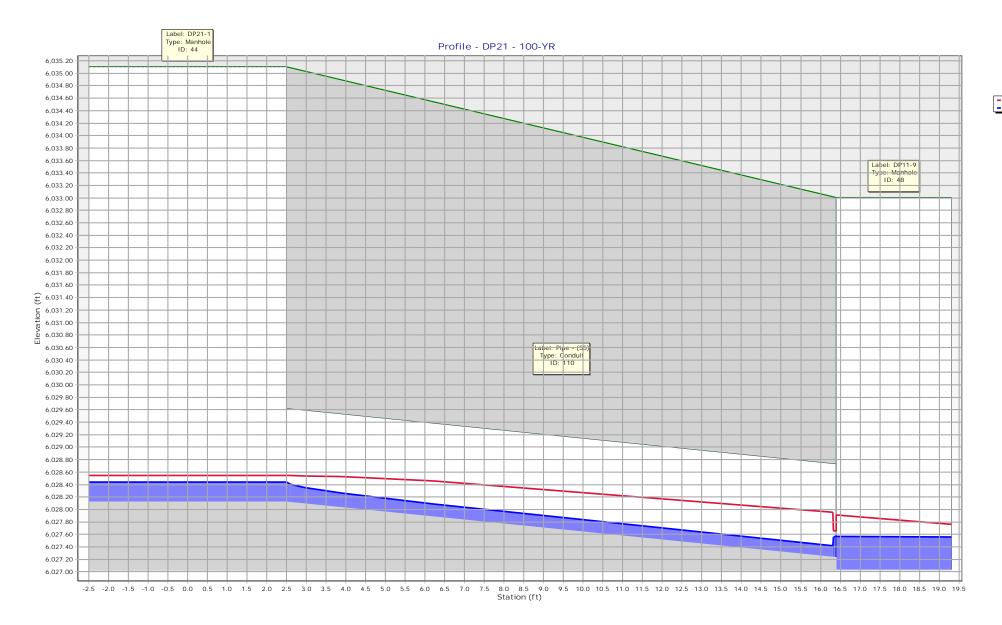


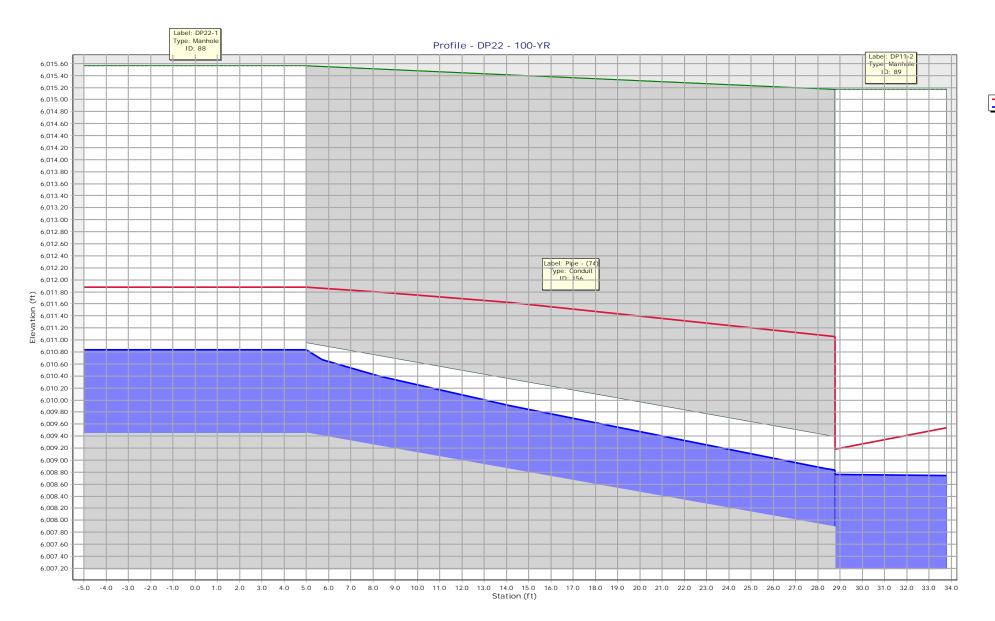




Profile - DP16 - 100-YR


Profile - DP17 - 100-YR

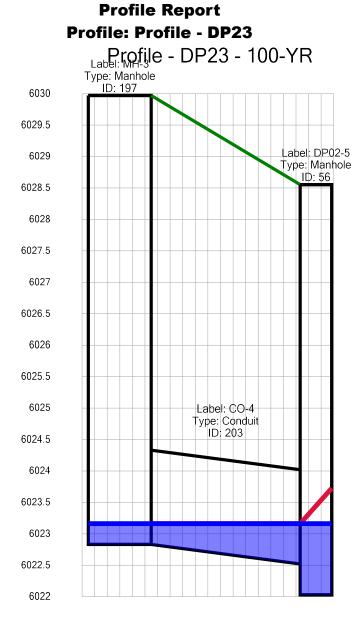





EGLHGL








= EGL = HGL



EGLHGL



Elevation (ft)

 $\textbf{-6} \ \textbf{-4} \ \textbf{-2} \ \textbf{0} \ \textbf{2} \ \textbf{4} \ \textbf{6} \ \textbf{8} \ \textbf{10} \textbf{12} \textbf{14} \textbf{16} \textbf{18} \textbf{20} \textbf{22} \textbf{24} \textbf{26} \textbf{28} \textbf{30} \textbf{32} \textbf{34}$ 

# Station (ft)

# INLET MANAGEMENT

Worksheet Protected

| NLET NAME                                                                                                                                                                                                                                 | Inlet DP01                              | Inlet DP02                                 | Inlet DP03                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------|
| Site Type (Urban or Rural)                                                                                                                                                                                                                | URBAN                                   | URBAN                                      | URBAN                        |
| Inlet Application (Street or Area)                                                                                                                                                                                                        | STREET                                  | STREET                                     | STREET                       |
| Hydraulic Condition                                                                                                                                                                                                                       | On Grade                                | On Grade                                   | In Sump                      |
| Inlet Type                                                                                                                                                                                                                                | CDOT Type R Curb Opening                | CDOT Type R Curb Opening                   | CDOT Type R Curb Opening     |
| ER-DEFINED INPUT                                                                                                                                                                                                                          |                                         |                                            |                              |
| User-Defined Design Flows                                                                                                                                                                                                                 |                                         |                                            |                              |
| Minor Q <sub>Known</sub> (cfs)                                                                                                                                                                                                            | 1.21                                    | 2.08                                       | 0.40                         |
| Major Q <sub>Known</sub> (cfs)                                                                                                                                                                                                            | 2.83                                    | 5.38                                       | 0.79                         |
| Bypass (Carry-Over) Flow from Upstrear                                                                                                                                                                                                    | n Inlate must be organized from unstra- | am (left) to downstream (right) in order f | or humans flows to be linked |
| Receive Bypass Flow from:                                                                                                                                                                                                                 | No Bypass Flow Received                 | No Bypass Flow Received                    | No Bypass Flow Received      |
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                          | 0.0                                     | 0.0                                        | 0.0                          |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                          | 0.0                                     | 0.0                                        | 0.0                          |
| Percent Impervious                                                                                                                                                                                                                        |                                         |                                            |                              |
| Subcatchment Area (acres) Percent Impervious                                                                                                                                                                                              |                                         |                                            |                              |
| NRCS Soil Type                                                                                                                                                                                                                            |                                         |                                            |                              |
|                                                                                                                                                                                                                                           |                                         |                                            |                              |
| Watershed Profile                                                                                                                                                                                                                         |                                         |                                            |                              |
| Overland Slope (ft/ft)                                                                                                                                                                                                                    |                                         |                                            |                              |
|                                                                                                                                                                                                                                           |                                         |                                            |                              |
| Overland Length (ft)                                                                                                                                                                                                                      |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)                                                                                                                                                                                             |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)                                                                                                                                                                                             |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)                                                                                                                                                                      |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input                                                                                                                                        |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                                                  |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)                                                                                                                                                                                             |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)<br>One-Hour Precipitation, P <sub>1</sub> (inches)                               |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)<br>One-Hour Precipitation, P <sub>1</sub> (inches)<br>Major Storm Rainfall Input |                                         |                                            |                              |
| Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                                                  |                                         |                                            |                              |

| Minor Total Design Peak Flow, Q (cfs)                | 1.2 | 2.1  | 0.4 |
|------------------------------------------------------|-----|------|-----|
| Major Total Design Peak Flow, Q (cfs)                | 2.8 | 5.4  | 0.8 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 0.0 | 0.0  | N/A |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 0.0 | 0.16 | N/A |
|                                                      |     |      |     |

# INLET MANAGEMENT

Worksheet Protected

| INLET NAME                                         | Inlet DP05               | Inlet DP07               | Inlet DP14               |
|----------------------------------------------------|--------------------------|--------------------------|--------------------------|
| Site Type (Urban or Rural)                         | URBAN                    | URBAN                    | URBAN                    |
| Inlet Application (Street or Area)                 | STREET                   | STREET                   | STREET                   |
| Hydraulic Condition                                | On Grade                 | On Grade                 | In Sump                  |
| Inlet Type                                         | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening |
| ER-DEFINED INPUT                                   |                          |                          |                          |
| User-Defined Design Flows                          |                          |                          |                          |
| Minor Q <sub>Known</sub> (cfs)                     | 2.18                     | 1.96                     | 1.88                     |
| Major Q <sub>Known</sub> (cfs)                     | 5.12                     | 4.67                     | 4.59                     |
| -                                                  | •                        |                          |                          |
| Bypass (Carry-Over) Flow from Upstrean             |                          |                          |                          |
| Receive Bypass Flow from:                          | User-Defined             | No Bypass Flow Received  | User-Defined             |
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs)   | 0.0                      | 0.0                      | 0.11                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)   | 0.43                     | 0.00                     | 1.78                     |
| Percent Impervious<br>NRCS Soil Type               |                          |                          |                          |
| Percent Impervious                                 |                          |                          |                          |
|                                                    |                          |                          |                          |
| Watershed Profile                                  |                          |                          |                          |
| Overland Slope (ft/ft)                             |                          |                          |                          |
| Overland Length (ft)                               |                          |                          |                          |
| Channel Slope (ft/ft)                              |                          |                          |                          |
| Channel Length (ft)                                |                          |                          |                          |
| Minor Storm Rainfall Input                         |                          |                          |                          |
| Design Storm Return Period, T <sub>r</sub> (years) |                          |                          |                          |
| One-Hour Precipitation, $P_1$ (inches)             |                          |                          |                          |
|                                                    |                          |                          |                          |
| Major Storm Rainfall Input                         |                          |                          |                          |
| Design Storm Return Period, Tr (years)             |                          |                          |                          |
| Boolgi Broterin Hotani Ponoa, i (Joaro)            |                          |                          |                          |

| 2.2  | 2.0  | 1.99     |
|------|------|----------|
| 5.55 | 4.7  | 6.37     |
| 0.0  | 0.11 | N/A      |
| 0.20 | 1.58 | N/A      |
|      | 0.0  | 0.0 0.11 |

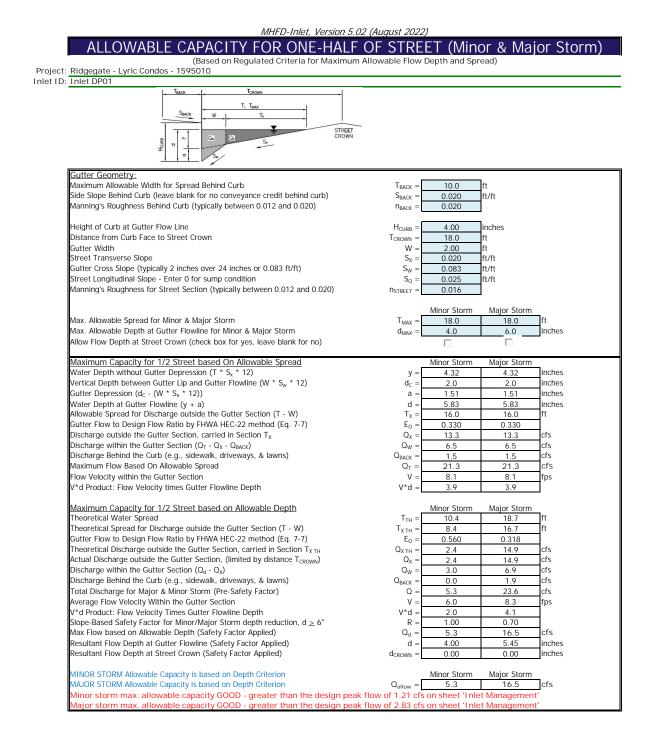
# INLET MANAGEMENT

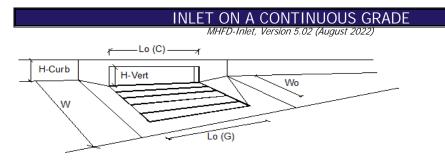
Worksheet Protected

| NLET NAME                                                                                                                                                                                                                                                  | Inlet DP15               | Inlet DP16                            | Inlet DP19              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|-------------------------|
| Site Type (Urban or Rural)                                                                                                                                                                                                                                 | URBAN                    | URBAN                                 | URBAN                   |
| nlet Application (Street or Area)                                                                                                                                                                                                                          | STREET                   | STREET                                | AREA                    |
| Hydraulic Condition                                                                                                                                                                                                                                        | In Sump                  | In Sump                               | Swale                   |
| nlet Type                                                                                                                                                                                                                                                  | CDOT Type R Curb Opening | CDOT Type R Curb Opening              | User-Defined            |
| **                                                                                                                                                                                                                                                         |                          | · · · · · · · · · · · · · · · · · · · |                         |
| ER-DEFINED INPUT                                                                                                                                                                                                                                           |                          |                                       |                         |
| User-Defined Design Flows                                                                                                                                                                                                                                  |                          |                                       |                         |
| Minor Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                             | 0.84                     | 2.33                                  | 0.25                    |
| Major Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                             | 2.03                     | 5.64                                  | 4.18                    |
|                                                                                                                                                                                                                                                            |                          |                                       |                         |
| Bypass (Carry-Over) Flow from Upstrean                                                                                                                                                                                                                     | n                        |                                       |                         |
| Receive Bypass Flow from:                                                                                                                                                                                                                                  | No Bypass Flow Received  | User-Defined                          | No Bypass Flow Received |
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                           | 0.0                      | 0.0                                   | 0.0                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                           | 0.00                     | 0.00                                  | 0.00                    |
| Percent Impervious                                                                                                                                                                                                                                         |                          |                                       |                         |
| Subcatchment Area (acres)                                                                                                                                                                                                                                  |                          |                                       |                         |
| Percent Impervious                                                                                                                                                                                                                                         |                          |                                       |                         |
|                                                                                                                                                                                                                                                            |                          |                                       |                         |
| NRCS Soil Type                                                                                                                                                                                                                                             |                          |                                       |                         |
| 21                                                                                                                                                                                                                                                         |                          |                                       |                         |
| Watershed Profile                                                                                                                                                                                                                                          |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)                                                                                                                                                                                                                |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)                                                                                                                                                                                        |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)                                                                                                                                                               |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)                                                                                                                                                                                        |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)                                                                                                                                                               |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)                                                                                                                                        |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input                                                                                                          |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                    |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                    |                          |                                       |                         |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)<br>One-Hour Precipitation, P <sub>1</sub> (inches) |                          |                                       |                         |

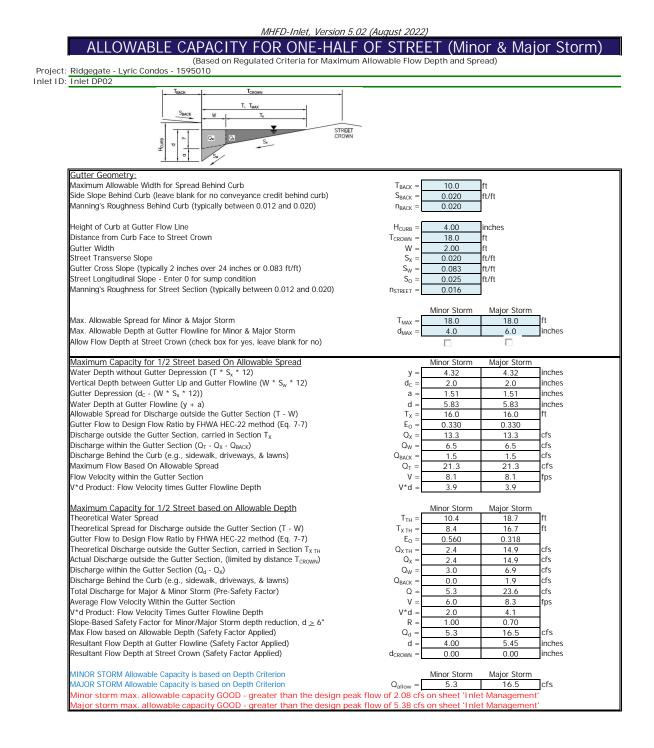
| 0.8 | 2.3 | 0.3 |
|-----|-----|-----|
| 2.0 | 5.6 | 4.2 |
| N/A | N/A | 0.0 |
| N/A | N/A | 0.0 |
|     |     |     |

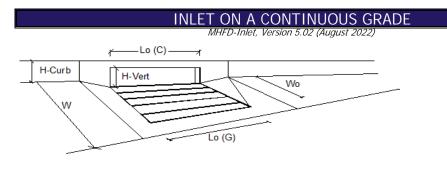
# INLET MANAGEMENT


Worksheet Protected

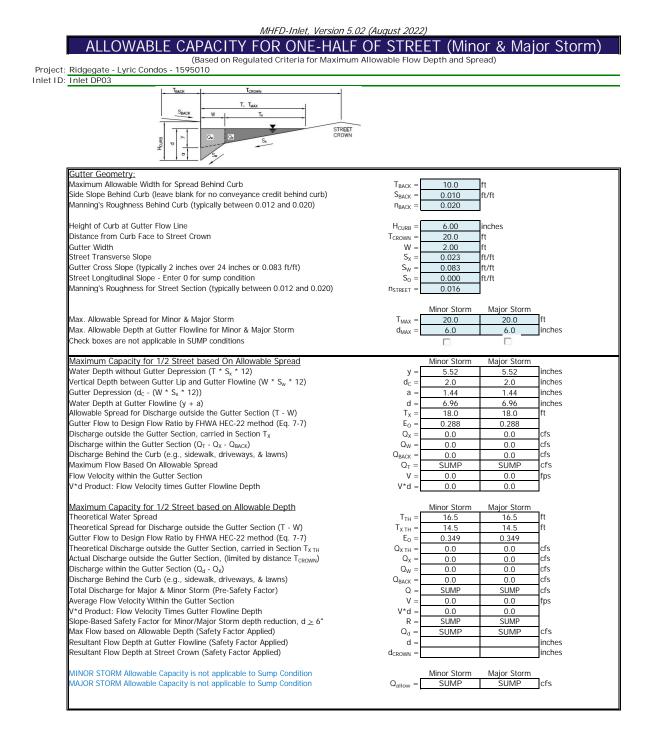

| INLET NAME                         | Inlet DP24               |
|------------------------------------|--------------------------|
| Site Type (Urban or Rural)         | URBAN                    |
| Inlet Application (Street or Area) | STREET                   |
| Hydraulic Condition                | On Grade                 |
| Inlet Type                         | CDOT Type R Curb Opening |

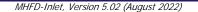
#### USER-DEFINED INPUT

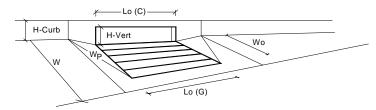

| User-Defined Design Flows                          |              |
|----------------------------------------------------|--------------|
| Minor Q <sub>Known</sub> (cfs)                     | 2.62         |
| Major Q <sub>Known</sub> (cfs)                     | 6.09         |
|                                                    |              |
| Bypass (Carry-Over) Flow from Upstream             |              |
| Receive Bypass Flow from:                          | User-Defined |
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs)   | 0.0          |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)   | 0.16         |
|                                                    |              |
| Watershed Characteristics                          |              |
| Subcatchment Area (acres)                          |              |
| Percent Impervious                                 |              |
| NRCS Soil Type                                     |              |
|                                                    |              |
| Watershed Profile                                  |              |
| Overland Slope (ft/ft)                             |              |
| Overland Length (ft)                               |              |
| Channel Slope (ft/ft)                              |              |
| Channel Length (ft)                                |              |
|                                                    |              |
| Minor Storm Rainfall Input                         |              |
| Design Storm Return Period, $T_r$ (years)          |              |
| One-Hour Precipitation, P <sub>1</sub> (inches)    |              |
| Major Storm Rainfall Input                         |              |
| Design Storm Return Period, T <sub>r</sub> (years) |              |
| One-Hour Precipitation, $P_1$ (inches)             |              |
|                                                    |              |
|                                                    |              |


| Minor Total Design Peak Flow, Q (cfs)                | 2.6 |
|------------------------------------------------------|-----|
| Major Total Design Peak Flow, Q (cfs)                | 6.3 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 0.0 |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 0.4 |

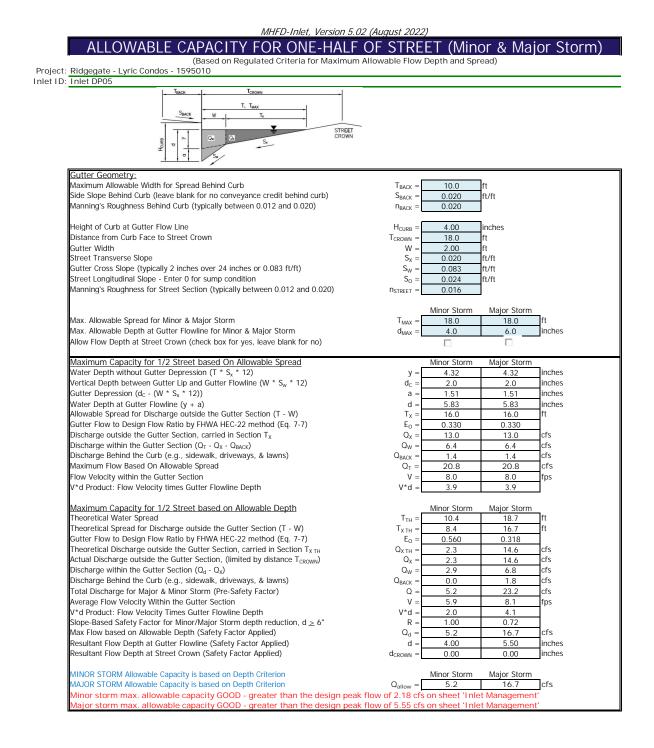


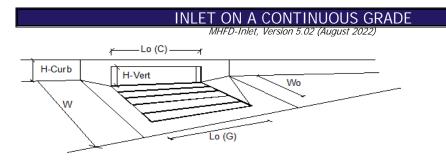




| Design Information (Input)                                                           |                                      | MINOR       | MAJOR         |         |
|--------------------------------------------------------------------------------------|--------------------------------------|-------------|---------------|---------|
| Type of Inlet                                                                        | Type =                               | CDOT Type R | Curb Opening  |         |
| Local Depression (additional to continuous gutter depression 'a')                    | a <sub>LOCAL</sub> =                 | 5.0         | 5.0           | inches  |
| Total Number of Units in the Inlet (Grate or Curb Opening)                           | No =                                 | 1           | 1             |         |
| Length of a Single Unit Inlet (Grate or Curb Opening)                                | $L_0 =$                              | 10.00       | 10.00         | ft      |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)                       | W <sub>o</sub> =                     | N/A         | N/A           | ft      |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)                   | $C_f(G) =$                           | N/A         | N/A           |         |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = $0.1$ )         | $C_f(C) =$                           | 0.10        | 0.10          |         |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                               |                                      | MINOR       | MAJOR         |         |
| Design Discharge for Half of Street (from Inlet Management)                          | $Q_0 =$                              | 1.2         | 2.8           | cfs     |
| Water Spread Width                                                                   | T =                                  | 4.6         | 7.6           | ft      |
| Water Depth at Flowline (outside of local depression)                                | d =                                  | 2.6         | 3.3           | inches  |
| Water Depth at Street Crown (or at T <sub>MAX</sub> )                                | d <sub>CROWN</sub> =                 | 0.0         | 0.0           | inches  |
| Ratio of Gutter Flow to Design Flow                                                  | $E_0 =$                              | 0.917       | 0.710         |         |
| Discharge outside the Gutter Section W, carried in Section T,                        | $Q_x =$                              | 0.1         | 0.8           | cfs     |
| Discharge within the Gutter Section W                                                | $Q_w =$                              | 1.1         | 2.0           | cfs     |
| Discharge Behind the Curb Face                                                       | $Q_{BACK} =$                         | 0.0         | 0.0           | cfs     |
| Flow Area within the Gutter Section W                                                | $A_W =$                              | 0.27        | 0.39          | sq ft   |
| Velocity within the Gutter Section W                                                 | V <sub>W</sub> =                     | 4.1         | 5.1           | fps     |
| Water Depth for Design Condition                                                     | d <sub>LOCAL</sub> =                 | 7.6         | 8.3           | inches  |
| Grate Analysis (Calculated)                                                          | GLOCAL -                             | MINOR       | MAJOR         | incric3 |
| Total Length of Inlet Grate Opening                                                  | L =                                  | N/A         | N/A           | ft      |
| Ratio of Grate Flow to Design Flow                                                   | E <sub>o-GRATE</sub> =               | N/A         | N/A           |         |
| Under No-Clogging Condition                                                          | -0-GRATE                             | MINOR       | MAJOR         | _       |
| Minimum Velocity Where Grate Splash-Over Begins                                      | V <sub>0</sub> =                     | N/A         | N/A           | fps     |
| Interception Rate of Frontal Flow                                                    | R <sub>f</sub> =                     | N/A         | N/A           | 103     |
| Interception Rate of Side Flow                                                       | $R_r = R_r$                          | N/A         | N/A           | _       |
| Interception Capacity                                                                | $Q_i =$                              | N/A         | N/A           | cfs     |
| Under Clogging Condition                                                             | Q <sub>1</sub> =                     | MINOR       | MAJOR         | c13     |
| Clogging Coefficient for Multiple-unit Grate Inlet                                   | GrateCoeff =                         | N/A         | N/A           |         |
| Clogging Factor for Multiple-unit Grate Inlet                                        | GrateClog =                          | N/A<br>N/A  | N/A<br>N/A    |         |
| Effective (unclogged) Length of Multiple-unit Grate Inlet                            | $L_e =$                              | N/A         | N/A           | ft      |
| Minimum Velocity Where Grate Splash-Over Begins                                      | V <sub>0</sub> =                     | N/A<br>N/A  | N/A<br>N/A    | fps     |
| Interception Rate of Frontal Flow                                                    | $R_{f} =$                            | N/A<br>N/A  | N/A<br>N/A    | ips     |
| Interception Rate of Side Flow                                                       | $R_r = R_r$                          | N/A<br>N/A  | N/A<br>N/A    | -       |
| Actual Interception Capacity                                                         | $Q_a =$                              | N/A         | N/A<br>N/A    | cfs     |
| Carry-Over Flow = $Q_0$ - $Q_a$ (to be applied to curb opening or next d/s inlet)    | $Q_a = Q_b =$                        | N/A         | N/A           | cfs     |
| Curb Opening or Slotted Inlet Analysis (Calculated)                                  | Qb -                                 | MINOR       | MAJOR         | CI3     |
| Equivalent Slope $S_{e}$                                                             | S <sub>e</sub> =                     | 0.269       | 0.213         | ft/ft   |
| Required Length L <sub>T</sub> to Have 100% Interception                             | S <sub>e</sub> =<br>L <sub>T</sub> = | 4.15        | 7.12          | ft      |
| Under No-Clogging Condition                                                          | LT -                                 | MINOR       | MAJOR         | IL      |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L, L <sub>T</sub> )    | L =                                  | 4.15        | 7.12          | ft      |
|                                                                                      | L =<br>Q <sub>i</sub> =              | 4.15        | 2.8           | cfs     |
| Interception Capacity                                                                | $Q_i =$                              | MINOR       | 2.8<br>MAJOR  | us      |
| <u>Under Clogging Condition</u><br>Clogging Coefficient                              | CurbCoeff =                          | 1.25        | MAJOR<br>1.25 |         |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet                      | CurbClog =                           | 0.06        | 0.06          | -       |
|                                                                                      |                                      |             | 7.12          | ft      |
| Effective (Unclogged) Length                                                         | L <sub>e</sub> =                     | 4.15<br>1.2 | 2.8           | cfs     |
| Actual Interception Capacity                                                         | Q <sub>a</sub> =                     |             | -             |         |
| Carry-Over Flow = $Q_{b(GRATE)}$ - $Q_a$                                             | $Q_b =$                              | 0.0         | 0.0           | cfs     |
| Summary                                                                              | о Г                                  | MINOR       | MAJOR         | ofo     |
| Total Inlet Interception Capacity                                                    | Q =                                  | 1.21        | 2.83          | cfs     |
| Total Inlet Carry-Over Flow (flow bypassing inlet)<br>Capture Percentage = $Q_a/Q_o$ | $Q_b =$                              | 0.00        | 0.00          | cfs     |
| capture Percentage = $Q_a/Q_o$                                                       | C% =                                 | 100         | 100           | %       |

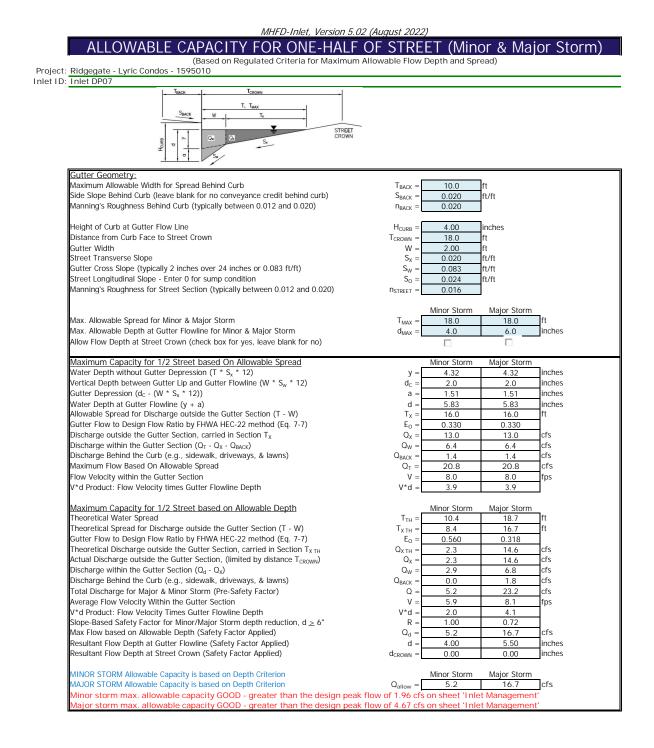


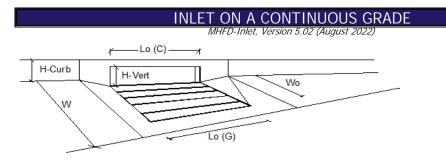




| Design Information (Input)                                                        |                                      | MINOR       | MAJOR        |         |
|-----------------------------------------------------------------------------------|--------------------------------------|-------------|--------------|---------|
| Type of Inlet                                                                     | Type =                               | CDOT Type R | Curb Opening |         |
| Local Depression (additional to continuous gutter depression 'a')                 | a <sub>LOCAL</sub> =                 | 5.0         | 5.0          | inches  |
| Total Number of Units in the Inlet (Grate or Curb Opening)                        | No =                                 | 1           | 1            |         |
| Length of a Single Unit Inlet (Grate or Curb Opening)                             | L <sub>0</sub> =                     | 10.00       | 10.00        | ft      |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)                    | W <sub>0</sub> =                     | N/A         | N/A          | ft      |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)                | $C_f(G) =$                           | N/A         | N/A          |         |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)         | $C_f(C) =$                           | 0.10        | 0.10         |         |
| Street Hydraulics: OK - Q < Allowable Street Capacity                             |                                      | MINOR       | MAJOR        |         |
| Design Discharge for Half of Street (from <i>Inlet Management</i> )               | $Q_0 =$                              | 2.1         | 5.4          | cfs     |
| Water Spread Width                                                                | -0<br>T =                            | 6.5         | 10.4         | ft      |
| Water Depth at Flowline (outside of local depression)                             | d =                                  | 3.1         | 4.0          | inches  |
| Water Depth at Street Crown (or at $T_{MAX}$ )                                    | d <sub>CROWN</sub> =                 | 0.0         | 0.0          | inches  |
| Ratio of Gutter Flow to Design Flow                                               | $E_0 =$                              | 0.789       | 0.558        | indites |
| Discharge outside the Gutter Section W, carried in Section $T_x$                  | $Q_x =$                              | 0.4         | 2.4          | cfs     |
| Discharge within the Gutter Section W                                             | $Q_{\rm W} =$                        | 1.6         | 3.0          | cfs     |
| Discharge Behind the Curte Face                                                   | $Q_W = Q_{BACK} =$                   | 0.0         | 0.0          | cfs     |
| Flow Area within the Gutter Section W                                             | $Q_{BACK} = A_W =$                   | 0.34        | 0.50         | sq ft   |
| Velocity within the Gutter Section W                                              | A <sub>W</sub> =<br>V <sub>W</sub> = | 4.8         | 6.0          | fps     |
| Water Depth for Design Condition                                                  |                                      | 8.1         | 9.0          | inches  |
| Grate Analysis (Calculated)                                                       | d <sub>LOCAL</sub> =                 | MINOR       | 9.0<br>MAJOR | inches  |
| Total Length of Inlet Grate Opening                                               | L =                                  | N/A         | N/A          | ft      |
|                                                                                   |                                      | N/A<br>N/A  | N/A<br>N/A   | 11      |
| Ratio of Grate Flow to Design Flow                                                | E <sub>o-GRATE</sub> =               | MINOR       |              |         |
| Under No-Clogging Condition                                                       | v F                                  |             | MAJOR        | 6       |
| Minimum Velocity Where Grate Splash-Over Begins                                   | V <sub>o</sub> =                     | N/A         | N/A          | fps     |
| Interception Rate of Frontal Flow                                                 | R <sub>f</sub> =                     | N/A         | N/A          |         |
| Interception Rate of Side Flow                                                    | $R_x =$                              | N/A         | N/A          |         |
| Interception Capacity                                                             | Q <sub>i</sub> =                     | N/A         | N/A          | cfs     |
| Under Clogging Condition                                                          | F                                    | MINOR       | MAJOR        | -       |
| Clogging Coefficient for Multiple-unit Grate Inlet                                | GrateCoeff =                         | N/A         | N/A          |         |
| Clogging Factor for Multiple-unit Grate Inlet                                     | GrateClog =                          | N/A         | N/A          |         |
| Effective (unclogged) Length of Multiple-unit Grate Inlet                         | L <sub>e</sub> =                     | N/A         | N/A          | ft      |
| Minimum Velocity Where Grate Splash-Over Begins                                   | V <sub>o</sub> =                     | N/A         | N/A          | fps     |
| Interception Rate of Frontal Flow                                                 | $R_f =$                              | N/A         | N/A          | _       |
| Interception Rate of Side Flow                                                    | $R_x =$                              | N/A         | N/A          |         |
| Actual Interception Capacity                                                      | Q <sub>a</sub> =                     | N/A         | N/A          | cfs     |
| Carry-Over Flow = $Q_0$ - $Q_a$ (to be applied to curb opening or next d/s inlet) | $Q_b =$                              | N/A         | N/A          | cfs     |
| Curb Opening or Slotted Inlet Analysis (Calculated)                               | -                                    | MINOR       | MAJOR        | -       |
| Equivalent Slope S <sub>e</sub>                                                   | S <sub>e</sub> =                     | 0.234       | 0.171        | ft/ft   |
| Required Length $L_T$ to Have 100% Interception                                   | $L_T =$                              | 5.83        | 10.91        | ft      |
| Under No-Clogging Condition                                                       | -                                    | MINOR       | MAJOR        | -       |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ )          | L =                                  | 5.83        | 10.00        | ft      |
| Interception Capacity                                                             | $Q_i =$                              | 2.1         | 5.3          | cfs     |
| Under Clogging Condition                                                          | -                                    | MINOR       | MAJOR        | _       |
| Clogging Coefficient                                                              | CurbCoeff =                          | 1.25        | 1.25         |         |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet                   | CurbClog =                           | 0.06        | 0.06         |         |
| Effective (Unclogged) Length                                                      | $L_e =$                              | 5.83        | 9.38         | ft      |
| Actual Interception Capacity                                                      | Q <sub>a</sub> =                     | 2.1         | 5.2          | cfs     |
| Carry-Over Flow = $Q_{b(GRATE)}$ - $Q_{a}$                                        | $Q_b =$                              | 0.0         | 0.2          | cfs     |
| Summary                                                                           |                                      | MINOR       | MAJOR        |         |
| Total Inlet Interception Capacity                                                 | Q =                                  | 2.08        | 5.22         | cfs     |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                                | -                                    |             |              |         |
| rotal milet carry-over now (now bypassing milet)                                  | $Q_b =$                              | 0.00        | 0.16         | cfs     |

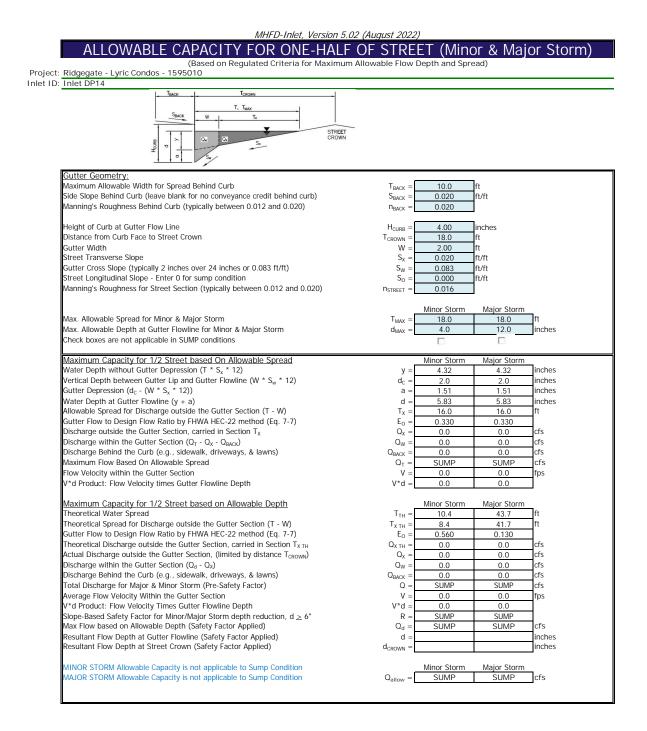


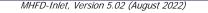


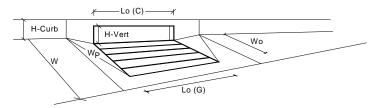





| Destructure (frame)                                                          |                             | MINOR |                       |                 |
|------------------------------------------------------------------------------|-----------------------------|-------|-----------------------|-----------------|
| Design Information (Input) CDOT Type R Curb Opening                          | Tumo                        | MINOR | MAJOR<br>Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | Type =                      | 3.00  | 3.00                  | inches          |
| · · · · · · · · · · · · · · · · · · ·                                        | a <sub>local</sub> =        |       | 3.00                  | Inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1     | ( )                   |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 6.0   | 6.0                   | inches          |
| Grate Information                                                            |                             | MINOR | MAJOR                 | Override Depths |
| Length of a Unit Grate                                                       | $L_o(G) =$                  | N/A   | N/A                   | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A   | N/A                   | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =        | N/A   | N/A                   |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_f(G) =$                  | N/A   | N/A                   |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_w$ (G) =                 | N/A   | N/A                   |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_o(G) =$                  | N/A   | N/A                   |                 |
| Curb Opening Information                                                     | _                           | MINOR | MAJOR                 |                 |
| Length of a Unit Curb Opening                                                | $L_o(C) =$                  | 5.00  | 5.00                  | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00  | 6.00                  | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00  | 6.00                  | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40 | 63.40                 | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | $W_p =$                     | 2.00  | 2.00                  | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                  | 0.10  | 0.10                  |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60  | 3.60                  |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_o(C) =$                  | 0.67  | 0.67                  |                 |
|                                                                              |                             |       |                       | _               |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR | MAJOR                 | ٦.              |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A   | N/A                   | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.33  | 0.33                  | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A   | N/A                   |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | $RF_{Curb} =$               | 1.00  | 1.00                  |                 |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A   | N/A                   |                 |
|                                                                              |                             | MINOR | MAJOR                 |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | Q <sub>a</sub> =            | 5.4   | 5.4                   | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | Q PEAK REQUIRED =           | 0.40  | 0.79                  | cfs             |
| inter explaint, to coop for thirds and major storms (>@reak)                 | 1 EAR RECORDED              |       |                       |                 |

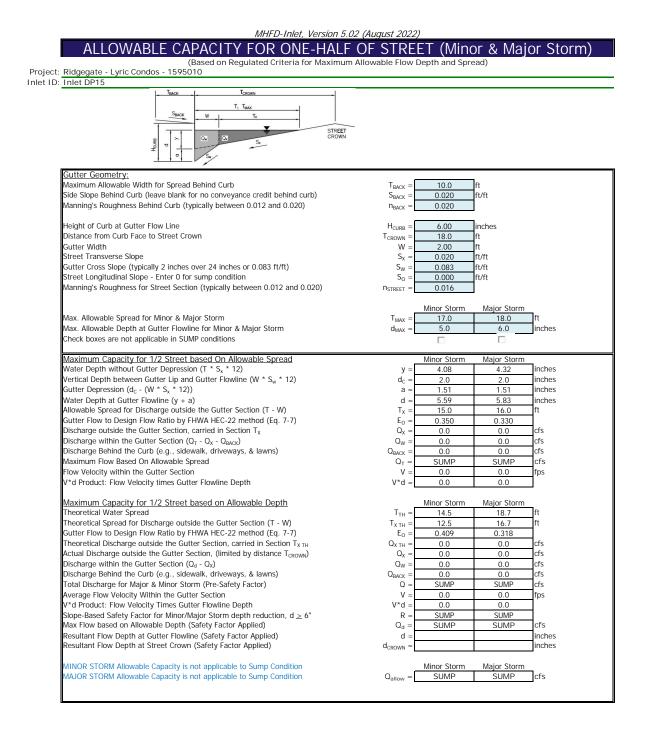


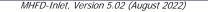


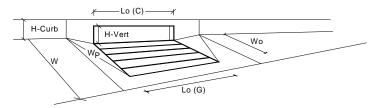


| Design Information (Input)                                                                              |                         | MINOR        | MAJOR        |                                       |
|---------------------------------------------------------------------------------------------------------|-------------------------|--------------|--------------|---------------------------------------|
| Type of Inlet                                                                                           | Type =                  |              | Curb Opening |                                       |
| Local Depression (additional to continuous gutter depression 'a')                                       | a <sub>LOCAL</sub> =    | 5.0          | 5.0          | inches                                |
| Total Number of Units in the Inlet (Grate or Curb Opening)                                              | No =                    | 1            | 1            |                                       |
| Length of a Single Unit Inlet (Grate or Curb Opening)                                                   | L <sub>0</sub> =        | 10.00        | 10.00        | ft                                    |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)                                          | W <sub>0</sub> =        | N/A          | N/A          | ft                                    |
| Clogging Factor for a Single Unit Grate (typical min. value = $0.5$ )                                   | $C_f(G) =$              | N/A          | N/A          | , , , , , , , , , , , , , , , , , , , |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = $0.0$ )                            | $C_f(C) =$              | 0.10         | 0.10         |                                       |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                                                  | 0 (0)                   | MINOR        | MAJOR        |                                       |
| Design Discharge for Half of Street (from <i>Inlet Management</i> )                                     | Q <sub>0</sub> =        | 2.2          | 5.6          | cfs                                   |
| Water Spread Width                                                                                      | α <sub>0</sub> =<br>T = | 6.7          | 10.6         | ft                                    |
| Water Depth at Flowline (outside of local depression)                                                   | d =                     | 3.1          | 4.1          | inches                                |
| Water Depth at Trownine (outside of rotal depression)<br>Water Depth at Street Crown (or at $T_{MAX}$ ) | d <sub>CROWN</sub> =    | 0.0          | 0.0          | inches                                |
| Ratio of Gutter Flow to Design Flow                                                                     | $E_0 =$                 | 0.772        | 0.547        | incric3                               |
| Discharge outside the Gutter Section W, carried in Section T <sub>x</sub>                               | $Q_x =$                 | 0.5          | 2.5          | cfs                                   |
| Discharge within the Gutter Section W                                                                   | $Q_{\rm w} =$           | 1.7          | 3.0          | cfs                                   |
| Discharge Behind the Curb Face                                                                          |                         | 0.0          | 0.0          | cfs                                   |
| Flow Area within the Gutter Section W                                                                   | $Q_{BACK} = A_W =$      | 0.35         | 0.0          |                                       |
|                                                                                                         |                         | 4.7          | 5.9          | sq ft                                 |
| Velocity within the Gutter Section W                                                                    | V <sub>W</sub> =        | 8.1          | 5.9<br>9.1   | fps                                   |
| Water Depth for Design Condition                                                                        | $d_{LOCAL} =$           | 8.1<br>MINOR |              | inches                                |
| Grate Analysis (Calculated)                                                                             |                         |              | MAJOR        | ft                                    |
| Total Length of Inlet Grate Opening                                                                     | L =                     | N/A<br>N/A   | N/A<br>N/A   | 11                                    |
| Ratio of Grate Flow to Design Flow                                                                      | $E_{o-GRATE} =$         | MINOR        |              |                                       |
| Under No-Clogging Condition                                                                             | у Г                     |              | MAJOR        | 6                                     |
| Minimum Velocity Where Grate Splash-Over Begins                                                         | V <sub>o</sub> =        | N/A          | N/A          | fps                                   |
| Interception Rate of Frontal Flow                                                                       | R <sub>f</sub> =        | N/A          | N/A          | _                                     |
| Interception Rate of Side Flow                                                                          | $R_x =$                 | N/A          | N/A          |                                       |
| Interception Capacity                                                                                   | Q <sub>i</sub> =        | N/A          | N/A          | cfs                                   |
| Under Clogging Condition                                                                                | F                       | MINOR        | MAJOR        | -                                     |
| Clogging Coefficient for Multiple-unit Grate Inlet                                                      | GrateCoeff =            | N/A          | N/A          | _                                     |
| Clogging Factor for Multiple-unit Grate Inlet                                                           | GrateClog =             | N/A          | N/A          |                                       |
| Effective (unclogged) Length of Multiple-unit Grate Inlet                                               | L <sub>e</sub> =        | N/A          | N/A          | ft                                    |
| Minimum Velocity Where Grate Splash-Over Begins                                                         | V <sub>o</sub> =        | N/A          | N/A          | fps                                   |
| Interception Rate of Frontal Flow                                                                       | $R_f =$                 | N/A          | N/A          |                                       |
| Interception Rate of Side Flow                                                                          | $R_x =$                 | N/A          | N/A          |                                       |
| Actual Interception Capacity                                                                            | Q <sub>a</sub> =        | N/A          | N/A          | cfs                                   |
| Carry-Over Flow = $Q_0$ - $Q_a$ (to be applied to curb opening or next d/s inlet)                       | $Q_b =$                 | N/A          | N/A          | cfs                                   |
| Curb Opening or Slotted Inlet Analysis (Calculated)                                                     | . r                     | MINOR        | MAJOR        | -                                     |
| Equivalent Slope S <sub>e</sub>                                                                         | S <sub>e</sub> =        | 0.229        | 0.169        | ft/ft                                 |
| Required Length $L_T$ to Have 100% Interception                                                         | $L_T =$                 | 6.01         | 11.15        | ft                                    |
| Under No-Clogging Condition                                                                             | -                       | MINOR        | MAJOR        | -                                     |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ )                                | L =                     | 6.01         | 10.00        | ft                                    |
| Interception Capacity                                                                                   | $Q_i =$                 | 2.2          | 5.5          | cfs                                   |
| Under Clogging Condition                                                                                | -                       | MINOR        | MAJOR        | -, I                                  |
| Clogging Coefficient                                                                                    | CurbCoeff =             | 1.25         | 1.25         | _                                     |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet                                         | CurbClog =              | 0.06         | 0.06         | _                                     |
| Effective (Unclogged) Length                                                                            | L <sub>e</sub> =        | 6.01         | 9.38         | ft                                    |
| Actual Interception Capacity                                                                            | Q <sub>a</sub> =        | 2.2          | 5.3          | cfs                                   |
| Carry-Over Flow = $Q_{b(GRATE)} - Q_a$                                                                  | $Q_b =$                 | 0.0          | 0.2          | cfs                                   |
| Summary                                                                                                 | _                       | MINOR        | MAJOR        |                                       |
| Total Inlet Interception Capacity                                                                       | Q =                     | 2.2          | 5.3          | cfs                                   |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                                                      | $Q_b =$                 | 0.0          | 0.20         | cfs                                   |
| Capture Percentage = $Q_a/Q_o$                                                                          | C% =                    | 100          | 96           | %                                     |



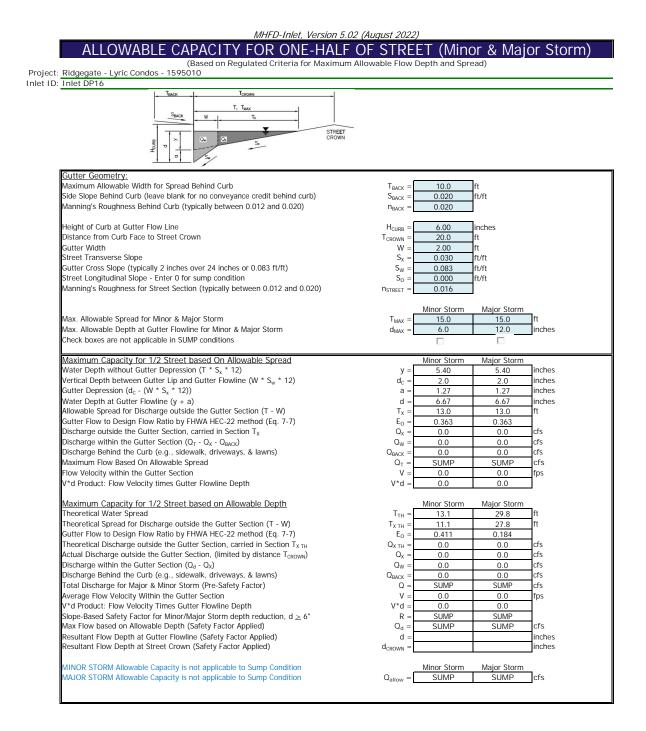


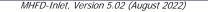


| Design Information (Input)                                                        |                        | MINOR | MAJOR        | 1        |
|-----------------------------------------------------------------------------------|------------------------|-------|--------------|----------|
| Type of Inlet                                                                     | Type =                 |       | Curb Opening |          |
| Local Depression (additional to continuous gutter depression 'a')                 | a <sub>LOCAL</sub> =   | 5.0   | 5.0          | inches   |
| Total Number of Units in the Inlet (Grate or Curb Opening)                        | No =                   | 1     | 1            | inditioo |
| Length of a Single Unit Inlet (Grate or Curb Opening)                             | L <sub>0</sub> =       | 5.00  | 5.00         | ft       |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)                    | W <sub>0</sub> =       | N/A   | N/A          | ft       |
| Clogging Factor for a Single Unit Grate (typical min. value = $0.5$ )             | $C_f(G) =$             | N/A   | N/A          |          |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = $0.1$ )      | $C_f(C) =$             | 0.10  | 0.10         |          |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                            | - (-/                  | MINOR | MAJOR        |          |
| Design Discharge for Half of Street (from <i>Inlet Management</i> )               | Q <sub>0</sub> =       | 2.0   | 4.7          | cfs      |
| Water Spread Width                                                                | T =                    | 6.3   | 9.8          | ft       |
| Water Depth at Flowline (outside of local depression)                             | d =                    | 3.0   | 3.9          | inches   |
| Water Depth at Street Crown (or at T <sub>MAX</sub> )                             | d <sub>CROWN</sub> =   | 0.0   | 0.0          | inches   |
| Ratio of Gutter Flow to Design Flow                                               | E <sub>o</sub> =       | 0.798 | 0.585        |          |
| Discharge outside the Gutter Section W, carried in Section $T_x$                  | Q <sub>x</sub> =       | 0.4   | 1.9          | cfs      |
| Discharge within the Gutter Section W                                             | Q <sub>w</sub> =       | 1.6   | 2.7          | cfs      |
| Discharge Behind the Curb Face                                                    | Q <sub>BACK</sub> =    | 0.0   | 0.0          | cfs      |
| Flow Area within the Gutter Section W                                             | A <sub>W</sub> =       | 0.34  | 0.48         | sq ft    |
| Velocity within the Gutter Section W                                              | V <sub>W</sub> =       | 4.6   | 5.7          | fps      |
| Water Depth for Design Condition                                                  | d <sub>LOCAL</sub> =   | 8.0   | 8.9          | inches   |
| Grate Analysis (Calculated)                                                       | LOUAL                  | MINOR | MAJOR        |          |
| Total Length of Inlet Grate Opening                                               | L =                    | N/A   | N/A          | ft       |
| Ratio of Grate Flow to Design Flow                                                | E <sub>o-GRATE</sub> = | N/A   | N/A          |          |
| Under No-Clogging Condition                                                       | 0 GIGHTE               | MINOR | MAJOR        | -        |
| Minimum Velocity Where Grate Splash-Over Begins                                   | V <sub>0</sub> =       | N/A   | N/A          | fps      |
| Interception Rate of Frontal Flow                                                 | R <sub>f</sub> =       | N/A   | N/A          |          |
| Interception Rate of Side Flow                                                    | R <sub>x</sub> =       | N/A   | N/A          |          |
| Interception Capacity                                                             | Q <sub>i</sub> =       | N/A   | N/A          | cfs      |
| Under Clogging Condition                                                          |                        | MINOR | MAJOR        |          |
| Clogging Coefficient for Multiple-unit Grate Inlet                                | GrateCoeff =           | N/A   | N/A          |          |
| Clogging Factor for Multiple-unit Grate Inlet                                     | GrateClog =            | N/A   | N/A          |          |
| Effective (unclogged) Length of Multiple-unit Grate Inlet                         | L <sub>e</sub> =       | N/A   | N/A          | ft       |
| Minimum Velocity Where Grate Splash-Over Begins                                   | V <sub>o</sub> =       | N/A   | N/A          | fps      |
| Interception Rate of Frontal Flow                                                 | $R_f =$                | N/A   | N/A          |          |
| Interception Rate of Side Flow                                                    | $R_x =$                | N/A   | N/A          |          |
| Actual Interception Capacity                                                      | Q <sub>a</sub> =       | N/A   | N/A          | cfs      |
| Carry-Over Flow = $Q_0$ - $Q_a$ (to be applied to curb opening or next d/s inlet) | $Q_{b} =$              | N/A   | N/A          | cfs      |
| Curb Opening or Slotted Inlet Analysis (Calculated)                               |                        | MINOR | MAJOR        |          |
| Equivalent Slope Se                                                               | S <sub>e</sub> =       | 0.237 | 0.179        | ft/ft    |
| Required Length L <sub>T</sub> to Have 100% Interception                          | L <sub>T</sub> =       | 5.61  | 9.94         | ft       |
| Under No-Clogging Condition                                                       |                        | MINOR | MAJOR        |          |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L, L <sub>T</sub> ) | L =                    | 5.00  | 5.00         | ft       |
| Interception Capacity                                                             | Q <sub>i</sub> =       | 1.9   | 3.3          | cfs      |
| Under Clogging Condition                                                          | _                      | MINOR | MAJOR        |          |
| Clogging Coefficient                                                              | CurbCoeff =            | 1.00  | 1.00         |          |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet                   | CurbClog =             | 0.10  | 0.10         |          |
| Effective (Unclogged) Length                                                      | L <sub>e</sub> =       | 4.50  | 4.50         | ft       |
| Actual Interception Capacity                                                      | Q <sub>a</sub> =       | 1.9   | 3.1          | cfs      |
| Carry-Over Flow = $Q_{b(GRATE)}$ - $Q_a$                                          | Q <sub>b</sub> =       | 0.1   | 1.6          | cfs      |
| <u>Summary</u>                                                                    |                        | MINOR | MAJOR        |          |
| Total Inlet Interception Capacity                                                 | Q =                    | 1.9   | 3.1          | cfs      |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                                | $Q_b =$                | 0.11  | 1.58         | cfs      |
| Capture Percentage = $Q_a/Q_o$                                                    | C% =                   | 95    | 66           | %        |

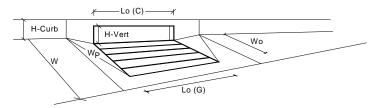






| Design Information (Input)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MINOR        | MAJOR         |                 |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-----------------|
| Type of Inlet                                                                                | Type =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Curb Opening  | 1               |
| Local Depression (additional to continuous gutter depression 'a' from above)                 | a <sub>local</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00         | 5.00          | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                                | No =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            | 1             | in on oo        |
| Water Depth at Flowline (outside of local depression)                                        | Ponding Depth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0          | 5.8           | inches          |
| Grate Information                                                                            | I onding Deptit =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MINOR        | MAJOR         | Override Depths |
| Length of a Unit Grate                                                                       | $L_{0}(G) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A          | N/A           | feet            |
| Width of a Unit Grate                                                                        | $W_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A          | N/A           | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                                       | $A_{ratio} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A          | N/A           | leet            |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)                               | $C_{f}(G) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A          | N/A           |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                                           | $C_{\rm W}(G) = C_{\rm W}(G) = C_{$ | N/A          | N/A           |                 |
| Grate Orifice Coefficient (typical value 2.13 - 3.00)                                        | $C_{w}(G) = C_{o}(G) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A          | N/A           | -               |
| Curb Opening Information                                                                     | $C_0(0) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MINOR        | MAJOR         |                 |
| Length of a Unit Curb Opening                                                                | $L_0(C) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.00        | 10.00         | feet            |
| Height of Vertical Curb Opening in Inches                                                    | $H_{vert} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.00         | 6.00          | inches          |
| Height of Curb Orifice Throat in Inches                                                      | H <sub>throat</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.00         | 6.00          | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                                      | Theta =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63.40        | 63.40         | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)                         | W <sub>p</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00         | 2.00          | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                               | $C_f(C) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.10         | 0.10          | 1001            |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                                        | $C_{\rm w}({\rm C}) = C_{\rm w}({\rm C}) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.60         | 3.60          |                 |
| Curb Opening Orifice Coefficient (typical value 2.3-3.7)                                     | $C_{0}(C) = C_{0}(C) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.67         | 0.67          | -               |
| Grate Flow Analysis (Calculated)                                                             | 00(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MINOR        | MAJOR         |                 |
| Clogging Coefficient for Multiple Units                                                      | Coef =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A          | N/A           | ٦               |
| Clogging Factor for Multiple Units                                                           | Clog =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A          | N/A           | -               |
| Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)                                    | city =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MINOR        | MAJOR         |                 |
| Interception without Clogging                                                                | Q <sub>wi</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A          | N/A           | cfs             |
| Interception with Clogging                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A          | N/A           | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                                | Q <sub>wa</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MINOR        | MAJOR         | CIS             |
| Interception without Clogging                                                                | Q <sub>oi</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A          | N/A           | cfs             |
| Interception without clogging                                                                | $Q_{oi} = Q_{oa} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A          | N/A           | cfs             |
| Grate Capacity as Mixed Flow                                                                 | $\alpha_{oa} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MINOR        | MAJOR         | CIS             |
| Interception without Clogging                                                                | Q <sub>mi</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A          | N/A           | cfs             |
| Interception without clogging                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A          | N/A           | cfs             |
|                                                                                              | Q <sub>ma</sub> =<br>Q <sub>Grate</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A   | N/A<br>N/A    | cfs             |
| Resulting Grate Capacity (assumes clogged condition) Curb Opening Flow Analysis (Calculated) | Grate -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MINOR        | MAJOR         | CI3             |
| Clogging Coefficient for Multiple Units                                                      | Coef =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.25         | 1.25          | 7               |
| Clogging Factor for Multiple Units                                                           | Clog =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06         | 0.06          | -               |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                                     | citing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MINOR        | MAJOR         |                 |
| Interception without Clogging                                                                | o [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6          | 8.2           | ofo             |
| Interception without clogging                                                                | Q <sub>wi</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6          | 7.7           | cfs<br>cfs      |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                                 | Q <sub>wa</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MINOR        | MAJOR         | LIS             |
| Interception without Clogging                                                                | o [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.5         | 22.2          | ofe             |
| Interception without clogging                                                                | Q <sub>oi</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.5         | 22.2          | cfs<br>cfs      |
|                                                                                              | Q <sub>oa</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |               | LIS             |
| Curb Opening Capacity as Mixed Flow                                                          | o <b>r</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MINOR<br>6.7 | MAJOR<br>12.5 | cfs             |
| Interception without Clogging                                                                | Q <sub>mi</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 12.5          | cfs             |
| Interception with Clogging                                                                   | Q <sub>ma</sub> =<br>Q <sub>Curb</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.3<br>2.5   | 7.7           | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                                  | Q <sub>Curb</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |               | LIS             |
| Resultant Street Conditions                                                                  | . г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MINOR        | MAJOR         | Fant            |
| Total Inlet Length                                                                           | L =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.00        | 10.00         | feet            |
| Resultant Street Flow Spread (based on street geometry from above)                           | T =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.4         | 18.0<br>0.0   | ft<br>inches    |
| Resultant Flow Depth at Street Crown                                                         | d <sub>CROWN</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0          | 0.0           | inches          |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |               |                 |
| Low Head Performance Reduction (Calculated)                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MINOR        | MAJOR         | ٦.              |
| Depth for Grate Midwidth                                                                     | d <sub>Grate</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A          | N/A           | ft              |
| Depth for Curb Opening Weir Equation                                                         | d <sub>Curb</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17         | 0.32          | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                                    | RF <sub>Grate</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A          | N/A           |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                                    | $RF_{Curb} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.79         | 0.92          | _               |
| Combination Inlet Performance Reduction Factor for Long Inlets                               | RF <sub>Combination</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A          | N/A           |                 |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |               |                 |
|                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MINOR        | MAJOR         | -               |
| Total Inlet Interception Capacity (assumes clogged condition)                                | Q <sub>a</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5          | 7.7           | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                                  | $Q_{PEAK REQUIRED} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0          | 6.4           | cfs             |



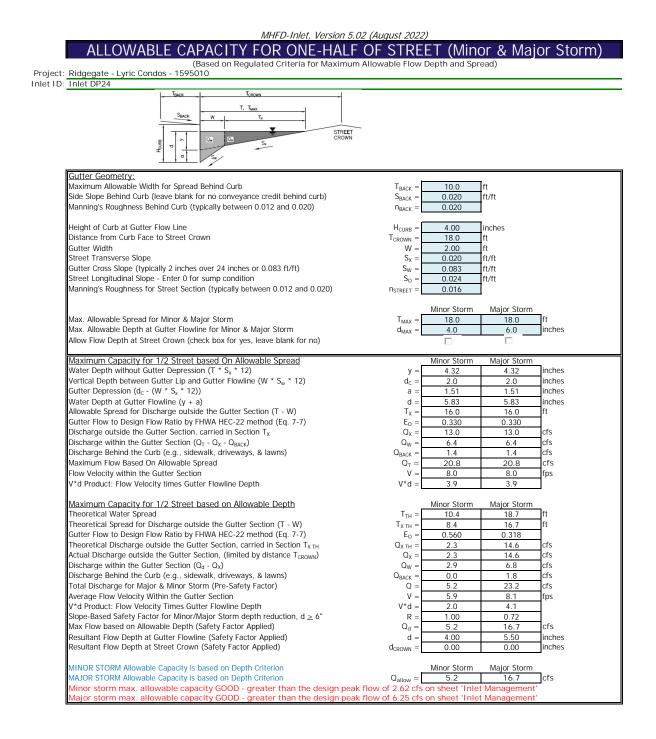



| Type of Inlet       Type R Curb Opening       Type = CE         Local Depression (additional to continuous gutter depression 'a' from above) $a_{local} =$ Number of Unit Inlets (Grate or Curb Opening)       No =         Water Depth at Flowline (outside of local depression)       Ponding Depth = | MINOR<br>DOT Type R 0<br>3.00<br>1 | MAJOR<br>Curb Opening<br>3.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Local Depression (additional to continuous gutter depression 'a' from above) $a_{local} =$ Number of Unit Inlets (Grate or Curb Opening)       No =         Water Depth at Flowline (outside of local depression)       Ponding Depth =                                                                 | 3.00                               | 1 8                           | The state of the s |
| Number of Unit Inlets (Grate or Curb Opening)         No =           Water Depth at Flowline (outside of local depression)         Ponding Depth =                                                                                                                                                      | 1                                  |                               | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Depth at Flowline (outside of local depression) Ponding Depth =                                                                                                                                                                                                                                   |                                    | 1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grate Information                                                                                                                                                                                                                                                                                       | 5.0                                | 5.8                           | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         | Override Depths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Length of a Unit Grate $L_0$ (G) =                                                                                                                                                                                                                                                                      | N/A                                | N/A                           | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Width of a Unit Grate Wo =                                                                                                                                                                                                                                                                              | N/A                                | N/A                           | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Open Area Ratio for a Grate (typical values 0.15-0.90) A <sub>ratio</sub> =                                                                                                                                                                                                                             | N/A                                | N/A                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Cr (G) =                                                                                                                                                                                                                                 | N/A                                | N/A                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grate Weir Coefficient (typical value 2.15 - 3.60) C <sub>w</sub> (G) =                                                                                                                                                                                                                                 | N/A                                | N/A                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grate Orifice Coefficient (typical value 0.60 - 0.80) $C_0$ (G) =                                                                                                                                                                                                                                       | N/A                                | N/A                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Length of a Unit Curb Opening $L_o(C) =$                                                                                                                                                                                                                                                                | 5.00                               | 5.00                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Height of Vertical Curb Opening in Inches H <sub>vert</sub> =                                                                                                                                                                                                                                           | 6.00                               | 6.00                          | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Height of Curb Orifice Throat in Inches H <sub>throat</sub> =                                                                                                                                                                                                                                           | 6.00                               | 6.00                          | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         | 63.40                              | 63.40                         | degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Side Width for Depression Pan (typically the gutter width of 2 feet) $W_p =$                                                                                                                                                                                                                            | 2.00                               | 2.00                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Clogging Factor for a Single Curb Opening (typical value 0.10) $C_{f}(C) =$                                                                                                                                                                                                                             | 0.10                               | 0.10                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Curb Opening Weir Coefficient (typical value 2.3-3.7) $C_w(C) =$                                                                                                                                                                                                                                        | 3.60                               | 3.60                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Curb Opening Orifice Coefficient (typical value $0.60 - 0.70$ ) $C_0(C) = C_0(C)$                                                                                                                                                                                                                       | 0.67                               | 0.67                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                         | MINOR<br>N/A                       | MAJOR<br>N/A                  | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clogging Coefficient for Multiple Units Coef =                                                                                                                                                                                                                                                          | N/A<br>N/A                         | N/A<br>N/A                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clogging Factor for Multiple Units Clog =<br>Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)                                                                                                                                                                                                  | MINOR                              | MAJOR                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                         | N/A                                | N/A                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                         | N/A                                | N/A                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Interception without Clogging Q <sub>ri</sub> =                                                                                                                                                                                                                                                         | N/A                                | N/A                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Interception with due cogging $Q_{oi} = $                                                                                                                                                                                                                                                               | N/A                                | N/A                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Interception without Clogging Q <sub>mi</sub> =                                                                                                                                                                                                                                                         | N/A                                | N/A                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Interception with Clogging $Q_{ma} =$                                                                                                                                                                                                                                                                   | N/A                                | N/A                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Resulting Grate Capacity (assumes clogged condition)                                                                                                                                                                                                                                                    | N/A                                | N/A                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clogging Coefficient for Multiple Units Coef =                                                                                                                                                                                                                                                          | 1.00                               | 1.00                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clogging Factor for Multiple Units Clog =                                                                                                                                                                                                                                                               | 0.10                               | 0.10                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                                                                                                                                                                                                                                                | MINOR                              | MAJOR                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Interception without Clogging Q <sub>wi</sub> =                                                                                                                                                                                                                                                         | 3.9                                | 5.6                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Interception with Clogging Q <sub>wa</sub> =                                                                                                                                                                                                                                                            | 3.5                                | 5.0                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Interception without Clogging Q <sub>oi</sub> =                                                                                                                                                                                                                                                         | 8.9                                | 9.6                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Interception with Clogging Q <sub>oa</sub> =                                                                                                                                                                                                                                                            | 8.1                                | 8.7                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Interception without Clogging Q <sub>mi</sub> =                                                                                                                                                                                                                                                         | 5.5                                | 6.8                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Interception with Clogging Q <sub>ma</sub> =                                                                                                                                                                                                                                                            | 4.9                                | 6.1                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Resulting Curb Opening Capacity (assumes clogged condition) Q <sub>Curb</sub> =                                                                                                                                                                                                                         | 3.5                                | 5.0                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Inlet Length L =                                                                                                                                                                                                                                                                                  | 5.00                               | 5.00                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Resultant Street Flow Spread (based on street geometry from above) T =                                                                                                                                                                                                                                  | 14.5                               | 18.0                          | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Resultant Flow Depth at Street Crown d <sub>CROWN</sub> =                                                                                                                                                                                                                                               | 0.0                                | 0.0                           | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Low Head Performance Reduction (Calculated)                                                                                                                                                                                                                                                             | MINOR                              | MAJOR                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Depth for Grate Midwidth d <sub>Grate</sub> =                                                                                                                                                                                                                                                           | N/A                                | N/A                           | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Depth for Curb Opening Weir Equation $d_{Curb} =$                                                                                                                                                                                                                                                       | 0.25                               | 0.32                          | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Grated Inlet Performance Reduction Factor for Long Inlets RF <sub>Grate</sub> =                                                                                                                                                                                                                         | 0.25<br>N/A                        | N/A                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} =$                                                                                                                                                                                                                                 | 1.00                               | 1.00                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Combination Inlet Performance Reduction Factor for Long Inlets RF <sub>Combination</sub> =                                                                                                                                                                                                              | N/A                                | N/A                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                         |                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                         | MINOR                              | MAJOR                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                         |                                    |                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total Inlet Interception Capacity (assumes clogged condition) Q <sub>a</sub> =                                                                                                                                                                                                                          | 3.5                                | 5.0                           | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



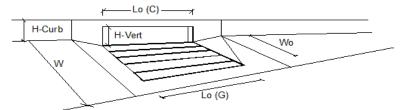





| Design Information (Input)                                                    |                                        | MINOR        | MAJOR         |                 |
|-------------------------------------------------------------------------------|----------------------------------------|--------------|---------------|-----------------|
| Type of Inlet                                                                 | Type =                                 |              | Curb Opening  |                 |
| Local Depression (additional to continuous gutter depression 'a' from above)  | a <sub>local</sub> =                   | 3.00         | 3.00          | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                 | No =                                   | 1            | 1             |                 |
| Water Depth at Flowline (outside of local depression)                         | Ponding Depth =                        | 6.0          | 6.7           | inches          |
| Grate Information                                                             |                                        | MINOR        | MAJOR         | Override Depths |
| Length of a Unit Grate                                                        | $L_0(G) =$                             | N/A          | N/A           | feet            |
| Width of a Unit Grate                                                         | W <sub>o</sub> =                       | N/A          | N/A           | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                        | A <sub>ratio</sub> =                   | N/A          | N/A           |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)                | $C_f(G) =$                             | N/A          | N/A           |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                            | $C_w$ (G) =                            | N/A          | N/A           |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                         | $C_o(G) =$                             | N/A          | N/A           |                 |
| Curb Opening Information                                                      | _                                      | MINOR        | MAJOR         |                 |
| Length of a Unit Curb Opening                                                 | $L_o(C) =$                             | 10.00        | 10.00         | feet            |
| Height of Vertical Curb Opening in Inches                                     | H <sub>vert</sub> =                    | 6.00         | 6.00          | inches          |
| Height of Curb Orifice Throat in Inches                                       | H <sub>throat</sub> =                  | 6.00         | 6.00          | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                       | Theta =                                | 63.40        | 63.40         | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)          | $W_p =$                                | 2.00         | 2.00          | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                | $C_f(C) =$                             | 0.10         | 0.10          |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                         | $C_w(C) =$                             | 3.60         | 3.60          |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                  | $C_0(C) =$                             | 0.67         | 0.67          |                 |
| Grate Flow Analysis (Calculated)                                              | -                                      | MINOR        | MAJOR         | -               |
| Clogging Coefficient for Multiple Units                                       | Coef =                                 | N/A          | N/A           |                 |
| Clogging Factor for Multiple Units                                            | Clog =                                 | N/A          | N/A           |                 |
| Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)                     | -                                      | MINOR        | MAJOR         | 7               |
| Interception without Clogging                                                 | Q <sub>wi</sub> =                      | N/A          | N/A           | cfs             |
| Interception with Clogging                                                    | Q <sub>wa</sub> =                      | N/A          | N/A           | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                 | F                                      | MINOR        | MAJOR         | -               |
| Interception without Clogging                                                 | Q <sub>oi</sub> =                      | N/A          | N/A           | cfs             |
| Interception with Clogging                                                    | Q <sub>oa</sub> =                      | N/A          | N/A           | cfs             |
| Grate Capacity as Mixed Flow                                                  | . <b>г</b>                             | MINOR        | MAJOR         | ٦.              |
| Interception without Clogging                                                 | Q <sub>mi</sub> =                      | N/A          | N/A           | cfs             |
| Interception with Clogging                                                    | Q <sub>ma</sub> =                      | N/A          | N/A           | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                          | Q <sub>Grate</sub> =                   | N/A<br>MINOR | N/A<br>MAJOR  | cfs             |
| Curb Opening Flow Analysis (Calculated)                                       | 0                                      |              |               | 7               |
| Clogging Coefficient for Multiple Units<br>Clogging Factor for Multiple Units | Coef =<br>Clog =                       | 1.25<br>0.06 | 1.25          | -               |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                      | ciog =                                 | MINOR        |               |                 |
| Interception without Clogging                                                 | Q <sub>wi</sub> =                      | 8.8          | MAJOR<br>11.6 | cfs             |
| Interception with Clogging                                                    | Q <sub>wi</sub> =<br>Q <sub>wa</sub> = | 8.3          | 10.9          | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                  | Q <sub>wa</sub> =                      | MINOR        | MAJOR         | UIS             |
| Interception without Clogging                                                 | Q <sub>oi</sub> =                      | 19.5         | 20.5          | cfs             |
| Interception with Clogging                                                    | $Q_{oi} = Q_{oa} =$                    | 18.3         | 19.2          | cfs             |
| Curb Opening Capacity as Mixed Flow                                           | Q <sub>08</sub> -                      | MINOR        | MAJOR         | 013             |
| Interception without Clogging                                                 | Q <sub>mi</sub> =                      | 12.2         | 14.3          | cfs             |
| Interception with Clogging                                                    | $Q_{ma} =$                             | 11.4         | 13.4          | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                   | $Q_{ma} = Q_{Curb} =$                  | 8.3          | 10.9          | cfs             |
| Resultant Street Conditions                                                   | -carb                                  | MINOR        | MAJOR         |                 |
| Total Inlet Length                                                            | L =                                    | 10.00        | 10.00         | feet            |
| Resultant Street Flow Spread (based on street geometry from above)            | с –<br>Т =                             | 13.1         | 15.0          | ft              |
| Resultant Flow Depth at Street Crown                                          | d <sub>CROWN</sub> =                   | 0.0          | 0.0           | inches          |
|                                                                               | GCROWN -                               |              |               |                 |
| Low Head Performance Reduction (Calculated)                                   |                                        | MINOR        | MAJOR         |                 |
| Depth for Grate Midwidth                                                      | d <sub>Grate</sub> =                   | N/A          | N/A           | ft              |
| Depth for Curb Opening Weir Equation                                          | d <sub>Curb</sub> =                    | 0.33         | 0.39          | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                     | RF <sub>Grate</sub> =                  | N/A          | N/A           | 1               |
| Curb Opening Performance Reduction Factor for Long Inlets                     | RF <sub>Curb</sub> =                   | 0.93         | 0.97          |                 |
| Combination Inlet Performance Reduction Factor for Long Inlets                | RF <sub>Combination</sub> =            | N/A          | N/A           | 1               |
|                                                                               | ···· compination                       |              |               | <b>_</b>        |
|                                                                               |                                        | MINOR        | MAJOR         |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                 | $Q_a =$                                | 8.3          | 10.9          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                   | Q PEAK REQUIRED =                      | 2.3          | 5.6           | cfs             |
| miler supporty to coop for million and major storms (>Q Feak)                 | - I LAN REQUIRED                       |              |               |                 |

# MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

| $T_{MAX} = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                         | 2.00<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to determine<br>on see<br>USDCM.<br>ft/ft<br>ft/ft<br>ft/ft<br>ft/ft<br>ft/ft<br>ft/ft<br>12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                             | al<br>ft<br>ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \text{3, C, D, or E} = \\ \text{n} = \\ \text{S}_{\text{O}} = \\ \text{B} = \\ \text{Z1} = \\ \text{Z2} = \\ \text{Z2} = \\ \text{d}_{\text{MAX}} = \\ \begin{array}{c} \text{d} \\ \text{d}_{\text{MAX}} = \\ \text{d} = \\ \text{A} = \\ \text{R} = \\ \end{array} $ | 0.040<br>0.0150<br>2.00<br>4.00<br>Choose One:<br>♥ Non-Cohesive<br>♥ Paved<br>Minor Storm<br>11.00<br>1.00<br>Minor Storm<br>11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft/ft<br>ft<br>ft/ft<br>ft/ft<br><u>Major Storm</u><br><u>12.00</u><br><u>1.00</u><br><u>Major Storm</u><br><u>12.00</u>                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c} n = \\ S_{O} = \\ B = \\ Z1 = \\ Z2 = \\ \end{array} $ $ \begin{array}{c} T_{MAX} = \\ d_{MAX} = \\ d_{MAX} = \\ \end{array} $ $ \begin{array}{c} T_{MAX} = \\ d = \\ A = \\ P = \\ R = \\ \end{array} $                                                               | 0.0150<br>2.00<br>4.00<br>Chose One:<br>Onose One: | ft<br>ft/ft<br>ft/ft<br><u>Major Storm</u><br><u>12.00</u><br><u>1.00</u><br><u>Major Storm</u><br><u>12.00</u>                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c} n = \\ S_{O} = \\ B = \\ Z1 = \\ Z2 = \\ \end{array} $ $ \begin{array}{c} T_{MAX} = \\ d_{MAX} = \\ d_{MAX} = \\ \end{array} $ $ \begin{array}{c} T_{MAX} = \\ d = \\ A = \\ P = \\ R = \\ \end{array} $                                                               | 0.0150<br>2.00<br>4.00<br>Chose One:<br>Onose One: | ft<br>ft/ft<br>ft/ft<br><u>Major Storm</u><br><u>12.00</u><br><u>1.00</u><br><u>Major Storm</u><br><u>12.00</u>                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{c} n = \\ S_{O} = \\ B = \\ Z1 = \\ Z2 = \\ \end{array} $ $ \begin{array}{c} T_{MAX} = \\ d_{MAX} = \\ d_{MAX} = \\ \end{array} $ $ \begin{array}{c} T_{MAX} = \\ d = \\ A = \\ P = \\ R = \\ \end{array} $                                                               | 0.0150<br>2.00<br>4.00<br>Chose One:<br>Onose One: | ft<br>ft/ft<br>ft/ft<br><u>Major Storm</u><br><u>12.00</u><br><u>1.00</u><br><u>Major Storm</u><br><u>12.00</u>                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B = 21 = 22 = 22 = 22 = 22 = 22 = 22 = 2                                                                                                                                                                                                                                                  | 2.00<br>4.00<br>4.00<br>Choose One:<br>© Non-Cohesive<br>© Cohesive<br>© Paved<br>Minor Storm<br>11.00<br>1.00<br>Minor Storm<br>11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft<br>ft/ft<br>ft/ft<br><u>Major Storm</u><br><u>12.00</u><br><u>1.00</u><br><u>Major Storm</u><br><u>12.00</u>                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $Z1 = $ $Z2 = $ $T_{MAX} = $ $d_{MAX} = $ $T_{MAX} = $ $d = $ $A = $ $P = $ $R = $                                                                                                                                                                                                        | 4.00<br>4.00<br>Choose One:<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohesive<br>Onon-Cohes                                                                      | Major Storm<br>12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $Z2 =$ $T_{MAX} =$ $d_{MAX} =$ $T_{MAX} =$ $d =$ $A =$ $P =$ $R =$                                                                                                                                                                                                                        | 4.00<br>Choose One:<br>Choose One:<br>Cohesive<br>Cohesive<br>Paved<br>Minor Storm<br>11.00<br>1.00<br>Minor Storm<br>11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Major Storm<br>12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $T_{MAX} = $ $d_{MAX} = $ $d = $ $A = $ $P = $ $R = $                                                                                                                                                                                                                                     | Choose One:<br>Non-Cohesive<br>Cohesive<br>Paved<br>Minor Storm<br>11.00<br>Minor Storm<br>11.00<br>1.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Major Storm<br>12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| T <sub>MAX</sub> =<br>d <sub>MAX</sub> =<br>d =<br>A =<br>P =<br>R =                                                                                                                                                                                                                      | ○ Non-Cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d <sub>MAX</sub> =                                                                                                                                                                                                                                                                        | © Cohesive<br>Paved<br>Minor Storm<br>11.00<br>1.00<br>Minor Storm<br>11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d <sub>MAX</sub> =                                                                                                                                                                                                                                                                        | Paved           Minor Storm           11.00           1.00           1.00           1.00           1.1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d <sub>MAX</sub> =                                                                                                                                                                                                                                                                        | Minor Storm<br>11.00<br>1.00<br>Minor Storm<br>11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d <sub>MAX</sub> =                                                                                                                                                                                                                                                                        | 11.00<br>1.00<br>Minor Storm<br>11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.00<br>1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d <sub>MAX</sub> =                                                                                                                                                                                                                                                                        | 1.00<br>Minor Storm<br>11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| T <sub>MAX</sub> =<br>d =<br>A =<br>P =<br>R =                                                                                                                                                                                                                                            | Minor Storm<br>11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major Storm<br>12.00                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d =<br>A =<br>P =<br>R =                                                                                                                                                                                                                                                                  | 11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d =<br>A =<br>P =<br>R =                                                                                                                                                                                                                                                                  | 11.00<br>1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A =<br>P =<br>R =                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P =<br>R =                                                                                                                                                                                                                                                                                | 7.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R =                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.75                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sq ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                           | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.31                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                           | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| n =<br>V =                                                                                                                                                                                                                                                                                | 0.040 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.040<br>3.63                                                                                                                                                                                                                                                                                                                                                                                                                                               | fps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V =<br>VR =                                                                                                                                                                                                                                                                               | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft^2/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D =                                                                                                                                                                                                                                                                                       | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fr =                                                                                                                                                                                                                                                                                      | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $Q_T =$                                                                                                                                                                                                                                                                                   | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                           | Minor Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Major Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d <sub>MAX</sub> =                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T =                                                                                                                                                                                                                                                                                       | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A =                                                                                                                                                                                                                                                                                       | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sq ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P =                                                                                                                                                                                                                                                                                       | 10.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.25                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R =                                                                                                                                                                                                                                                                                       | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| n =                                                                                                                                                                                                                                                                                       | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V =<br>VR =                                                                                                                                                                                                                                                                               | 3.19<br>1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.19<br>1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                | fps<br>ft^2/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D =                                                                                                                                                                                                                                                                                       | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fr =                                                                                                                                                                                                                                                                                      | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Q <sub>d</sub> =                                                                                                                                                                                                                                                                          | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                           | Minor Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Molor Charry                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 =                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GIOW                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Q <sub>0</sub> =                                                                                                                                                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft<br>sq ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R =                                                                                                                                                                                                                                                                                       | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| n =                                                                                                                                                                                                                                                                                       | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V =                                                                                                                                                                                                                                                                                       | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VR =                                                                                                                                                                                                                                                                                      | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft^2/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D =                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ⊦r =                                                                                                                                                                                                                                                                                      | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                           | $\begin{array}{c} Fr = \\ Q_{d} = \\ \\ Q_{allow} = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} {\sf Fr} = & 0.73 \\ {\sf Q}_{\sf d} = & 19.2 \\ \hline \\ {\sf Minor Storm} \\ {\sf Q}_{\sf allow} = & 19.2 \\ {\sf d}_{\sf allow} = & 1.00 \\ \hline \\ {\sf d}_{\sf allow} = & 1.00 \\ \hline \\ {\sf d}_{\sf d} = & 0.11 \\ {\sf T} = & 2.88 \\ {\sf A} = & 0.27 \\ {\sf P} = & 2.91 \\ {\sf R} = & 0.09 \\ {\sf n} = & 0.040 \\ {\sf V} = & 0.09 \\ {\sf N} = & 0.09 \\ {\sf D} = & 0.09 \\ {\sf Fr} = & 0.54 \\ \hline \end{array}$ | $\begin{array}{c} \mbox{Fr} = & 0.73 & 0.73 \\ \mbox{Q}_{d} = & 19.2 & 19.2 \\ \hline \mbox{Minor Storm} & \mbox{Major Storm} \\ \mbox{Q}_{allow} = & 19.2 & 19.2 \\ \mbox{d}_{allow} = & 19.2 & 19.2 \\ \mbox{d}_{allow} = & 19.2 & 19.2 \\ \mbox{d}_{allow} = & 1.00 & 1.00 \\ \hline \mbox{d}_{allow} = & 0.3 & 4.2 \\ \mbox{d} = & 0.11 & 0.49 \\ \mbox{T} = & 2.88 & 5.93 \\ \mbox{d} = & 0.27 & 1.95 \\ \mbox{P} = & 2.91 & 6.05 \\ \mbox{R} = & 0.09 & 0.32 \\ \mbox{n} = & 0.040 & 0.040 \\ \mbox{V} = & 0.09 & 0.69 \\ \mbox{D} = & 0.09 & 0.33 \\ \hline \mbox{d} = & 0.09 & 0.33 \\ \hline \end{array}$ |


## MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

| Ridgegate - Lyric Condos - 1595010                                          |                   |                      |       |         |
|-----------------------------------------------------------------------------|-------------------|----------------------|-------|---------|
| Inlet DP19                                                                  |                   |                      |       |         |
| Inlet Design Information (Input)                                            |                   |                      |       |         |
| Type of Inlet User-Defined                                                  | Inlet Type =      | User-De              | fined |         |
| Angle of Inclined Grate (must be <= 30 degrees)                             |                   | θ =                  | 0.00  | degrees |
| Width of Grate                                                              |                   | W =                  | 2.00  | ft      |
| Length of Grate                                                             |                   | L =                  | 2.00  | ft      |
| Open Area Ratio                                                             |                   | A <sub>RATIO</sub> = | 0.70  |         |
| Height of Inclined Grate                                                    |                   | H <sub>B</sub> =     | 0.00  | ft      |
| Clogging Factor                                                             |                   | C <sub>f</sub> =     | 0.50  |         |
| Grate Discharge Coefficient                                                 |                   | b C <sub>d</sub> =   | N/A   |         |
| Orifice Coefficient                                                         |                   | C <sub>o</sub> =     | 0.64  |         |
| Weir Coefficient W                                                          | 0                 | C <sub>w</sub> =     | 2.05  |         |
| Pone cron                                                                   |                   | MINOR                | MAJOR |         |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) | d =               | 0.11                 | 0.49  |         |
|                                                                             |                   |                      |       |         |
| Grate Capacity as a Weir                                                    |                   |                      |       |         |
| Submerged Side Weir Length                                                  | X =               | 2.00                 | 2.00  | ft      |
| nclined Side Weir Flow                                                      | Q <sub>ws</sub> = | 0.3                  | 2.5   | cfs     |
| Base Weir Flow                                                              | Q <sub>wb</sub> = | 0.4                  | 3.5   | cfs     |
| nterception Without Cloggging                                               | Q <sub>wi</sub> = | 0.9                  | 8.5   | cfs     |
| nterception With Clogging                                                   | Q <sub>wa</sub> = | 0.4                  | 4.2   | cfs     |
| Grate Capacity as an Orifice                                                |                   |                      |       |         |
| Interception Without Clogging                                               | Q <sub>oi</sub> = | 4.8                  | 10.1  | cfs     |
| Interception With Clogging                                                  | $Q_{00} =$        | 2.4                  | 5.0   | cfs     |
|                                                                             | <b>~</b> 03       |                      | 5.0   |         |
| Fotal Inlet Interception Capacity (assumes clogged condition)               | $Q_a =$           | 0.45                 | 4.24  | cfs     |
|                                                                             |                   |                      |       |         |
| Bypassed Flow                                                               | $Q_{\rm b} =$     | 0.0                  | 0.0   | cfs     |



# INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)



| Design Information (Input)                                                        |                                      | MINOR      | MAJOR        |                       |
|-----------------------------------------------------------------------------------|--------------------------------------|------------|--------------|-----------------------|
| Type of Inlet                                                                     | Tuno                                 |            | Curb Opening |                       |
| 51                                                                                | Type =                               | 5.0        |              | la sha s              |
| Local Depression (additional to continuous gutter depression 'a')                 | a <sub>LOCAL</sub> =                 |            | 5.0          | inches                |
| Total Number of Units in the Inlet (Grate or Curb Opening)                        | No =                                 | 1          | 1            | <i>c</i> <sub>1</sub> |
| Length of a Single Unit Inlet (Grate or Curb Opening)                             | L <sub>o</sub> =                     | 10.00      | 10.00        | ft                    |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)                    | $W_0 =$                              | N/A        | N/A          | ft                    |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)                | $C_f(G) =$                           | N/A        | N/A          | _                     |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)         | $C_f(C) =$                           | 0.10       | 0.10         |                       |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                            |                                      | MINOR      | MAJOR        | ٦.                    |
| Design Discharge for Half of Street (from Inlet Management)                       | $Q_0 =$                              | 2.6        | 6.3          | cfs                   |
| Water Spread Width                                                                | Τ =                                  | 7.4        | 11.2         | ft                    |
| Water Depth at Flowline (outside of local depression)                             | d =                                  | 3.3        | 4.2          | inches                |
| Water Depth at Street Crown (or at T <sub>MAX</sub> )                             | d <sub>CROWN</sub> =                 | 0.0        | 0.0          | inches                |
| Ratio of Gutter Flow to Design Flow                                               | E <sub>o</sub> =                     | 0.725      | 0.522        |                       |
| Discharge outside the Gutter Section W, carried in Section T <sub>x</sub>         | Q <sub>x</sub> =                     | 0.7        | 3.0          | cfs                   |
| Discharge within the Gutter Section W                                             | Q <sub>w</sub> =                     | 1.9        | 3.3          | cfs                   |
| Discharge Behind the Curb Face                                                    | $Q_{BACK} =$                         | 0.0        | 0.0          | cfs                   |
| Flow Area within the Gutter Section W                                             | $A_W =$                              | 0.38       | 0.53         | sq ft                 |
| Velocity within the Gutter Section W                                              | V <sub>W</sub> =                     | 5.0        | 6.1          | fps                   |
| Water Depth for Design Condition                                                  | d <sub>LOCAL</sub> =                 | 8.3        | 9.2          | inches                |
| Grate Analysis (Calculated)                                                       |                                      | MINOR      | MAJOR        |                       |
| Total Length of Inlet Grate Opening                                               | L =                                  | N/A        | N/A          | ft                    |
| Ratio of Grate Flow to Design Flow                                                | E <sub>o-GRATE</sub> =               | N/A        | N/A          |                       |
| Under No-Clogging Condition                                                       | 0 GIVITE                             | MINOR      | MAJOR        |                       |
| Minimum Velocity Where Grate Splash-Over Begins                                   | V <sub>o</sub> =                     | N/A        | N/A          | fps                   |
| Interception Rate of Frontal Flow                                                 | R <sub>f</sub> =                     | N/A        | N/A          |                       |
| Interception Rate of Side Flow                                                    | R <sub>x</sub> =                     | N/A        | N/A          |                       |
| Interception Capacity                                                             | $Q_i =$                              | N/A        | N/A          | cfs                   |
| Under Clogging Condition                                                          |                                      | MINOR      | MAJOR        | 015                   |
| Clogging Coefficient for Multiple-unit Grate Inlet                                | GrateCoeff =                         | N/A        | N/A          | 7                     |
| Clogging Factor for Multiple-unit Grate Inlet                                     | GrateClog =                          | N/A        | N/A          |                       |
| Effective (unclogged) Length of Multiple-unit Grate Inlet                         | L <sub>e</sub> =                     | N/A<br>N/A | N/A<br>N/A   | ft                    |
| Minimum Velocity Where Grate Splash-Over Begins                                   |                                      | N/A<br>N/A | N/A<br>N/A   | fps                   |
| Interception Rate of Frontal Flow                                                 | V <sub>o</sub> =<br>R <sub>f</sub> = | N/A<br>N/A | N/A<br>N/A   | the                   |
|                                                                                   |                                      | N/A<br>N/A | N/A<br>N/A   | -                     |
| Interception Rate of Side Flow                                                    | $R_x =$                              | N/A<br>N/A | N/A<br>N/A   | ofo                   |
| Actual Interception Capacity                                                      | Q <sub>a</sub> =                     | N/A<br>N/A |              | cfs                   |
| Carry-Over Flow = $Q_0$ - $Q_a$ (to be applied to curb opening or next d/s inlet) | Q <sub>b</sub> =                     |            | N/A          | cfs                   |
| Curb Opening or Slotted Inlet Analysis (Calculated)                               | - T                                  | MINOR      | MAJOR        | C1 / C1               |
| Equivalent Slope Se                                                               | S <sub>e</sub> =                     | 0.217      | 0.162        | ft/ft                 |
| Required Length L <sub>T</sub> to Have 100% Interception                          | $L_T =$                              | 6.77       | 12.07        | ft                    |
| Under No-Clogging Condition                                                       | . r                                  | MINOR      | MAJOR        | ٦.                    |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ )          | L =                                  | 6.77       | 10.00        | ft                    |
| Interception Capacity                                                             | $Q_i =$                              | 2.6        | 6.0          | cfs                   |
| Under Clogging Condition                                                          | -                                    | MINOR      | MAJOR        | -                     |
| Clogging Coefficient                                                              | CurbCoeff =                          | 1.25       | 1.25         | _                     |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet                   | CurbClog =                           | 0.06       | 0.06         | _                     |
| Effective (Unclogged) Length                                                      | L <sub>e</sub> =                     | 6.77       | 9.38         | ft                    |
| Actual Interception Capacity                                                      | Q <sub>a</sub> =                     | 2.6        | 5.8          | cfs                   |
| Carry-Over Flow = $Q_{b(GRATE)}$ - $Q_a$                                          | Q <sub>b</sub> =                     | 0.0        | 0.4          | cfs                   |
| Summary                                                                           |                                      | MINOR      | MAJOR        | _                     |
| Total Inlet Interception Capacity                                                 | Q =                                  | 2.6        | 5.8          | cfs                   |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                                | Q <sub>b</sub> =                     | 0.0        | 0.43         | cfs                   |
| Capture Percentage = $Q_a/Q_a$                                                    | C% =                                 | 100        | 93           | %                     |

# INLET MANAGEMENT

Worksheet Protected

| NLET NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inlet DP101             | Inlet DP103                                                             | Inlet DP104              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|--------------------------|
| ite Type (Urban or Rural)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | URBAN                   | URBAN                                                                   | URBAN                    |
| nlet Application (Street or Area)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AREA                    | STREET                                                                  | STREET                   |
| lydraulic Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Swale                   | In Sump                                                                 | In Sump                  |
| nlet Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | User-Defined            | CDOT Type R Curb Opening                                                | CDOT Type R Curb Opening |
| ER-DEFINED INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                         |                          |
| Jser-Defined Design Flows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                         |                          |
| /linor Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.67                    | 0.25                                                                    | 0.30                     |
| Najor Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.70                    | 0.62                                                                    | 0.71                     |
| Bypass (Carry-Over) Flow from Upstream<br>Receive Bypass Flow from:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No Bypass Flow Received | am (left) to downstream (right) in order for<br>No Bypass Flow Received | No Bypass Flow Received  |
| linor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                     | 0.0                                                                     | 0.0                      |
| lajor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                     | 0.0                                                                     | 0.0                      |
| Vatershed Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                         |                          |
| Subcatchment Area (acres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type<br>Watershed Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>URCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type<br>Vatershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Overland Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length ( |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type<br>Vatershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type<br>Vatershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Channel Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Chan |                         |                                                                         |                          |
| Subcatchment Area (acres)<br>Percent Impervious<br>IRCS Soil Type<br>Vatershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Overland Length (ft)<br>Overland Length (ft)<br>Channel Length (ft)<br>Overland Length (ft)<br>Channel Length ( |                         |                                                                         |                          |

| ;                                                    |      |     |     |
|------------------------------------------------------|------|-----|-----|
| Minor Total Design Peak Flow, Q (cfs)                | 2.7  | 0.3 | 0.3 |
| Major Total Design Peak Flow, Q (cfs)                | 6.7  | 0.6 | 0.7 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 0.93 | N/A | N/A |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 3.78 | N/A | N/A |
|                                                      |      |     |     |

# INLET MANAGEMENT

Worksheet Protected

| INLET NAME                                                                                                                                                                                                                                                 | Inlet DP105              | Inlet DP106              | Inlet DP107              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|
| Site Type (Urban or Rural)                                                                                                                                                                                                                                 | URBAN                    | URBAN                    | URBAN                    |
| Inlet Application (Street or Area)                                                                                                                                                                                                                         | STREET                   | STREET                   | STREET                   |
| Hydraulic Condition                                                                                                                                                                                                                                        | In Sump                  | In Sump                  | In Sump                  |
| Inlet Type                                                                                                                                                                                                                                                 | CDOT Type R Curb Opening | CDOT Type R Curb Opening | CDOT Type R Curb Opening |
|                                                                                                                                                                                                                                                            |                          |                          |                          |
| ER-DEFINED INPUT                                                                                                                                                                                                                                           |                          |                          |                          |
| User-Defined Design Flows<br>Minor Q <sub>Known</sub> (cfs)                                                                                                                                                                                                | 0.3                      | 0.4                      | 0.3                      |
|                                                                                                                                                                                                                                                            | 0.3                      | 0.4                      | 0.3                      |
| Major Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                             | 0.7                      | 0.9                      | 0.6                      |
| Bypass (Carry-Over) Flow from Upstrean                                                                                                                                                                                                                     | n                        |                          |                          |
| Receive Bypass Flow from:                                                                                                                                                                                                                                  | No Bypass Flow Received  | No Bypass Flow Received  | No Bypass Flow Received  |
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                           | 0.0                      | 0.0                      | 0.0                      |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                           | 0.0                      | 0.0                      | 0.0                      |
| Percent Impervious                                                                                                                                                                                                                                         |                          |                          |                          |
| Subcatchment Area (acres)                                                                                                                                                                                                                                  |                          |                          |                          |
|                                                                                                                                                                                                                                                            |                          |                          |                          |
| NRCS Soil Type                                                                                                                                                                                                                                             |                          |                          |                          |
| NRCS Soil Type                                                                                                                                                                                                                                             |                          |                          |                          |
| NRCS Soil Type<br>Watershed Profile                                                                                                                                                                                                                        |                          |                          |                          |
| Watershed Profile                                                                                                                                                                                                                                          |                          |                          |                          |
| 2,                                                                                                                                                                                                                                                         |                          |                          |                          |
| Watershed Profile<br>Overland Slope (ft/ft)                                                                                                                                                                                                                |                          |                          |                          |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)                                                                                                                                                                                        |                          |                          |                          |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)                                                                                                                                        |                          |                          |                          |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input                                                                                                          |                          |                          |                          |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                    |                          |                          |                          |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input                                                                                                          |                          |                          |                          |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)<br>One-Hour Precipitation, P <sub>1</sub> (inches) |                          |                          |                          |
| Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                    |                          |                          |                          |

| 0.3 | 0.4        | 0.3                |
|-----|------------|--------------------|
| 0.7 | 0.9        | 0.6                |
| N/A | N/A        | N/A                |
| N/A | N/A        | N/A                |
|     | 0.7<br>N/A | 0.7 0.9<br>N/A N/A |

# INLET MANAGEMENT

Worksheet Protected

| INLET NAME                                                                                                                                                                                                                                                                   | Inlet DP108              | Inlet DP109             | Inlet DP110             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|-------------------------|
| Site Type (Urban or Rural)                                                                                                                                                                                                                                                   | URBAN                    | URBAN                   | URBAN                   |
| Inlet Application (Street or Area)                                                                                                                                                                                                                                           | STREET                   | AREA                    | AREA                    |
| Hydraulic Condition                                                                                                                                                                                                                                                          | In Sump                  | Swale                   | Swale                   |
| Inlet Type                                                                                                                                                                                                                                                                   | CDOT Type R Curb Opening | CDOT Type C             | CDOT Type C             |
| ER-DEFINED INPUT                                                                                                                                                                                                                                                             |                          |                         |                         |
| User-Defined Design Flows                                                                                                                                                                                                                                                    |                          |                         |                         |
| Minor Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                                               | 0.3                      | 0.08                    | 0.08                    |
| Major Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                                               | 0.6                      | 0.38                    | 0.52                    |
| • ·········                                                                                                                                                                                                                                                                  | -++                      |                         | •                       |
| Bypass (Carry-Over) Flow from Upstream                                                                                                                                                                                                                                       | <u>ו</u>                 |                         |                         |
| Receive Bypass Flow from:                                                                                                                                                                                                                                                    | No Bypass Flow Received  | No Bypass Flow Received | No Bypass Flow Received |
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                                             | 0.0                      | 0.0                     | 0.0                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                                             | 0.0                      | 0.0                     | 0.0                     |
| Subcatchment Area (acres)                                                                                                                                                                                                                                                    |                          |                         |                         |
|                                                                                                                                                                                                                                                                              |                          |                         |                         |
| Percent Impervious                                                                                                                                                                                                                                                           |                          |                         |                         |
| Percent Impervious<br>NRCS Soil Type                                                                                                                                                                                                                                         |                          |                         |                         |
|                                                                                                                                                                                                                                                                              |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile                                                                                                                                                                                                                                          |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)                                                                                                                                                                                                                |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)                                                                                                                                                                                        |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)                                                                                                                                                                                                                |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)                                                                                                                                        |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input                                                                                                          |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                    |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input                                                                                                          |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)<br>One-Hour Precipitation, P <sub>1</sub> (inches) |                          |                         |                         |
| NRCS Soil Type<br>Watershed Profile<br>Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                    |                          |                         |                         |

| 0.3 | 0.1 | 0.1     |
|-----|-----|---------|
| 0.6 | 0.4 | 0.5     |
| N/A | 0.0 | 0.0     |
| N/A | 0.0 | 0.0     |
|     |     | N/A 0.0 |

# INLET MANAGEMENT

Worksheet Protected

| NLET NAME                                                                                                                                                                                                                                                           | Inlet DP111             | Inlet DP112             | Inlet DP113             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|
| ite Type (Urban or Rural)                                                                                                                                                                                                                                           | URBAN                   | URBAN                   | URBAN                   |
| nlet Application (Street or Area)                                                                                                                                                                                                                                   | AREA                    | AREA                    | AREA                    |
| lydraulic Condition                                                                                                                                                                                                                                                 | Swale                   | Swale                   | Swale                   |
| nlet Type                                                                                                                                                                                                                                                           | CDOT Type C             | CDOT Type C             | CDOT Type C             |
| R-DEFINED INPUT                                                                                                                                                                                                                                                     |                         |                         |                         |
| Jser-Defined Design Flows                                                                                                                                                                                                                                           |                         |                         |                         |
| /linor Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                                     | 0.00                    | 0.00                    | 0.0                     |
| Najor Q <sub>Known</sub> (cfs)                                                                                                                                                                                                                                      | 0.07                    | 0.22                    | 0.1                     |
|                                                                                                                                                                                                                                                                     |                         |                         |                         |
| Bypass (Carry-Over) Flow from Upstream                                                                                                                                                                                                                              |                         |                         |                         |
| Receive Bypass Flow from:                                                                                                                                                                                                                                           | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
| Ainor Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                                    | 0.0                     | 0.0                     | 0.0                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)                                                                                                                                                                                                                    | 0.0                     | 0.0                     | 0.0                     |
| Percent Impervious<br>IRCS Soil Type                                                                                                                                                                                                                                |                         |                         |                         |
| Natershed Profile                                                                                                                                                                                                                                                   |                         |                         |                         |
|                                                                                                                                                                                                                                                                     |                         |                         |                         |
|                                                                                                                                                                                                                                                                     |                         |                         |                         |
| Dverland Slope (ft/ft)<br>Dverland Length (ft)                                                                                                                                                                                                                      |                         |                         |                         |
| Overland Slope (ft/ft)                                                                                                                                                                                                                                              |                         |                         |                         |
| Dverland Slope (ft/ft)<br>Dverland Length (ft)                                                                                                                                                                                                                      |                         |                         |                         |
| Dverland Slope (ft/ft)<br>Dverland Length (ft)<br>Channel Slope (ft/ft)                                                                                                                                                                                             |                         |                         |                         |
| Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input                                                                                                                                        |                         |                         |                         |
| Dverland Slope (ft/ft)<br>Dverland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)                                                                                  |                         |                         |                         |
| Dverland Slope (ft/ft)<br>Dverland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input                                                                                                                                        |                         |                         |                         |
| Dverland Slope (ft/ft)<br>Dverland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)<br>Dne-Hour Precipitation, P <sub>1</sub> (inches)                               |                         |                         |                         |
| Overland Slope (ft/ft)<br>Overland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)<br>One-Hour Precipitation, P <sub>1</sub> (inches)<br>Major Storm Rainfall Input |                         |                         |                         |
| Dverland Slope (ft/ft)<br>Dverland Length (ft)<br>Channel Slope (ft/ft)<br>Channel Length (ft)<br>Minor Storm Rainfall Input<br>Design Storm Return Period, T <sub>r</sub> (years)<br>Dne-Hour Precipitation, P <sub>1</sub> (inches)                               |                         |                         |                         |

| 0.0 | 0.0        | 0.0                |
|-----|------------|--------------------|
| 0.1 | 0.2        | 0.1                |
| 0.0 | 0.0        | 0.0                |
| 0.0 | 0.0        | 0.0                |
|     | 0.1<br>0.0 | 0.1 0.2<br>0.0 0.0 |

# INLET MANAGEMENT

Worksheet Protected

| INLET NAME                         | Inlet DP114 | Inlet DP116              | Inlet DP117              |
|------------------------------------|-------------|--------------------------|--------------------------|
| Site Type (Urban or Rural)         | URBAN       | URBAN                    | URBAN                    |
| Inlet Application (Street or Area) | AREA        | STREET                   | STREET                   |
| Hydraulic Condition                | Swale       | In Sump                  | In Sump                  |
| Inlet Type                         | CDOT Type C | CDOT Type R Curb Opening | CDOT Type R Curb Opening |

#### USER-DEFINED INPUT

| User-Defined Design Flows      |     |     |     |
|--------------------------------|-----|-----|-----|
| Minor Q <sub>Known</sub> (cfs) | 0.0 | 0.8 | 0.5 |
| Major Q <sub>Known</sub> (cfs) | 0.2 | 1.7 | 1.0 |

#### Bypass (Carry-Over) Flow from Upstream

| Receive Bypass Flow from:                        | No Bypass Flow Received | No Bypass Flow Received | No Bypass Flow Received |
|--------------------------------------------------|-------------------------|-------------------------|-------------------------|
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     | 0.0                     | 0.0                     |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs) | 0.0                     | 0.0                     | 0.0                     |

#### Watershed Characteristics

| Subcatchment Area (acres) |  |  |
|---------------------------|--|--|
| Percent Impervious        |  |  |
| NRCS Soil Type            |  |  |

#### Watershed Profile

| Overland Slope (ft/ft) |  |  |
|------------------------|--|--|
| Overland Length (ft)   |  |  |
| Channel Slope (ft/ft)  |  |  |
| Channel Length (ft)    |  |  |

#### Minor Storm Rainfall Input

| Design Storm Return Period, T <sub>r</sub> (years) |  |  |
|----------------------------------------------------|--|--|
| One-Hour Precipitation, P <sub>1</sub> (inches)    |  |  |

#### Major Storm Rainfall Input

| Design Storm Return Period, Tr (years)          |  |  |
|-------------------------------------------------|--|--|
| One-Hour Precipitation, P <sub>1</sub> (inches) |  |  |

| 0.0 | 0.8        | 0.5                |
|-----|------------|--------------------|
| 0.2 | 1.7        | 1.0                |
| 0.0 | N/A        | N/A                |
| 0.0 | N/A        | N/A                |
|     | 0.2<br>0.0 | 0.2 1.7<br>0.0 N/A |

# INLET MANAGEMENT

Worksheet Protected

| NLET NAME                                          | Inlet DP118              | Inlet DP120                           | Inlet DP119              |
|----------------------------------------------------|--------------------------|---------------------------------------|--------------------------|
| Site Type (Urban or Rural)                         | URBAN                    | URBAN                                 | URBAN                    |
| Inlet Application (Street or Area)                 | STREET                   | STREET                                | STREET                   |
| Hydraulic Condition                                | In Sump                  | In Sump                               | In Sump                  |
| Inlet Type                                         | CDOT Type R Curb Opening | CDOT Type R Curb Opening              | CDOT Type R Curb Opening |
| •                                                  |                          | · · · · · · · · · · · · · · · · · · · |                          |
| ER-DEFINED INPUT                                   |                          |                                       |                          |
| User-Defined Design Flows                          |                          |                                       |                          |
| Minor Q <sub>Known</sub> (cfs)                     | 0.9                      | 0.20                                  | 1.0                      |
| Major Q <sub>Known</sub> (cfs)                     | 2.3                      | 0.44                                  | 2.7                      |
|                                                    |                          |                                       |                          |
| Bypass (Carry-Over) Flow from Upstrear             |                          |                                       |                          |
| Receive Bypass Flow from:                          | No Bypass Flow Received  | User-Defined                          | No Bypass Flow Received  |
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs)   | 0.0                      | 0.40                                  | 0.0                      |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)   | 0.0                      | 5.75                                  | 0.0                      |
| Subcatchment Area (acres)<br>Percent Impervious    |                          |                                       |                          |
|                                                    |                          |                                       |                          |
| NRCS Soil Type                                     |                          |                                       |                          |
|                                                    |                          |                                       |                          |
| Watershed Profile                                  |                          |                                       |                          |
| Overland Slope (ft/ft)                             |                          |                                       |                          |
| Overland Length (ft)                               |                          |                                       |                          |
| Channel Slope (ft/ft)                              |                          |                                       |                          |
| Channel Length (ft)                                |                          |                                       |                          |
|                                                    |                          |                                       |                          |
| Minor Storm Rainfall Input                         |                          |                                       |                          |
| Design Storm Return Period, T <sub>r</sub> (years) |                          |                                       |                          |
|                                                    |                          |                                       |                          |
| One-Hour Precipitation, $P_1$ (inches)             |                          |                                       |                          |
| · · · · ·                                          |                          |                                       |                          |
| Major Storm Rainfall Input                         |                          |                                       |                          |
| · · · · ·                                          |                          |                                       |                          |

| Minor Total Design Peak Flow, Q (cfs)                | 0.9 | 0.60 | 1.0 |
|------------------------------------------------------|-----|------|-----|
| Major Total Design Peak Flow, Q (cfs)                | 2.3 | 6.19 | 2.7 |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | N/A | N/A  | N/A |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | N/A | N/A  | N/A |
|                                                      |     |      |     |

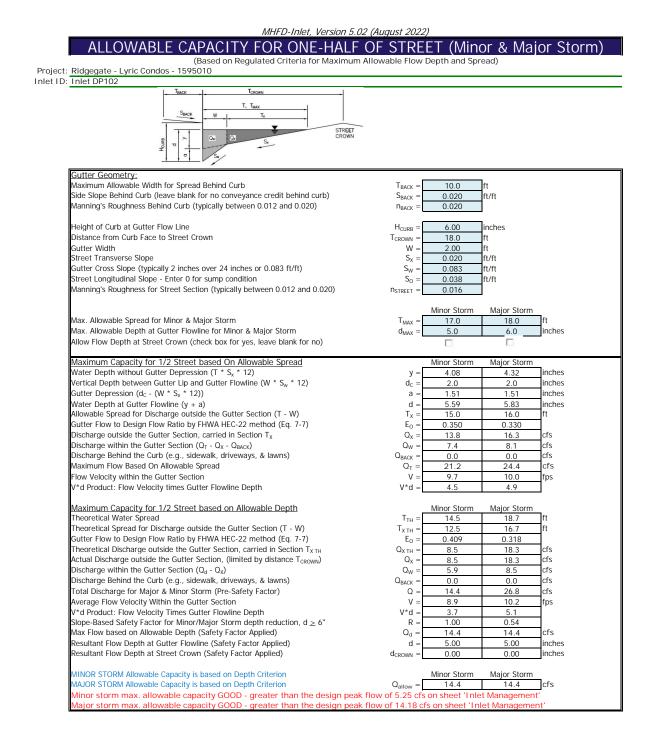
### MHFD-Inlet, Version 5.02 (August 2022)

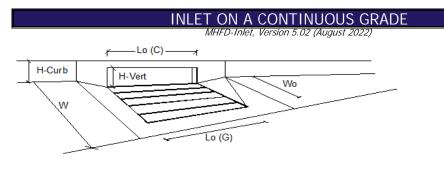
### INLET MANAGEMENT

Worksheet Protected

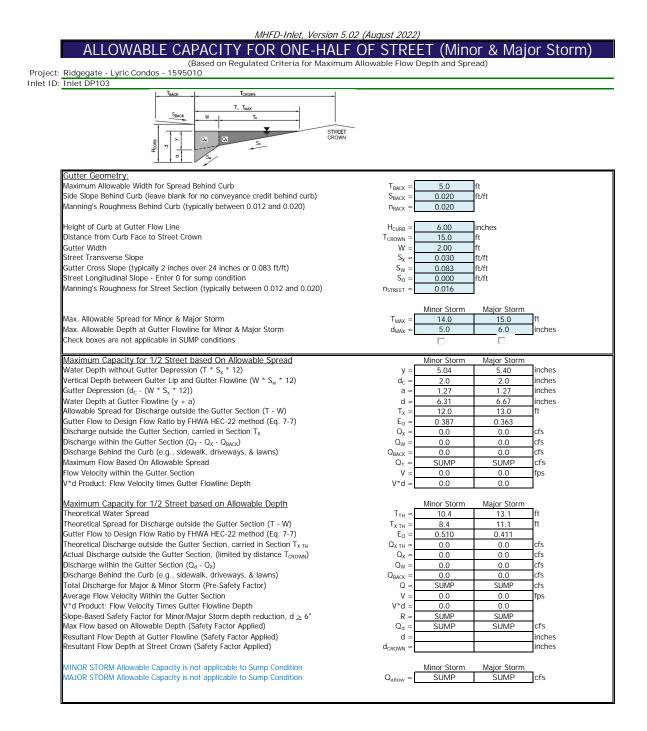
| INLET NAME                         | Inlet DP102              |
|------------------------------------|--------------------------|
| Site Type (Urban or Rural)         | URBAN                    |
| Inlet Application (Street or Area) | STREET                   |
| Hydraulic Condition                | On Grade                 |
| Inlet Type                         | CDOT Type R Curb Opening |

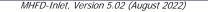
#### USER-DEFINED INPUT

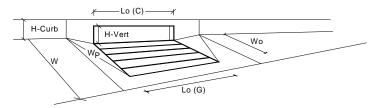

| User-Defined Design Flows                          |              |
|----------------------------------------------------|--------------|
| Minor Q <sub>Known</sub> (cfs)                     | 4.32         |
| Major Q <sub>Known</sub> (cfs)                     | 10.40        |
|                                                    |              |
| Bypass (Carry-Over) Flow from Upstream             |              |
| Receive Bypass Flow from:                          | User-Defined |
| Minor Bypass Flow Received, Q <sub>b</sub> (cfs)   | 0.93         |
| Major Bypass Flow Received, Q <sub>b</sub> (cfs)   | 3.78         |
|                                                    |              |
| Watershed Characteristics                          |              |
| Subcatchment Area (acres)                          |              |
| Percent Impervious                                 |              |
| NRCS Soil Type                                     |              |
| Material and Direction                             |              |
| Watershed Profile                                  |              |
| Overland Slope (ft/ft)                             |              |
| Overland Length (ft)                               |              |
| Channel Slope (ft/ft)                              |              |
| Channel Length (ft)                                |              |
| Minor Storm Rainfall Input                         |              |
| Design Storm Return Period, T <sub>r</sub> (years) |              |
| One-Hour Precipitation, $P_1$ (inches)             |              |
| one nour recipitation, r (incres)                  |              |
| Major Storm Rainfall Input                         |              |
| Design Storm Return Period, T <sub>r</sub> (years) |              |
| One-Hour Precipitation, $P_1$ (inches)             |              |
|                                                    |              |


#### CALCULATED OUTPUT

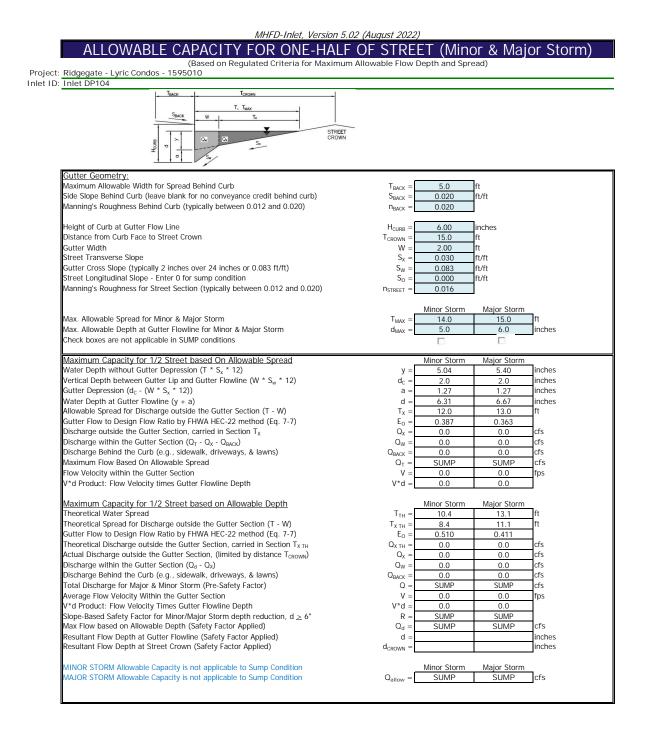
| Minor Total Design Peak Flow, Q (cfs)                | 5.25  |  |
|------------------------------------------------------|-------|--|
| Major Total Design Peak Flow, Q (cfs)                | 14.18 |  |
| Minor Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 0.40  |  |
| Major Flow Bypassed Downstream, Q <sub>b</sub> (cfs) | 5.75  |  |

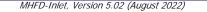

|                                                                                                                                                  | This worksheet use<br>retardance method<br>Manning's n.                      |               | al        |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------|-----------|
|                                                                                                                                                  | <sup>1</sup> d <sub>MAX</sub> For more information<br>↓ Section 7.2.3 of the |               |           |
| <b>→</b>   − B − →                                                                                                                               |                                                                              |               |           |
| nalysis of Trapezoidal Grass-Lined Channel Using SCS Method                                                                                      |                                                                              |               |           |
| RCS Vegetal Retardance (A, B, C, D, or E)<br>lanning's n (Leave cell D16 blank to manually enter an n value)                                     | A, B, C, D, or E =<br>n =0.013                                               |               |           |
| hannel Invert Slope                                                                                                                              |                                                                              | ft/ft         |           |
| ottom Width                                                                                                                                      | B = 0.00                                                                     | ft            |           |
| eft Side Slope                                                                                                                                   |                                                                              | ft/ft         |           |
| ight Side Sloe                                                                                                                                   |                                                                              | ft/ft         |           |
| Check one of the following soil types:           Soil Type:         Max. Velocity (V <sub>MAX</sub> )         Max Froude No. (F <sub>MAX</sub> ) | Choose One:                                                                  |               | ]         |
| Non-Cohesive 5.0 fps 0.60                                                                                                                        | O Non-Cohesive                                                               |               |           |
| Cohesive 7.0 fps 0.80                                                                                                                            | Cohesive                                                                     |               |           |
| Paved N/A N/A                                                                                                                                    | C Paved                                                                      |               |           |
|                                                                                                                                                  | Minor Storm                                                                  | Major Storm   | -         |
| laximum Allowable Top Width of Channel for Minor & Major Storm                                                                                   | T <sub>MAX</sub> = <u>19.00</u>                                              | 20.00         | ft        |
| laximum Allowable Water Depth in Channel for Minor & Major Storm                                                                                 | d <sub>MAX</sub> = 0.50                                                      | 0.70          | ft        |
| aximum Channel Capacity Based On Allowable Top Width                                                                                             | Minor Storm                                                                  | Major Storm   |           |
| laximum Allowable Top Width                                                                                                                      | T <sub>MAX</sub> = 19.00                                                     | 20.00         | ft        |
| /ater Depth                                                                                                                                      | d = 0.29                                                                     | 0.30          | ft        |
| low Area                                                                                                                                         | A = 2.73                                                                     | 3.03          | sq ft     |
| /etted Perimeter                                                                                                                                 | P = <u>19.01</u>                                                             | 20.01         | ft        |
| ydraulic Radius                                                                                                                                  | R = 0.14                                                                     | 0.15          | ft        |
| lanning's n<br>Iow Velocity                                                                                                                      | n = 0.013<br>V = 5.17                                                        | 0.013<br>5.35 | fps       |
| elocity-Depth Product                                                                                                                            | $V = \frac{3.17}{100000000000000000000000000000000000$                       | 0.81          | ft^2/s    |
| ydraulic Depth                                                                                                                                   | D = 0.14                                                                     | 0.15          | ft        |
| roude Number                                                                                                                                     | Fr = 2.40                                                                    | 2.42          |           |
| laximum Flow Based on Allowable Water Depth                                                                                                      | Q <sub>T</sub> = 14.1                                                        | 16.2          | cfs       |
| laximum Channel Capacity Based On Allowable Water Depth                                                                                          | Minor Storm                                                                  | Major Storm   |           |
| laximum Allowable Water Depth                                                                                                                    | $d_{MAX} = 0.50$                                                             | 0.70          | ft        |
| op Width                                                                                                                                         | T = 33.00                                                                    | 46.20         | ft        |
| low Area                                                                                                                                         | A = 8.25                                                                     | 16.17         | sq ft     |
| /etted Perimeter                                                                                                                                 | P = 33.02                                                                    | 46.22         | ft        |
| ydraulic Radius                                                                                                                                  | R = 0.25<br>n = 0.013                                                        | 0.35          | ft        |
| lanning's n<br>Iow Velocity                                                                                                                      | V = 7.47                                                                     | 9.35          | fps       |
| elocity-Depth Product                                                                                                                            | VR = 1.87                                                                    | 3.27          | ft^2/s    |
| ydraulic Depth                                                                                                                                   | D = 0.25                                                                     | 0.35          | ft        |
| roude Number                                                                                                                                     | Fr = 2.63                                                                    | 2.79          |           |
| laximum Flow Based On Allowable Water Depth                                                                                                      | Q <sub>d</sub> = 61.6                                                        | 151.2         | cfs       |
| llowable Channel Capacity Based On Channel Geometry                                                                                              | Minor Storm                                                                  | Major Storm   |           |
| IINOR STORM Allowable Capacity is based on Top Width Criterion                                                                                   | $Q_{allow} = 14.1$                                                           | 16.2          | cfs       |
| AJOR STORM Allowable Capacity is based on Top Width Criterion                                                                                    | $d_{\text{allow}} = 0.29$                                                    | 0.30          | ft        |
| Vater Depth in Channel Based On Design Peak Flow                                                                                                 |                                                                              |               |           |
| esign Peak Flow<br>/ater Depth                                                                                                                   | $Q_0 = 2.7$<br>d = 0.15                                                      | 6.7<br>0.22   | cfs<br>ft |
| op Width                                                                                                                                         | d = 0.15<br>T = 10.17                                                        | 14.36         | ft        |
| low Area                                                                                                                                         | A = 0.78                                                                     | 1.56          | sq ft     |
|                                                                                                                                                  | P = 10.17                                                                    | 14.37         | ft        |
| /etted Perimeter                                                                                                                                 | R = 0.08                                                                     | 0.11          | ft        |
| /etted Perimeter<br>ydraulic Radius                                                                                                              |                                                                              | 0.013         | _         |
| /etted Perimeter<br>ydraulic Radius<br>lanning's n                                                                                               | n = 0.013                                                                    |               |           |
| /etted Perimeter<br>ydraulic Radius<br>lanning's n<br>low Velocity                                                                               | V = 3.41                                                                     | 4.29          | fps       |
| /etted Perimeter<br>ydraulic Radius<br>lanning's n<br>low Velocity<br>elocity-Depth Product                                                      | V = 3.41<br>VR = 0.26                                                        | 4.29<br>0.47  | ft^2/s    |
| /etted Perimeter<br>ydraulic Radius<br>lanning's n<br>low Velocity                                                                               | V = 3.41                                                                     | 4.29          |           |

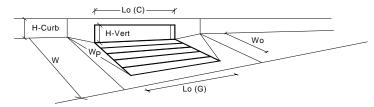

| Ridgegate - Lyric Condos - 1595010<br>Inlet DP101                           |                   |                    |       |         |
|-----------------------------------------------------------------------------|-------------------|--------------------|-------|---------|
|                                                                             | 1                 |                    |       |         |
| Inlet Design Information (Input)                                            | _                 |                    |       |         |
| Type of Inlet User-Defined                                                  | - Inlet Type =    | User-Def           | fined |         |
| Angle of Inclined Grate (must be <= 30 degrees)                             |                   | θ =                | 0.00  | degrees |
| Width of Grate                                                              |                   | W =                | 1.92  | ft      |
| Length of Grate                                                             |                   | L =                | 6.66  | ft      |
| Open Area Ratio                                                             |                   | $A_{RATIO} =$      | 0.70  |         |
| Height of Inclined Grate                                                    |                   | H <sub>B</sub> =   | 0.00  | ft      |
| Clogging Factor                                                             |                   | C <sub>f</sub> =   | 0.50  | _       |
| Grate Discharge Coefficient                                                 | Hb                | C <sub>d</sub> =   | N/A   | _       |
| Unifice Coefficient                                                         |                   | $C_o =$<br>$C_w =$ | 0.64  | _       |
| Weir coemcient                                                              | 1                 | C <sub>w</sub> =   | 2.05  |         |
| ONCTON                                                                      |                   |                    |       |         |
| Dire                                                                        |                   | MINOR              | MAJOR |         |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) | d =               | 0.15               | 0.22  |         |
|                                                                             |                   |                    |       |         |
| Grate Capacity as a Weir                                                    |                   |                    |       |         |
| Submerged Side Weir Length                                                  | X =               | 6.66               | 6.66  | ft      |
| Inclined Side Weir Flow                                                     | Q <sub>ws</sub> = | 1.4                | 2.4   | cfs     |
| Base Weir Flow                                                              | Q <sub>wb</sub> = | 0.6                | 1.0   | cfs     |
| nterception Without Cloggging                                               | Q <sub>wi</sub> = | 3.5                | 5.8   | cfs     |
| Interception With Clogging                                                  | O <sub>wa</sub> = | 1.7                | 2.9   | cfs     |
| Grate Capacity as an Orifice                                                |                   |                    |       |         |
| Interception Without Clogging                                               | Q <sub>oi</sub> = | 18.0               | 21.4  | cfs     |
| Interception With Clogging                                                  | $Q_{oa} =$        | 9.0                | 10.7  | cfs     |
| ·····                                                                       | <b>G</b> 08       |                    |       |         |
| Total Inlet Interception Capacity (assumes clogged condition)               | Q <sub>a</sub> =  | 1.7                | 2.9   | cfs     |
| Bypassed Flow                                                               | Q <sub>b</sub> =  | 0.93               | 3.78  | cfs     |
| Capture Percentage = Qa/Qo                                                  | C% =              | 65                 | 44    | %       |



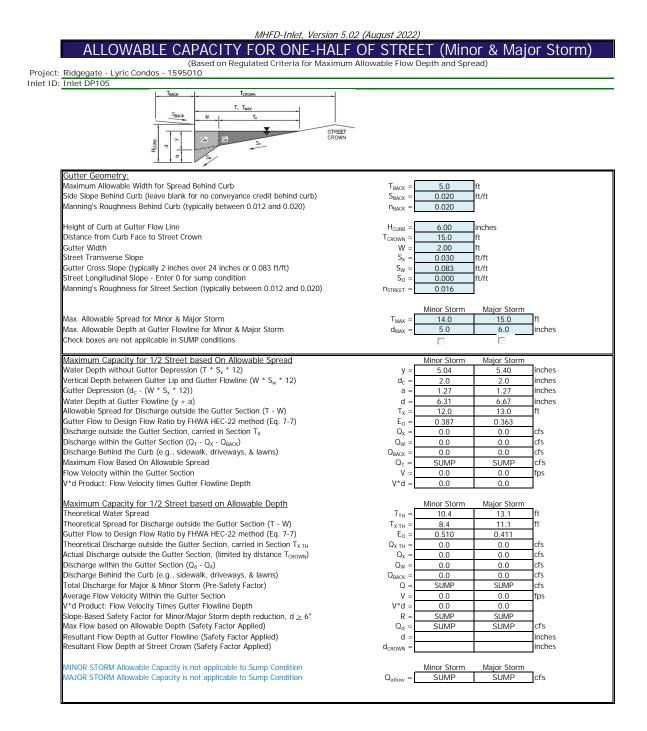


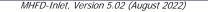


| Design Information (Input)                                                      |                         | MINOR         | MAJOR         |           |
|---------------------------------------------------------------------------------|-------------------------|---------------|---------------|-----------|
| Type of Inlet                                                                   | Type =                  |               | Curb Opening  |           |
| Local Depression (additional to continuous gutter depression 'a')               | a <sub>LOCAL</sub> =    | 3.0           | 3.0           | inches    |
| Total Number of Units in the Inlet (Grate or Curb Opening)                      | No =                    | 1             | 1             | linorios  |
| Length of a Single Unit Inlet (Grate or Curb Opening)                           | L <sub>0</sub> =        | 10.00         | 10.00         | ft        |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)                  | W <sub>o</sub> =        | N/A           | N/A           | ft        |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)              | $C_{f}(G) =$            | N/A           | N/A           | 11        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.3)       | $C_f(C) =$              | 0.10          | 0.10          | -         |
| Street Hydraulics: OK - Q < Allowable Street Capacity                           | of (0) =                | MINOR         | MAJOR         |           |
| Design Discharge for Half of Street (from <i>Inlet Management</i> )             | Q <sub>o</sub> =        | 5.3           | 14.2          | cfs       |
| Water Spread Width                                                              | α <sub>0</sub> =<br>T = | 9.3           | 14.2          | ft        |
| Water Depth at Flowline (outside of local depression)                           | d =                     | 3.8           | 5.0           | inches    |
| Water Depth at Street Crown (or at $T_{MAX}$ )                                  | d <sub>CROWN</sub> =    | 0.0           | 0.0           | inches    |
| Ratio of Gutter Flow to Design Flow                                             | $E_0 =$                 | 0.610         | 0.412         | liticites |
| Discharge outside the Gutter Section W, carried in Section $T_x$                | $D_0 = Q_x =$           | 2.0           | 8.3           | cfs       |
|                                                                                 |                         | 3.2           | 5.8           | cfs       |
| Discharge within the Gutter Section W                                           | Q <sub>w</sub> =        |               | 5.8           | cfs       |
| Discharge Behind the Curb Face                                                  | $Q_{BACK} =$            | 0.0           |               |           |
| Flow Area within the Gutter Section W                                           | A <sub>W</sub> =        | 0.46          | 0.66          | sq ft     |
| Velocity within the Gutter Section W                                            | V <sub>W</sub> =        | 7.0           | 8.8           | fps       |
| Water Depth for Design Condition                                                | $d_{LOCAL} =$           | 6.8           | 8.0           | inches    |
| Grate Analysis (Calculated)                                                     |                         | MINOR         | MAJOR         | Π.        |
| Total Length of Inlet Grate Opening                                             | L =                     | N/A           | N/A           | ft        |
| Ratio of Grate Flow to Design Flow                                              | $E_{o-GRATE} =$         | N/A           | N/A           |           |
| Under No-Clogging Condition                                                     | F                       | MINOR         | MAJOR         | 7         |
| Minimum Velocity Where Grate Splash-Over Begins                                 | V <sub>o</sub> =        | N/A           | N/A           | fps       |
| Interception Rate of Frontal Flow                                               | $R_f =$                 | N/A           | N/A           |           |
| Interception Rate of Side Flow                                                  | $R_x =$                 | N/A           | N/A           |           |
| Interception Capacity                                                           | Q <sub>i</sub> =        | N/A           | N/A           | cfs       |
| Under Clogging Condition                                                        | _                       | MINOR         | MAJOR         | _         |
| Clogging Coefficient for Multiple-unit Grate Inlet                              | GrateCoeff =            | N/A           | N/A           |           |
| Clogging Factor for Multiple-unit Grate Inlet                                   | GrateClog =             | N/A           | N/A           |           |
| Effective (unclogged) Length of Multiple-unit Grate Inlet                       | L <sub>e</sub> =        | N/A           | N/A           | ft        |
| Minimum Velocity Where Grate Splash-Over Begins                                 | V <sub>o</sub> =        | N/A           | N/A           | fps       |
| Interception Rate of Frontal Flow                                               | $R_f =$                 | N/A           | N/A           |           |
| Interception Rate of Side Flow                                                  | $R_x =$                 | N/A           | N/A           |           |
| Actual Interception Capacity                                                    | Q <sub>a</sub> =        | N/A           | N/A           | cfs       |
| Carry-Over Flow = $Q_0 - Q_a$ (to be applied to curb opening or next d/s inlet) | $Q_{\rm b} =$           | N/A           | N/A           | cfs       |
| Curb Opening or Slotted Inlet Analysis (Calculated)                             |                         | MINOR         | MAJOR         | •         |
| Equivalent Slope Se                                                             | S <sub>e</sub> =        | 0.135         | 0.097         | ft/ft     |
| Required Length L <sub>T</sub> to Have 100% Interception                        | L <sub>T</sub> =        | 12.34         | 23.77         | ft        |
| Under No-Cloaging Condition                                                     | · L                     | MINOR         | MAJOR         | <u> </u>  |
| Effective Length of Curb Opening or Slotted Inlet (minimum of L, $L_T$ )        | L =                     | 10.00         | 10.00         | ft        |
| Interception Capacity                                                           | $Q_i =$                 | 5.0           | 8.9           | cfs       |
| Under Clogging Condition                                                        | -1                      | MINOR         | MAJOR         | <b>_</b>  |
| Clogging Coefficient                                                            | CurbCoeff =             | 1.25          | 1.25          | 7         |
| Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet                 | CurbClog =              | 0.06          | 0.06          | -         |
| Effective (Unclogged) Length                                                    | $L_e =$                 | 9.38          | 9.38          | ft        |
| Actual Interception Capacity                                                    | Q <sub>a</sub> =        | 4.8           | 8.4           | cfs       |
| Carry-Over Flow = $Q_{b(GRATE)}$ - $Q_a$                                        |                         | 0.4           | 5.7           | cfs       |
|                                                                                 | Q <sub>b</sub> =        |               |               | 613       |
| Summary Total Inlet Interception Capacity                                       | Q =                     | MINOR<br>4.85 | MAJOR<br>8.43 | cfs       |
|                                                                                 |                         |               |               |           |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                              | Q <sub>b</sub> =        | 0.40          | 5.75          | cfs       |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub>                             | C% =                    | 92            | 59            | %         |

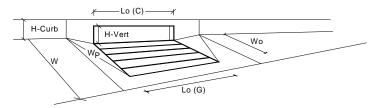


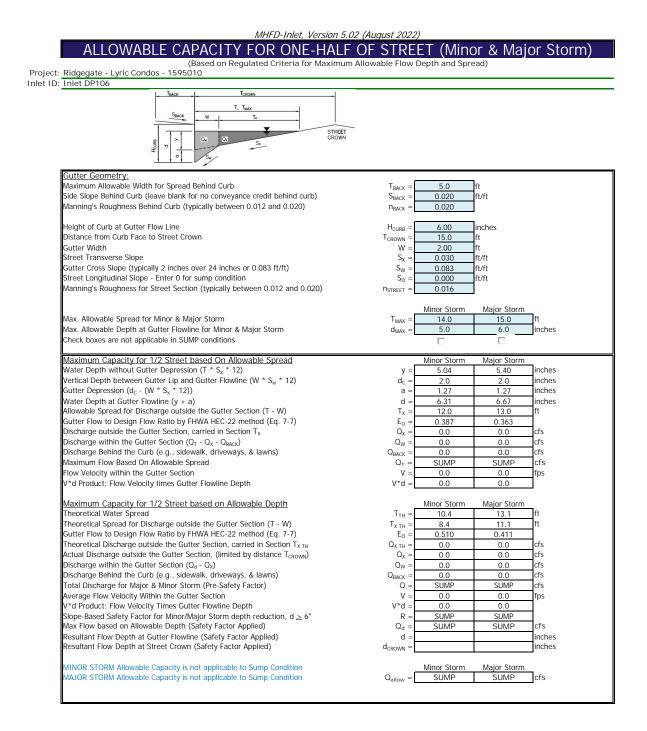


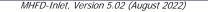


| Design Information (Input)                                                                 |                             | MINOR        | MAJOR        |                 |
|--------------------------------------------------------------------------------------------|-----------------------------|--------------|--------------|-----------------|
| Type of Inlet                                                                              | Type =                      |              | Curb Opening | 1               |
| Local Depression (additional to continuous gutter depression 'a' from above)               | a <sub>local</sub> =        | 3.00         | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                              | No =                        | 1            | 1            | 1               |
| Water Depth at Flowline (outside of local depression)                                      | Ponding Depth =             | 5.0          | 6.0          | inches          |
| Grate Information                                                                          | · · · · · ·                 | MINOR        | MAJOR        | Override Depths |
| Length of a Unit Grate                                                                     | $L_0(G) =$                  | N/A          | N/A          | feet            |
| Width of a Unit Grate                                                                      | W <sub>0</sub> =            | N/A          | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                                     | A <sub>ratio</sub> =        | N/A          | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)                             | $C_f(G) =$                  | N/A          | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                                         | $C_w$ (G) =                 | N/A          | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                                      | $C_o(G) =$                  | N/A          | N/A          |                 |
| Curb Opening Information                                                                   |                             | MINOR        | MAJOR        |                 |
| Length of a Unit Curb Opening                                                              | $L_o(C) =$                  | 5.00         | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                                  | H <sub>vert</sub> =         | 6.00         | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                                    | H <sub>throat</sub> =       | 6.00         | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                                    | Theta =                     | 63.40        | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)                       | $W_p =$                     | 2.00         | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                             | $C_f(C) =$                  | 0.10         | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                                      | $C_w(C) =$                  | 3.60         | 3.60         | _               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                               | $C_0(C) =$                  | 0.67         | 0.67         |                 |
| Grate Flow Analysis (Calculated)                                                           | 0                           | MINOR        | MAJOR        | 7               |
| Clogging Coefficient for Multiple Units                                                    | Coef =                      | N/A          | N/A          | _               |
| Clogging Factor for Multiple Units                                                         | Clog =                      | N/A          | N/A          |                 |
| Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)<br>Interception without Clogging | o _F                        | MINOR<br>N/A | MAJOR<br>N/A | cfs             |
| Interception with Clogging                                                                 | Q <sub>wi</sub> =           | N/A          | N/A          | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                              | Q <sub>wa</sub> =           | MINOR        | MAJOR        | CIS             |
| Interception without Clogging                                                              | Q <sub>oi</sub> =           | N/A          | N/A          | cfs             |
| Interception without clogging                                                              | $Q_{oi} = Q_{oa} =$         | N/A          | N/A          | cfs             |
| Grate Capacity as Mixed Flow                                                               | C203 -                      | MINOR        | MAJOR        | 013             |
| Interception without Clogging                                                              | Q <sub>mi</sub> =           | N/A          | N/A          | cfs             |
| Interception with Clogging                                                                 | Q <sub>ma</sub> =           | N/A          | N/A          | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                                       | Q <sub>Grate</sub> =        | N/A          | N/A          | cfs             |
| Curb Opening Flow Analysis (Calculated)                                                    | •                           | MINOR        | MAJOR        | •               |
| Clogging Coefficient for Multiple Units                                                    | Coef =                      | 1.00         | 1.00         | 7               |
| Clogging Factor for Multiple Units                                                         | Clog =                      | 0.10         | 0.10         |                 |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                                   | _                           | MINOR        | MAJOR        |                 |
| Interception without Clogging                                                              | Q <sub>wi</sub> =           | 3.9          | 6.0          | cfs             |
| Interception with Clogging                                                                 | Q <sub>wa</sub> =           | 3.5          | 5.4          | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                               |                             | MINOR        | MAJOR        | _               |
| Interception without Clogging                                                              | Q <sub>oi</sub> =           | 8.9          | 9.8          | cfs             |
| Interception with Clogging                                                                 | Q <sub>oa</sub> =           | 8.1          | 8.8          | cfs             |
| Curb Opening Capacity as Mixed Flow                                                        |                             | MINOR        | MAJOR        | ٦.              |
| Interception without Clogging                                                              | Q <sub>mi</sub> =           | 5.5          | 7.1          | cfs             |
| Interception with Clogging                                                                 | Q <sub>ma</sub> =           | 4.9          | 6.4          | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                                | $Q_{Curb} =$                | 3.5          | 5.4          | cfs             |
| Resultant Street Conditions                                                                | . г                         | MINOR        | MAJOR        |                 |
| Total Inlet Length                                                                         | L =<br>T =                  | 5.00         | 5.00         | feet<br>ft      |
| Resultant Street Flow Spread (based on street geometry from above)                         |                             | 10.4         | 13.1<br>0.0  | ft<br>inches    |
| Resultant Flow Depth at Street Crown                                                       | d <sub>CROWN</sub> =        | 0.0          | 0.0          | inches          |
| Low Head Performance Reduction (Calculated)                                                |                             | MINOR        | MAJOR        |                 |
| Depth for Grate Midwidth                                                                   | d <sub>Grate</sub> =        | N/A          | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                                       | d <sub>Curb</sub> =         | 0.25         | 0.33         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                                  | RF <sub>Grate</sub> =       | N/A          | N/A          | 1               |
| Curb Opening Performance Reduction Factor for Long Inlets                                  | RF <sub>Curb</sub> =        | 1.00         | 1.00         | 1               |
| Combination Inlet Performance Reduction Factor for Long Inlets                             | RF <sub>Combination</sub> = | N/A          | N/A          | 1               |
|                                                                                            | Compination                 |              |              | -               |
|                                                                                            |                             |              |              |                 |
|                                                                                            |                             | MINOR        | MAJOR        |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                              | Q <sub>a</sub> =            | MINOR<br>3.5 | MAJOR<br>5.4 | cfs             |

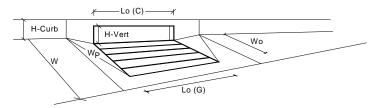


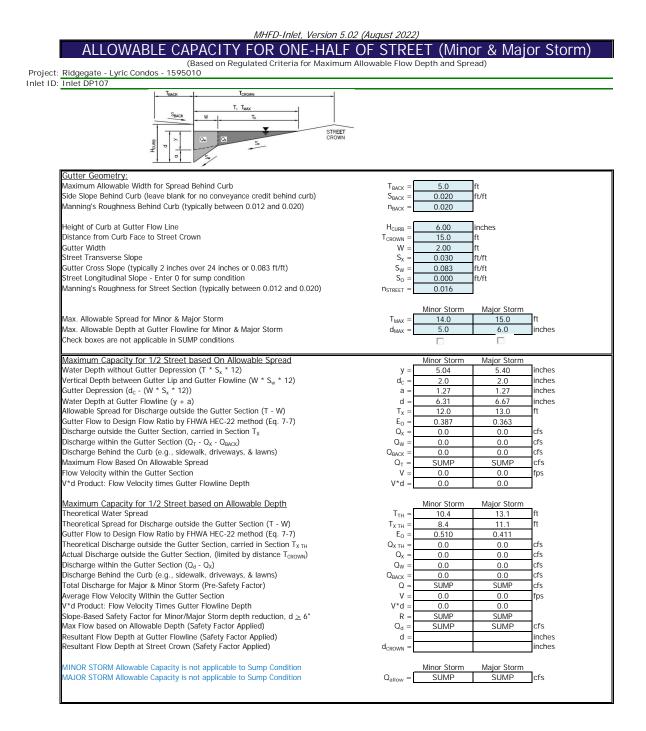


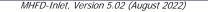


| Design Information (Input)                                                   |                             | MINOR | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      |       | Curb Opening | ٦               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00  | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1     | 1            | linenes         |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.0   | 6.0          | inches          |
| Grate Information                                                            |                             | MINOR | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{0}(G) =$                | N/A   | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>0</sub> =            | N/A   | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | $A_{ratio} =$               | N/A   | N/A          | icci            |
| Clogging Factor for a Single Grate (typical values 0.50 - 0.70)              | $C_f(G) =$                  | N/A   | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_{w}(G) =$                | N/A   | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_0(G) =$                  | N/A   | N/A          | -               |
| Curb Opening Information                                                     | 00(0)                       | MINOR | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{0}(C) =$                | 5.00  | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00  | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00  | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40 | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | $W_p =$                     | 2.00  | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                  | 0.10  | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60  | 3.60         | -               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_{0}(C) =$                | 0.67  | 0.67         | -               |
| Grate Flow Analysis (Calculated)                                             |                             | MINOR | MAJOR        |                 |
| Clogging Coefficient for Multiple Units                                      | Coef =                      | N/A   | N/A          | 7               |
| Clogging Factor for Multiple Units                                           | Clog =                      | N/A   | N/A          |                 |
| Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)                    | 5                           | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>wi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | Q <sub>wa</sub> =           | N/A   | N/A          | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                |                             | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>oi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | $Q_{0a} =$                  | N/A   | N/A          | cfs             |
| Grate Capacity as Mixed Flow                                                 |                             | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>mi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | Q <sub>ma</sub> =           | N/A   | N/A          | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                         | Q <sub>Grate</sub> =        | N/A   | N/A          | cfs             |
| Curb Opening Flow Analysis (Calculated)                                      |                             | MINOR | MAJOR        |                 |
| Clogging Coefficient for Multiple Units                                      | Coef =                      | 1.00  | 1.00         |                 |
| Clogging Factor for Multiple Units                                           | Clog =                      | 0.10  | 0.10         |                 |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                     |                             | MINOR | MAJOR        |                 |
| Interception without Clogging                                                | Q <sub>wi</sub> =           | 3.9   | 6.0          | cfs             |
| Interception with Clogging                                                   | Q <sub>wa</sub> =           | 3.5   | 5.4          | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                 | _                           | MINOR | MAJOR        | _               |
| Interception without Clogging                                                | Q <sub>oi</sub> =           | 8.9   | 9.8          | cfs             |
| Interception with Clogging                                                   | Q <sub>oa</sub> =           | 8.1   | 8.8          | cfs             |
| Curb Opening Capacity as Mixed Flow                                          | -                           | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>mi</sub> =           | 5.5   | 7.1          | cfs             |
| Interception with Clogging                                                   | Q <sub>ma</sub> =           | 4.9   | 6.4          | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                  | $Q_{Curb} =$                | 3.5   | 5.4          | cfs             |
| Resultant Street Conditions                                                  | F                           | MINOR | MAJOR        | 7               |
| Total Inlet Length                                                           | L =                         | 5.00  | 5.00         | feet            |
| Resultant Street Flow Spread (based on street geometry from above)           | T =                         | 10.4  | 13.1         | ft              |
| Resultant Flow Depth at Street Crown                                         | d <sub>CROWN</sub> =        | 0.0   | 0.0          | inches          |
|                                                                              |                             |       |              |                 |
| Low Head Performance Reduction (Calculated)                                  | -                           | MINOR | MAJOR        | -               |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A   | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.25  | 0.33         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A   | N/A          | 4               |
| Curb Opening Performance Reduction Factor for Long Inlets                    | $RF_{Curb} =$               | 1.00  | 1.00         | 4               |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A   | N/A          |                 |
|                                                                              |                             |       |              |                 |
|                                                                              | -                           | MINOR | MAJOR        | -               |
| Total Inlet Interception Capacity (assumes clogged condition)                | Q <sub>a</sub> =            | 3.5   | 5.4          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | Q PEAK REQUIRED =           | 0.3   | 0.7          | cfs             |

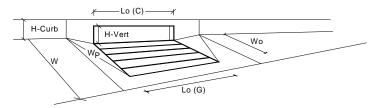


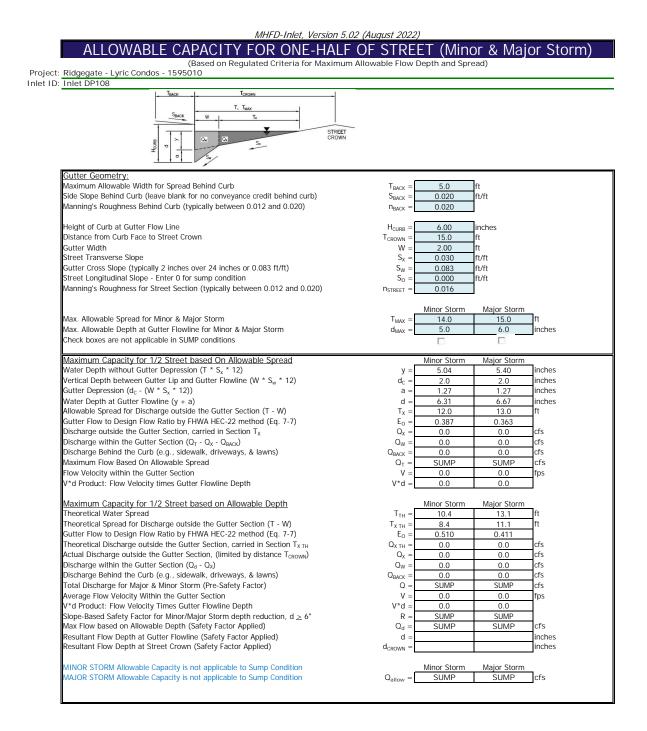


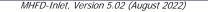


| Design Information (Input)                                                   |                             | MINOR | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      |       | Curb Opening | ٦               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00  | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1     | 1            | linenes         |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.0   | 6.0          | inches          |
| Grate Information                                                            |                             | MINOR | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{0}(G) =$                | N/A   | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>0</sub> =            | N/A   | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | $A_{ratio} =$               | N/A   | N/A          | icci            |
| Clogging Factor for a Single Grate (typical values 0.50 - 0.70)              | $C_f(G) =$                  | N/A   | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_{w}(G) =$                | N/A   | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_0(G) =$                  | N/A   | N/A          | -               |
| Curb Opening Information                                                     | 00(0)                       | MINOR | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{0}(C) =$                | 5.00  | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00  | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00  | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40 | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | $W_p =$                     | 2.00  | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                  | 0.10  | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60  | 3.60         | -               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_{0}(C) =$                | 0.67  | 0.67         | -               |
| Grate Flow Analysis (Calculated)                                             |                             | MINOR | MAJOR        |                 |
| Clogging Coefficient for Multiple Units                                      | Coef =                      | N/A   | N/A          | 7               |
| Clogging Factor for Multiple Units                                           | Clog =                      | N/A   | N/A          |                 |
| Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)                    | 5                           | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>wi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | Q <sub>wa</sub> =           | N/A   | N/A          | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                |                             | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>oi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | $Q_{0a} =$                  | N/A   | N/A          | cfs             |
| Grate Capacity as Mixed Flow                                                 |                             | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>mi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | Q <sub>ma</sub> =           | N/A   | N/A          | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                         | Q <sub>Grate</sub> =        | N/A   | N/A          | cfs             |
| Curb Opening Flow Analysis (Calculated)                                      |                             | MINOR | MAJOR        |                 |
| Clogging Coefficient for Multiple Units                                      | Coef =                      | 1.00  | 1.00         |                 |
| Clogging Factor for Multiple Units                                           | Clog =                      | 0.10  | 0.10         |                 |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                     |                             | MINOR | MAJOR        |                 |
| Interception without Clogging                                                | Q <sub>wi</sub> =           | 3.9   | 6.0          | cfs             |
| Interception with Clogging                                                   | Q <sub>wa</sub> =           | 3.5   | 5.4          | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                 | _                           | MINOR | MAJOR        | _               |
| Interception without Clogging                                                | Q <sub>oi</sub> =           | 8.9   | 9.8          | cfs             |
| Interception with Clogging                                                   | Q <sub>oa</sub> =           | 8.1   | 8.8          | cfs             |
| Curb Opening Capacity as Mixed Flow                                          | -                           | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>mi</sub> =           | 5.5   | 7.1          | cfs             |
| Interception with Clogging                                                   | Q <sub>ma</sub> =           | 4.9   | 6.4          | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                  | $Q_{Curb} =$                | 3.5   | 5.4          | cfs             |
| Resultant Street Conditions                                                  | F                           | MINOR | MAJOR        | 7               |
| Total Inlet Length                                                           | L =                         | 5.00  | 5.00         | feet            |
| Resultant Street Flow Spread (based on street geometry from above)           | T =                         | 10.4  | 13.1         | ft              |
| Resultant Flow Depth at Street Crown                                         | d <sub>CROWN</sub> =        | 0.0   | 0.0          | inches          |
|                                                                              |                             |       |              |                 |
| Low Head Performance Reduction (Calculated)                                  | -                           | MINOR | MAJOR        | -               |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A   | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.25  | 0.33         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A   | N/A          | 4               |
| Curb Opening Performance Reduction Factor for Long Inlets                    | $RF_{Curb} =$               | 1.00  | 1.00         | 4               |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A   | N/A          |                 |
|                                                                              |                             |       |              |                 |
|                                                                              | -                           | MINOR | MAJOR        | -               |
| Total Inlet Interception Capacity (assumes clogged condition)                | Q <sub>a</sub> =            | 3.5   | 5.4          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | Q PEAK REQUIRED =           | 0.3   | 0.7          | cfs             |

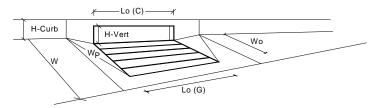






|                                                                                                                             |                             | MINOR        | MAJOR               |                 |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|---------------------|-----------------|
| Design Information (Input) CDOT Type R Curb Opening                                                                         | Type =                      |              | Curb Opening        |                 |
| Local Depression (additional to continuous gutter depression 'a' from above)                                                | a <sub>local</sub> =        | 3.00         | 3.00                | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                                                               | No =                        | 1            | 1                   |                 |
| Water Depth at Flowline (outside of local depression)                                                                       | Ponding Depth =             | 5.0          | 6.0                 | inches          |
| Grate Information                                                                                                           |                             | MINOR        | MAJOR               | Override Depths |
| Length of a Unit Grate                                                                                                      | $L_{0}(G) =$                | N/A          | N/A                 | feet            |
| Width of a Unit Grate                                                                                                       | W <sub>0</sub> =            | N/A          | N/A                 | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                                                                      | A <sub>ratio</sub> =        | N/A          | N/A                 |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)                                                              | $C_f(G) =$                  | N/A          | N/A                 |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                                                                          | $C_w$ (G) =                 | N/A          | N/A                 |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                                                                       | $C_o(G) =$                  | N/A          | N/A                 |                 |
| Curb Opening Information                                                                                                    |                             | MINOR        | MAJOR               |                 |
| Length of a Unit Curb Opening                                                                                               | $L_o(C) =$                  | 5.00         | 5.00                | feet            |
| Height of Vertical Curb Opening in Inches                                                                                   | H <sub>vert</sub> =         | 6.00         | 6.00                | inches          |
| Height of Curb Orifice Throat in Inches                                                                                     | H <sub>throat</sub> =       | 6.00         | 6.00                | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                                                                     | Theta =                     | 63.40        | 63.40               | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)                                                        | $W_p =$                     | 2.00         | 2.00                | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                                                              | $C_{f}(C) =$                | 0.10         | 0.10                |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                                                                       | $C_w(C) =$                  | 3.60         | 3.60                | _               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                                                                | $C_{o}(C) =$                | 0.67         | 0.67                |                 |
| Grate Flow Analysis (Calculated)                                                                                            | o                           | MINOR        | MAJOR               | 7               |
| Clogging Coefficient for Multiple Units                                                                                     | Coef =                      | N/A          | N/A                 | -               |
| Clogging Factor for Multiple Units<br>Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)                             | Clog =                      | N/A<br>MINOR | N/A<br>MAJOR        |                 |
| Interception without Clogging                                                                                               | o _□                        | N/A          | MAJOR<br>N/A        | cfs             |
| Interception with Clogging                                                                                                  | Q <sub>wi</sub> =           | N/A          | N/A<br>N/A          | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                                                               | Q <sub>wa</sub> =           | MINOR        | MAJOR               | CIS             |
| Interception without Clogging                                                                                               | Q <sub>oi</sub> =           | N/A          | N/A                 | cfs             |
| Interception with Clogging                                                                                                  | $Q_{oi} = Q_{oa} =$         | N/A          | N/A                 | cfs             |
| Grate Capacity as Mixed Flow                                                                                                | Q <sub>00</sub> -           | MINOR        | MAJOR               | 013             |
| Interception without Clogging                                                                                               | Q <sub>mi</sub> =           | N/A          | N/A                 | cfs             |
| Interception with Clogging                                                                                                  | Q <sub>ma</sub> =           | N/A          | N/A                 | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                                                                        | Q <sub>Grate</sub> =        | N/A          | N/A                 | cfs             |
| Curb Opening Flow Analysis (Calculated)                                                                                     |                             | MINOR        | MAJOR               |                 |
| Clogging Coefficient for Multiple Units                                                                                     | Coef =                      | 1.00         | 1.00                |                 |
| Clogging Factor for Multiple Units                                                                                          | Clog =                      | 0.10         | 0.10                |                 |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                                                                    |                             | MINOR        | MAJOR               |                 |
| Interception without Clogging                                                                                               | Q <sub>wi</sub> =           | 3.9          | 6.0                 | cfs             |
| Interception with Clogging                                                                                                  | Q <sub>wa</sub> =           | 3.5          | 5.4                 | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                                                                | -                           | MINOR        | MAJOR               | -               |
| Interception without Clogging                                                                                               | Q <sub>oi</sub> =           | 8.9          | 9.8                 | cfs             |
| Interception with Clogging                                                                                                  | Q <sub>oa</sub> =           | 8.1          | 8.8                 | cfs             |
| Curb Opening Capacity as Mixed Flow                                                                                         | _ <del>_</del>              | MINOR        | MAJOR               | ٦.              |
| Interception without Clogging                                                                                               | Q <sub>mi</sub> =           | 5.5          | 7.1                 | cfs             |
| Interception with Clogging                                                                                                  | Q <sub>ma</sub> =           | 4.9          | 6.4                 | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                                                                 | $Q_{Curb} =$                | 3.5          | 5.4                 | cfs             |
| Resultant Street Conditions                                                                                                 | . г                         | MINOR        | MAJOR               |                 |
| Total Inlet Length                                                                                                          | L =<br>T =                  | 5.00         | 5.00<br>13.1        | feet<br>ft      |
| Resultant Street Flow Spread (based on street geometry from above)<br>Resultant Flow Depth at Street Crown                  | -                           | 0.0          | 0.0                 | II inches       |
|                                                                                                                             | d <sub>CROWN</sub> =        | 0.0          | 0.0                 | IIICHES         |
| Low Head Performance Reduction (Calculated)                                                                                 |                             | MINOR        | MAJOR               |                 |
| Depth for Grate Midwidth                                                                                                    | d <sub>Grate</sub> =        | N/A          | N/A                 | ft              |
| Depth for Curb Opening Weir Equation                                                                                        | d <sub>Curb</sub> =         | 0.25         | 0.33                | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                                                                   | RF <sub>Grate</sub> =       | N/A          | N/A                 | 1               |
| •                                                                                                                           | RF <sub>Curb</sub> =        | 1.00         | 1.00                |                 |
| Lurp Opening Performance Reduction Factor for Long Inlets                                                                   | RF <sub>Combination</sub> = | N/A          | N/A                 | 1               |
| Curb Opening Performance Reduction Factor for Long Inlets<br>Combination Inlet Performance Reduction Factor for Long Inlets |                             |              |                     |                 |
| Curb Opening Performance Reduction Factor for Long Inlets<br>Combination Inlet Performance Reduction Factor for Long Inlets | Combination -               |              |                     |                 |
|                                                                                                                             | Combination -               | MINOR        | MAJOR               |                 |
|                                                                                                                             | $Q_a =$                     |              | MAJOR<br>5.4<br>0.9 | cfs<br>cfs      |






| Design Information (Input)                                                                 |                             | MINOR        | MAJOR        |                 |
|--------------------------------------------------------------------------------------------|-----------------------------|--------------|--------------|-----------------|
| Type of Inlet                                                                              | Type =                      |              | Curb Opening | 1               |
| Local Depression (additional to continuous gutter depression 'a' from above)               | a <sub>local</sub> =        | 3.00         | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                              | No =                        | 1            | 1            | 1               |
| Water Depth at Flowline (outside of local depression)                                      | Ponding Depth =             | 5.0          | 6.0          | inches          |
| Grate Information                                                                          | · · · · · ·                 | MINOR        | MAJOR        | Override Depths |
| Length of a Unit Grate                                                                     | $L_0(G) =$                  | N/A          | N/A          | feet            |
| Width of a Unit Grate                                                                      | W <sub>0</sub> =            | N/A          | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                                     | A <sub>ratio</sub> =        | N/A          | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)                             | $C_f(G) =$                  | N/A          | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                                         | $C_w$ (G) =                 | N/A          | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                                      | $C_o(G) =$                  | N/A          | N/A          |                 |
| Curb Opening Information                                                                   |                             | MINOR        | MAJOR        |                 |
| Length of a Unit Curb Opening                                                              | $L_o(C) =$                  | 5.00         | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                                  | H <sub>vert</sub> =         | 6.00         | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                                    | H <sub>throat</sub> =       | 6.00         | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                                    | Theta =                     | 63.40        | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)                       | $W_p =$                     | 2.00         | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                             | $C_f(C) =$                  | 0.10         | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                                      | $C_w(C) =$                  | 3.60         | 3.60         | _               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                               | $C_0(C) =$                  | 0.67         | 0.67         |                 |
| Grate Flow Analysis (Calculated)                                                           | 0                           | MINOR        | MAJOR        | 7               |
| Clogging Coefficient for Multiple Units                                                    | Coef =                      | N/A          | N/A          | _               |
| Clogging Factor for Multiple Units                                                         | Clog =                      | N/A          | N/A          |                 |
| Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)<br>Interception without Clogging | o _F                        | MINOR<br>N/A | MAJOR<br>N/A | cfs             |
| Interception with Clogging                                                                 | Q <sub>wi</sub> =           | N/A          | N/A          | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                              | Q <sub>wa</sub> =           | MINOR        | MAJOR        | CIS             |
| Interception without Clogging                                                              | Q <sub>oi</sub> =           | N/A          | N/A          | cfs             |
| Interception without clogging                                                              | $Q_{oi} = Q_{oa} =$         | N/A          | N/A          | cfs             |
| Grate Capacity as Mixed Flow                                                               | C203 -                      | MINOR        | MAJOR        | 013             |
| Interception without Clogging                                                              | Q <sub>mi</sub> =           | N/A          | N/A          | cfs             |
| Interception with Clogging                                                                 | Q <sub>ma</sub> =           | N/A          | N/A          | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                                       | Q <sub>Grate</sub> =        | N/A          | N/A          | cfs             |
| Curb Opening Flow Analysis (Calculated)                                                    | •                           | MINOR        | MAJOR        | •               |
| Clogging Coefficient for Multiple Units                                                    | Coef =                      | 1.00         | 1.00         | 7               |
| Clogging Factor for Multiple Units                                                         | Clog =                      | 0.10         | 0.10         |                 |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                                   | _                           | MINOR        | MAJOR        |                 |
| Interception without Clogging                                                              | Q <sub>wi</sub> =           | 3.9          | 6.0          | cfs             |
| Interception with Clogging                                                                 | Q <sub>wa</sub> =           | 3.5          | 5.4          | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                               |                             | MINOR        | MAJOR        | _               |
| Interception without Clogging                                                              | Q <sub>oi</sub> =           | 8.9          | 9.8          | cfs             |
| Interception with Clogging                                                                 | Q <sub>oa</sub> =           | 8.1          | 8.8          | cfs             |
| Curb Opening Capacity as Mixed Flow                                                        |                             | MINOR        | MAJOR        | ٦.              |
| Interception without Clogging                                                              | Q <sub>mi</sub> =           | 5.5          | 7.1          | cfs             |
| Interception with Clogging                                                                 | Q <sub>ma</sub> =           | 4.9          | 6.4          | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                                | $Q_{Curb} =$                | 3.5          | 5.4          | cfs             |
| Resultant Street Conditions                                                                | . г                         | MINOR        | MAJOR        |                 |
| Total Inlet Length                                                                         | L =<br>T =                  | 5.00         | 5.00         | feet<br>ft      |
| Resultant Street Flow Spread (based on street geometry from above)                         |                             | 10.4<br>0.0  | 13.1<br>0.0  | ft<br>inches    |
| Resultant Flow Depth at Street Crown                                                       | d <sub>CROWN</sub> =        | 0.0          | 0.0          | inches          |
| Low Head Performance Reduction (Calculated)                                                |                             | MINOR        | MAJOR        |                 |
| Depth for Grate Midwidth                                                                   | d <sub>Grate</sub> =        | N/A          | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                                       | d <sub>Curb</sub> =         | 0.25         | 0.33         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                                  | RF <sub>Grate</sub> =       | N/A          | N/A          | 1               |
| Curb Opening Performance Reduction Factor for Long Inlets                                  | RF <sub>Curb</sub> =        | 1.00         | 1.00         | 1               |
| Combination Inlet Performance Reduction Factor for Long Inlets                             | RF <sub>Combination</sub> = | N/A          | N/A          | 1               |
|                                                                                            | Compination                 |              |              | <b>_</b>        |
|                                                                                            |                             |              |              |                 |
|                                                                                            |                             | MINOR        | MAJOR        |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                              | Q <sub>a</sub> =            | MINOR<br>3.5 | MAJOR<br>5.4 | cfs             |







| Design Information (Input)                                                                 |                             | MINOR        | MAJOR        |                 |
|--------------------------------------------------------------------------------------------|-----------------------------|--------------|--------------|-----------------|
| Type of Inlet                                                                              | Type =                      |              | Curb Opening | 1               |
| Local Depression (additional to continuous gutter depression 'a' from above)               | a <sub>local</sub> =        | 3.00         | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                              | No =                        | 1            | 1            | 1               |
| Water Depth at Flowline (outside of local depression)                                      | Ponding Depth =             | 5.0          | 6.0          | inches          |
| Grate Information                                                                          | · · · · · ·                 | MINOR        | MAJOR        | Override Depths |
| Length of a Unit Grate                                                                     | $L_0(G) =$                  | N/A          | N/A          | feet            |
| Width of a Unit Grate                                                                      | W <sub>0</sub> =            | N/A          | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                                     | A <sub>ratio</sub> =        | N/A          | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)                             | $C_f(G) =$                  | N/A          | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                                         | $C_w$ (G) =                 | N/A          | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                                      | $C_o(G) =$                  | N/A          | N/A          |                 |
| Curb Opening Information                                                                   |                             | MINOR        | MAJOR        |                 |
| Length of a Unit Curb Opening                                                              | $L_o(C) =$                  | 5.00         | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                                  | H <sub>vert</sub> =         | 6.00         | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                                    | H <sub>throat</sub> =       | 6.00         | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                                    | Theta =                     | 63.40        | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)                       | $W_p =$                     | 2.00         | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                             | $C_f(C) =$                  | 0.10         | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                                      | $C_w(C) =$                  | 3.60         | 3.60         | _               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                               | $C_0(C) =$                  | 0.67         | 0.67         |                 |
| Grate Flow Analysis (Calculated)                                                           | 0                           | MINOR        | MAJOR        | 7               |
| Clogging Coefficient for Multiple Units                                                    | Coef =                      | N/A          | N/A          | _               |
| Clogging Factor for Multiple Units                                                         | Clog =                      | N/A          | N/A          |                 |
| Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)<br>Interception without Clogging | o _F                        | MINOR<br>N/A | MAJOR<br>N/A | cfs             |
| Interception with Clogging                                                                 | Q <sub>wi</sub> =           | N/A          | N/A          | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                              | Q <sub>wa</sub> =           | MINOR        | MAJOR        | CIS             |
| Interception without Clogging                                                              | Q <sub>oi</sub> =           | N/A          | N/A          | cfs             |
| Interception without clogging                                                              | $Q_{oi} = Q_{oa} =$         | N/A          | N/A          | cfs             |
| Grate Capacity as Mixed Flow                                                               | C203 -                      | MINOR        | MAJOR        | 013             |
| Interception without Clogging                                                              | Q <sub>mi</sub> =           | N/A          | N/A          | cfs             |
| Interception with Clogging                                                                 | Q <sub>ma</sub> =           | N/A          | N/A          | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                                       | Q <sub>Grate</sub> =        | N/A          | N/A          | cfs             |
| Curb Opening Flow Analysis (Calculated)                                                    | •                           | MINOR        | MAJOR        | •               |
| Clogging Coefficient for Multiple Units                                                    | Coef =                      | 1.00         | 1.00         | 7               |
| Clogging Factor for Multiple Units                                                         | Clog =                      | 0.10         | 0.10         |                 |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                                   | _                           | MINOR        | MAJOR        |                 |
| Interception without Clogging                                                              | Q <sub>wi</sub> =           | 3.9          | 6.0          | cfs             |
| Interception with Clogging                                                                 | Q <sub>wa</sub> =           | 3.5          | 5.4          | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                               |                             | MINOR        | MAJOR        | _               |
| Interception without Clogging                                                              | Q <sub>oi</sub> =           | 8.9          | 9.8          | cfs             |
| Interception with Clogging                                                                 | Q <sub>oa</sub> =           | 8.1          | 8.8          | cfs             |
| Curb Opening Capacity as Mixed Flow                                                        |                             | MINOR        | MAJOR        | ٦.              |
| Interception without Clogging                                                              | Q <sub>mi</sub> =           | 5.5          | 7.1          | cfs             |
| Interception with Clogging                                                                 | Q <sub>ma</sub> =           | 4.9          | 6.4          | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                                | $Q_{Curb} =$                | 3.5          | 5.4          | cfs             |
| Resultant Street Conditions                                                                | . г                         | MINOR        | MAJOR        |                 |
| Total Inlet Length                                                                         | L =<br>T =                  | 5.00         | 5.00         | feet<br>ft      |
| Resultant Street Flow Spread (based on street geometry from above)                         |                             | 10.4<br>0.0  | 13.1<br>0.0  | ft<br>inches    |
| Resultant Flow Depth at Street Crown                                                       | d <sub>CROWN</sub> =        | 0.0          | 0.0          | inches          |
| Low Head Performance Reduction (Calculated)                                                |                             | MINOR        | MAJOR        |                 |
| Depth for Grate Midwidth                                                                   | d <sub>Grate</sub> =        | N/A          | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                                       | d <sub>Curb</sub> =         | 0.25         | 0.33         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                                  | RF <sub>Grate</sub> =       | N/A          | N/A          | 1               |
| Curb Opening Performance Reduction Factor for Long Inlets                                  | RF <sub>Curb</sub> =        | 1.00         | 1.00         | 1               |
| Combination Inlet Performance Reduction Factor for Long Inlets                             | RF <sub>Combination</sub> = | N/A          | N/A          | 1               |
|                                                                                            | Compination                 |              |              | <b>_</b>        |
|                                                                                            |                             |              |              |                 |
|                                                                                            |                             | MINOR        | MAJOR        |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                              | Q <sub>a</sub> =            | MINOR<br>3.5 | MAJOR<br>5.4 | cfs             |

|                                                                                 |                      | 1                                       |                      | _            |
|---------------------------------------------------------------------------------|----------------------|-----------------------------------------|----------------------|--------------|
|                                                                                 |                      | This worksheet use<br>retardance method |                      | al           |
|                                                                                 |                      | Manning's n.                            | to determine         |              |
|                                                                                 | Ť                    | ···                                     |                      |              |
| d                                                                               | d MAX                | For more informati                      |                      |              |
|                                                                                 | <u> </u>             | Section 7.2.3 of the                    | e USDCM.             |              |
| <- <sup>†</sup> − B                                                             |                      |                                         |                      |              |
| nalysis of Trapezoidal Grass-Lined Channel Using SCS Method                     |                      |                                         |                      |              |
| RCS Vegetal Retardance (A, B, C, D, or E)                                       | A, B, C, D, or E =   |                                         |                      |              |
| anning's n (Leave cell D16 blank to manually enter an n value)                  | n =                  | 0.030                                   | a (a                 |              |
| hannel Invert Slope                                                             | S <sub>O</sub> =     | 0.0200                                  | ft/ft                |              |
| ottom Width<br>eft Side Slope                                                   | B =<br>Z1 =          | 3.92                                    | ft<br>ft/ft          |              |
| ight Side Sloe                                                                  | Z1 =<br>Z2 =         | 4.00                                    | ft/ft                |              |
| Check one of the following soil types:                                          |                      | Choose One:                             |                      | 1            |
| Soil Type: Max. Velocity (V <sub>MAX</sub> ) Max Froude No. (F <sub>MAX</sub> ) |                      | O Non-Cohesive                          |                      |              |
| Non-Cohesive 5.0 fps 0.60                                                       |                      | Cohesive                                |                      |              |
| Cohesive 7.0 fps 0.80                                                           |                      | C Paved                                 |                      |              |
| Paved N/A N/A                                                                   |                      | Minor Charge                            | Malar Cham           | 1            |
| aximum Allowable Top Width of Channel for Minor & Major Storm                   | T <sub>MAX</sub> =   | Minor Storm<br>9.00                     | Major Storm<br>10.00 | ft           |
| aximum Allowable Top Width of Chainer for Minor & Major Storm                   | d <sub>MAX</sub> =   | 0.40                                    | 0.50                 | ft           |
| ·····                                                                           |                      |                                         |                      |              |
| laximum Channel Capacity Based On Allowable Top Width                           |                      | Minor Storm                             | Major Storm          |              |
| laximum Allowable Top Width                                                     | T <sub>MAX</sub> =   | 9.00                                    | 10.00                | ft           |
| /ater Depth                                                                     | d =                  | 0.64                                    | 0.76                 | ft           |
| low Area<br>/etted Perimeter                                                    | A =<br>P =           | 4.10<br>9.16                            | 5.29<br>10.19        | sq ft<br>ft  |
| ydraulic Radius                                                                 | P =<br>R =           | 0.45                                    | 0.52                 | ft           |
| lanning's n                                                                     | n =                  | 0.030                                   | 0.030                | - "          |
| ow Velocity                                                                     | V =                  | 4.11                                    | 4.54                 | fps          |
| elocity-Depth Product                                                           | VR =                 | 1.84                                    | 2.36                 | ft^2/s       |
| ydraulic Depth                                                                  | D =                  | 0.46                                    | 0.53                 | ft           |
| roude Number                                                                    | Fr =                 | 1.07                                    | 1.10                 |              |
| aximum Flow Based on Allowable Water Depth                                      | $Q_T =$              | 16.9                                    | 24.0                 | cfs          |
| laximum Channel Capacity Based On Allowable Water Depth                         |                      | Minor Storm                             | Major Storm          |              |
| aximum Allowable Water Depth                                                    | d <sub>MAX</sub> =   | 0.40                                    | 0.50                 | ft           |
| op Width                                                                        | T =                  | 7.12                                    | 7.92                 | ft           |
| low Area                                                                        | A =                  | 2.21                                    | 2.96                 | sq ft        |
| /etted Perimeter<br>ydraulic Radius                                             | P =<br>R =           | 7.22                                    | 8.04<br>0.37         | ft<br>ft     |
| lanning's n                                                                     | n =                  | 0.030                                   | 0.030                |              |
| low Velocity                                                                    | V =                  | 3.19                                    | 3.61                 | fps          |
| elocity-Depth Product                                                           | VR =                 | 0.98                                    | 1.33                 | ft^2/s       |
| ydraulic Depth                                                                  | D =                  | 0.31                                    | 0.37                 | ft           |
| roude Number                                                                    | Fr =                 | 1.01                                    | 1.04                 | ofc          |
| aximum Flow Based On Allowable Water Depth                                      | Q <sub>d</sub> =     | 7.0                                     | 10.7                 | cfs          |
| llowable Channel Capacity Based On Channel Geometry                             |                      | Minor Storm                             | Major Storm          |              |
| INOR STORM Allowable Capacity is based on Depth Criterion                       | Q <sub>allow</sub> = | 7.0                                     | 10.7                 | cfs          |
| AJOR STORM Allowable Capacity is based on Depth Criterion                       | d <sub>allow</sub> = | 0.40                                    | 0.50                 | ft           |
| /ater Depth in Channel Based On Design Peak Flow                                |                      |                                         |                      |              |
| esign Peak Flow                                                                 | Q <sub>o</sub> =     | 0.1                                     | 0.4                  | cfs          |
| /ater Depth                                                                     | _0<br>d =            | 0.03                                    | 0.08                 | ft           |
| op Width                                                                        | T =                  | 4.16                                    | 4.52                 | ft           |
| ow Area                                                                         | Α =                  | 0.12                                    | 0.32                 | sq ft        |
| /etted Perimeter                                                                | P =                  | 4.17                                    | 4.54                 | ft           |
| ydraulic Radius                                                                 | R =                  | 0.03                                    | 0.07                 | ft           |
|                                                                                 | n =                  | 0.030                                   | 0.030                | fns          |
| lanning's n                                                                     | 17                   | 0.00                                    | 1.19                 | fps          |
| anning's n<br>low Velocity                                                      | V =<br>VR =          |                                         | 0.08                 | ft^2/s       |
| lanning's n                                                                     | V =<br>VR =<br>D =   | 0.02                                    | 0.08                 | ft^2/s<br>ft |

| Ridgegate - Lyric Condos - 1595010<br>Inlet DP109                                                                                                                                                                               |                   |               |                                                              |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|--------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                 |                   |               |                                                              |                           |
| Inlet Design Information (Input) Type of Inlet CDOT Type C                                                                                                                                                                      | - Inlet Type =    | CDOT T        | уре С                                                        |                           |
| Angle of Inclined Grate (must be <= 30 degrees)<br>Width of Grate<br>Length of Grate<br>Den Area Ratio<br>Height of Inclined Grate<br>Clogging Factor<br>Grate Discharge Coefficient<br>Orifice Coefficient<br>Weir Coefficient |                   |               | 0.00<br>3.00<br>0.70<br>0.00<br>0.50<br>0.96<br>0.64<br>2.05 | degrees<br>ft<br>ft<br>ft |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)                                                                                                                                                     | d =               | MINOR<br>0.03 | MAJOR<br>0.08                                                |                           |
| Grate Capacity as a Weir                                                                                                                                                                                                        |                   |               |                                                              |                           |
| Submerged Side Weir Length                                                                                                                                                                                                      | X =               | 3.00          | 3.00                                                         | ft                        |
| Inclined Side Weir Flow                                                                                                                                                                                                         | Q <sub>ws</sub> = | 0.1           | 0.2                                                          | cfs                       |
| Base Weir Flow                                                                                                                                                                                                                  | Q <sub>wb</sub> = | 0.1           | 0.3                                                          | cfs                       |
| Interception Without Cloggging                                                                                                                                                                                                  | Q <sub>wi</sub> = | 0.2           | 0.8                                                          | cfs                       |
| Interception With Clogging                                                                                                                                                                                                      | Q <sub>wa</sub> = | 0.1           | 0.4                                                          | cfs                       |
| Grate Capacity as an Orifice                                                                                                                                                                                                    |                   |               |                                                              |                           |
| Interception Without Clogging                                                                                                                                                                                                   | Q <sub>oi</sub> = | 5.6           | 8.9                                                          | cfs                       |
| Interception With Clogging                                                                                                                                                                                                      | Q <sub>oa</sub> = | 2.8           | 4.4                                                          | cfs                       |
| Total Inlet Interception Capacity (assumes clogged condition)                                                                                                                                                                   | Q <sub>a</sub> =  | 0.1           | 0.4                                                          | cfs                       |
| Bypassed Flow                                                                                                                                                                                                                   | Q <sub>b</sub> =  | 0.0           | 0.0                                                          | cfs                       |
| Capture Percentage = Qa/Qo                                                                                                                                                                                                      | C% =              | 100           | 100                                                          | %                         |

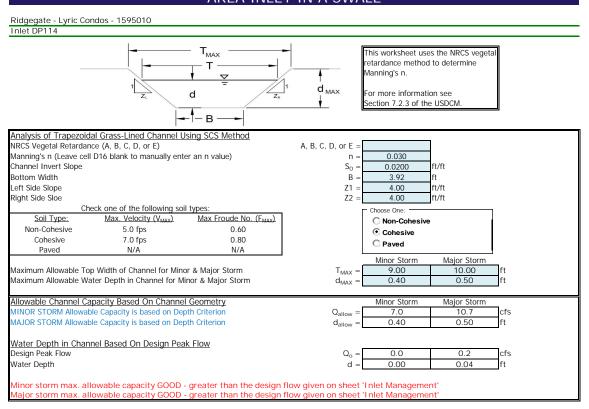
| Inlet DP110                                                                                        |                                    |                      |                                                                                                       |                      |             |
|----------------------------------------------------------------------------------------------------|------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|----------------------|-------------|
|                                                                                                    | d                                  |                      | This worksheet use<br>retardance method<br>Manning's n.<br>For more informati<br>Section 7.2.3 of the | on see               | al          |
| -                                                                                                  | -1-в                               |                      |                                                                                                       |                      |             |
| Analysis of Trapezoidal Grass-Lined Channel U                                                      | sing SCS Method                    |                      |                                                                                                       |                      |             |
| NRCS Vegetal Retardance (A, B, C, D, or E)                                                         | 5                                  | A, B, C, D, or E =   |                                                                                                       | ]                    |             |
| Manning's n (Leave cell D16 blank to manually enter                                                | er an n value)                     | n =                  | 0.030                                                                                                 |                      |             |
| Channel Invert Slope                                                                               |                                    | S <sub>0</sub> =     | 0.0200                                                                                                | ft/ft                |             |
| Bottom Width<br>Left Side Slope                                                                    |                                    | B =<br>Z1 =          | 3.92                                                                                                  | ft<br>ft/ft          |             |
| Right Side Sloe                                                                                    |                                    | Z1 =<br>Z2 =         | 4.00                                                                                                  | ft/ft                |             |
| Check one of the following soi                                                                     | types:                             |                      | Choose One:                                                                                           | ion                  |             |
| Soil Type: Max. Velocity (V <sub>MAX</sub> )                                                       | Max Froude No. (F <sub>MAX</sub> ) |                      | O Non-Cohesive                                                                                        | •                    |             |
| Non-Cohesive 5.0 fps                                                                               | 0.60                               |                      | Cohesive                                                                                              | -                    |             |
| Cohesive 7.0 fps                                                                                   | 0.80                               |                      | C Paved                                                                                               |                      |             |
| Paved N/A                                                                                          | N/A                                | L                    |                                                                                                       | Mala O               |             |
| Maximum Allowable Top Width of Channel for Mind                                                    | or & Major Storm                   | T <sub>MAX</sub> =   | Minor Storm<br>9.00                                                                                   | Major Storm<br>10.00 | ft          |
| Maximum Allowable Top Width of Channel for Mind<br>Maximum Allowable Water Depth in Channel for Mi |                                    | d <sub>MAX</sub> =   | 0.40                                                                                                  | 0.50                 | ft          |
|                                                                                                    | nor a major otorini                | GIMAX                | 0.10                                                                                                  | 0.00                 |             |
| Maximum Channel Capacity Based On Allowab                                                          | le Top Width                       |                      | Minor Storm                                                                                           | Major Storm          |             |
| Maximum Allowable Top Width                                                                        |                                    | $T_{MAX} =$          | 9.00                                                                                                  | 10.00                | ft          |
| Water Depth                                                                                        |                                    | d =                  | 0.64                                                                                                  | 0.76                 | ft          |
| Flow Area                                                                                          |                                    | A =                  | 4.10                                                                                                  | 5.29                 | sq ft       |
| Wetted Perimeter<br>Hydraulic Radius                                                               |                                    | P =<br>R =           | 9.16<br>0.45                                                                                          | 10.19<br>0.52        | ft<br>ft    |
| Manning's n                                                                                        |                                    | n =                  | 0.030                                                                                                 | 0.030                |             |
| Flow Velocity                                                                                      |                                    | V =                  | 4.11                                                                                                  | 4.54                 | fps         |
| Velocity-Depth Product                                                                             |                                    | VR =                 | 1.84                                                                                                  | 2.36                 | ft^2/s      |
| Hydraulic Depth                                                                                    |                                    | D =                  | 0.46                                                                                                  | 0.53                 | ft          |
| Froude Number                                                                                      |                                    | Fr =                 | 1.07                                                                                                  | 1.10                 |             |
| Maximum Flow Based on Allowable Water Depth                                                        |                                    | $Q_T =$              | 16.9                                                                                                  | 24.0                 | cfs         |
| Maximum Channel Capacity Based On Allowab                                                          | le Water Depth                     |                      | Minor Storm                                                                                           | Major Storm          |             |
| Maximum Allowable Water Depth                                                                      |                                    | d <sub>MAX</sub> =   | 0.40                                                                                                  | 0.50                 | ft          |
| Top Width                                                                                          |                                    | Τ=                   | 7.12                                                                                                  | 7.92                 | ft          |
| Flow Area                                                                                          |                                    | A =                  | 2.21                                                                                                  | 2.96                 | sq ft       |
| Wetted Perimeter                                                                                   |                                    | P =                  | 7.22                                                                                                  | 8.04                 | ft          |
| Hydraulic Radius<br>Manning's n                                                                    |                                    | R =<br>n =           | 0.31                                                                                                  | 0.37                 | ft          |
| Flow Velocity                                                                                      |                                    | n =<br>V =           | 3.19                                                                                                  | 3.61                 | fps         |
| Velocity-Depth Product                                                                             |                                    | VR =                 | 0.98                                                                                                  | 1.33                 | ft^2/s      |
| Hydraulic Depth                                                                                    |                                    | D =                  | 0.31                                                                                                  | 0.37                 | ft          |
| Froude Number                                                                                      |                                    | Fr =                 | 1.01                                                                                                  | 1.04                 | <u> </u>    |
| Maximum Flow Based On Allowable Water Depth                                                        |                                    | Q <sub>d</sub> =     | 7.0                                                                                                   | 10.7                 | cfs         |
| Allowable Channel Capacity Based On Channe                                                         | Geometry                           |                      | Minor Storm                                                                                           | Major Storm          |             |
| MINOR STORM Allowable Capacity Based on Channel<br>MINOR STORM Allowable Capacity is based on Dep  | oth Criterion                      | Q <sub>allow</sub> = | Minor Storm<br>7.0                                                                                    | Major Storm<br>10.7  | cfs         |
| MAJOR STORM Allowable Capacity is based on Dep                                                     |                                    | $d_{allow} =$        | 0.40                                                                                                  | 0.50                 | ft          |
|                                                                                                    |                                    | anow                 |                                                                                                       | •                    |             |
| Water Depth in Channel Based On Design Pea                                                         | k Flow                             | -                    |                                                                                                       |                      | _           |
| Design Peak Flow                                                                                   |                                    | Q <sub>o</sub> =     | 0.1                                                                                                   | 0.5                  | cfs         |
| Water Depth                                                                                        |                                    | d =                  | 0.03                                                                                                  | 0.09                 | ft          |
| Top Width                                                                                          |                                    | T =                  | 4.16                                                                                                  | 4.65                 | ft          |
| Flow Area<br>Wetted Perimeter                                                                      |                                    | A =<br>P =           | 0.12<br>4.17                                                                                          | 0.39<br>4.67         | sq ft<br>ft |
| Hydraulic Radius                                                                                   |                                    | P =<br>R =           | 0.03                                                                                                  | 0.08                 | ft          |
| Manning's n                                                                                        |                                    | n =                  | 0.030                                                                                                 | 0.030                | 1           |
| Flow Velocity                                                                                      |                                    | V =                  | 0.66                                                                                                  | 1.34                 | fps         |
| Velocity-Depth Product                                                                             |                                    | VR =                 | 0.02                                                                                                  | 0.11                 | ft^2/s      |
| Hydraulic Depth                                                                                    |                                    | D =                  | 0.03                                                                                                  | 0.08                 | ft          |
| Froude Number                                                                                      |                                    | Fr =                 | 0.69                                                                                                  | 0.82                 |             |

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management'

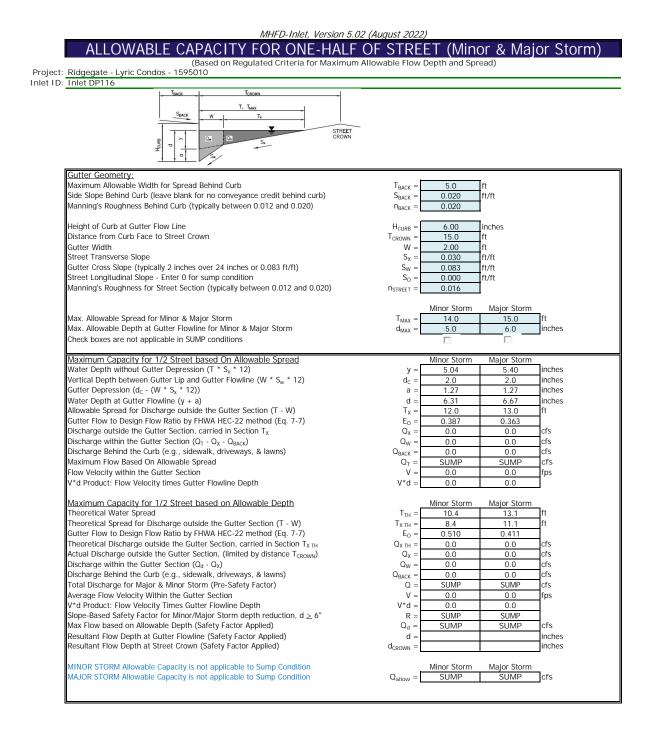
| Ridgegate - Lyric Condos - 1595010<br>Inlet DP110                                                                                                                                                                             |                                                                                         |                                  |                                                              |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|---------------------------------------|
| Inlet Design Information (Input)<br>Type of Inlet CDOT Type C                                                                                                                                                                 | Inlet Type =                                                                            | CDOT T                           | ype C                                                        |                                       |
| Angle of Inclined Grate (must be <= 30 degrees)<br>Width of Grate<br>Length of Grate<br>Doen Area Ratio<br>Height of Inclined Grate<br>Clogging Factor<br>Grate Discharge Coefficient<br>Weir Coefficient<br>Weir Coefficient | H H                                                                                     |                                  | 0.00<br>3.00<br>0.70<br>0.00<br>0.50<br>0.96<br>0.64<br>2.05 | degrees<br>ft<br>ft<br>ft             |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)                                                                                                                                                   | d =                                                                                     | MINOR<br>0.03                    | MAJOR<br>0.09                                                |                                       |
| Grate Capacity as a Weir<br>Submerged Side Weir Length<br>Inclined Side Weir Flow<br>Base Weir Flow<br>Interception Without Cloggging<br>Interception With Clogging                                                           | X =<br>Q <sub>ws</sub> =<br>Q <sub>wb</sub> =<br>Q <sub>wi</sub> =<br>Q <sub>wa</sub> = | 3.00<br>0.1<br>0.1<br>0.2<br>0.1 | 3.00<br>0.3<br>0.4<br>1.0<br>0.5                             | ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs |
| <u>Grate Capacity as an Orifice</u><br>nterception Without Clogging<br>nterception With Clogging                                                                                                                              | Q <sub>ol</sub> =                                                                       | 5.6<br>2.8                       | 9.7                                                          | cfs<br>cfs                            |
| otal Inlet Interception Capacity (assumes clogged condition)<br>ypassed Flow<br>apture Percentage = Qa/Qo                                                                                                                     | $\begin{array}{c} O_a = \\ O_b = \\ C\% = \end{array}$                                  | 0.1<br>0.0<br>100                | 0.5<br>0.0<br>97                                             | cfs<br>cfs<br>%                       |

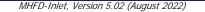
Warning 04: Froude No. exceeds USDCM Volume I recommendation.

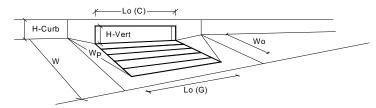
|                                                                                                                                                      |                                    | d <sub>MAX</sub>                 | This worksheet use<br>retardance method<br>Manning's n. | to determine                  | al                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|---------------------------------------------------------|-------------------------------|---------------------|
| ZL                                                                                                                                                   |                                    |                                  | For more information<br>Section 7.2.3 of the            |                               |                     |
| -                                                                                                                                                    | –1– в —–                           |                                  |                                                         |                               |                     |
| nalysis of Trapezoidal Grass-Lined Channel U                                                                                                         | sing SCS Method                    |                                  |                                                         |                               |                     |
| RCS Vegetal Retardance (A, B, C, D, or E)<br>lanning's n (Leave cell D16 blank to manually enter                                                     | er an n value)                     | A, B, C, D, or E =<br>n =        | 0.030                                                   |                               |                     |
| hannel Invert Slope                                                                                                                                  |                                    | S <sub>O</sub> =                 | 0.0200                                                  | ft/ft                         |                     |
| ottom Width                                                                                                                                          |                                    | B =                              | 3.92                                                    | ft                            |                     |
| eft Side Slope                                                                                                                                       |                                    | Z1 =                             | 4.00                                                    | ft/ft                         |                     |
| ight Side Sloe<br>Check one of the following soi                                                                                                     | Lturaci                            | Z2 =                             | 4.00                                                    | ft/ft                         |                     |
| Soil Type: Max. Velocity (V <sub>MAX</sub> )                                                                                                         | Max Froude No. (F <sub>MAX</sub> ) |                                  | Choose One:                                             |                               | ]                   |
| Non-Cohesive 5.0 fps                                                                                                                                 | 0.60                               |                                  | Cohesive                                                |                               |                     |
| Cohesive 7.0 fps                                                                                                                                     | 0.80                               |                                  | C Paved                                                 |                               |                     |
| Paved N/A                                                                                                                                            | N/A                                | l                                |                                                         |                               | ļ                   |
|                                                                                                                                                      | an O. Malan Change                 | I                                | Minor Storm                                             | Major Storm                   | £1                  |
| laximum Allowable Top Width of Channel for Mino<br>laximum Allowable Water Depth in Channel for Mi                                                   |                                    | T <sub>MAX</sub> =               | 9.00<br>0.40                                            | 10.00<br>0.50                 | ft<br>ft            |
| asiman allowable water Deptit in channel für Mi                                                                                                      | nor a major storm                  | d <sub>MAX</sub> =               | 0.40                                                    | 0.50                          |                     |
| laximum Channel Capacity Based On Allowab                                                                                                            | le Top Width                       |                                  | Minor Storm                                             | Major Storm                   |                     |
| laximum Allowable Top Width                                                                                                                          | . <u> </u>                         | $T_{MAX} =$                      | 9.00                                                    | 10.00                         | ft                  |
| /ater Depth                                                                                                                                          |                                    | d =                              | 0.64                                                    | 0.76                          | ft                  |
| low Area                                                                                                                                             |                                    | A =                              | 4.10                                                    | 5.29                          | sq ft               |
| /etted Perimeter                                                                                                                                     |                                    | P =                              | 9.16<br>0.45                                            | 10.19<br>0.52                 | ft<br>ft            |
| ydraulic Radius<br>Ianning's n                                                                                                                       |                                    | R =<br>n =                       | 0.45                                                    | 0.030                         |                     |
| low Velocity                                                                                                                                         |                                    | 11 =<br>V =                      | 4.11                                                    | 4.54                          | fps                 |
| elocity-Depth Product                                                                                                                                |                                    | VR =                             | 1.84                                                    | 2.36                          | ft^2/s              |
| ydraulic Depth                                                                                                                                       |                                    | D =                              | 0.46                                                    | 0.53                          | ft                  |
| roude Number                                                                                                                                         |                                    | Fr =                             | 1.07                                                    | 1.10                          |                     |
| laximum Flow Based on Allowable Water Depth                                                                                                          |                                    | $Q_T =$                          | 16.9                                                    | 24.0                          | cfs                 |
| laximum Channel Capacity Based On Allowab                                                                                                            | le Water Depth                     |                                  | Minor Storm                                             | Major Storm                   |                     |
| laximum Allowable Water Depth                                                                                                                        |                                    | d <sub>MAX</sub> =               | 0.40                                                    | 0.50                          | ft                  |
| op Width                                                                                                                                             |                                    | T =                              | 7.12                                                    | 7.92                          | ft                  |
| low Area                                                                                                                                             |                                    | A =                              | 2.21                                                    | 2.96                          | sq ft               |
| /etted Perimeter                                                                                                                                     |                                    | P =                              | 7.22                                                    | 8.04                          | ft                  |
| ydraulic Radius<br>Ianning's n                                                                                                                       |                                    | R =<br>n =                       | 0.31<br>0.030                                           | 0.37                          | ft                  |
| low Velocity                                                                                                                                         |                                    | V =                              | 3.19                                                    | 3.61                          | fps                 |
| elocity-Depth Product                                                                                                                                |                                    | VR =                             | 0.98                                                    | 1.33                          | ft^2/s              |
| ydraulic Depth                                                                                                                                       |                                    | D =                              | 0.31                                                    | 0.37                          | ft                  |
| roude Number                                                                                                                                         |                                    | Fr =                             | 1.01                                                    | 1.04                          | - 6-                |
| laximum Flow Based On Allowable Water Depth                                                                                                          |                                    | Q <sub>d</sub> =                 | 7.0                                                     | 10.7                          | cfs                 |
| llowable Channel Capacity Based On Channel                                                                                                           | l Geometry                         |                                  | Minor Storm                                             | Major Storm                   |                     |
| INOR STORM Allowable Capacity is based on Dep                                                                                                        |                                    | Q <sub>allow</sub> =             | 7.0                                                     | 10.7                          | cfs                 |
| AJOR STORM Allowable Capacity is based on Dep                                                                                                        |                                    | d <sub>allow</sub> =             | 0.40                                                    | 0.50                          | ft                  |
| /ater Depth in Channel Based On Design Pea                                                                                                           | k Flow                             |                                  |                                                         |                               |                     |
| <u>vater Deptin in Channel Based On Design Pea</u><br>Jesign Peak Flow                                                                               | N LIUW                             | Q <sub>o</sub> =                 | 0.0                                                     | 0.1                           | cfs                 |
|                                                                                                                                                      |                                    | d =                              | 0.00                                                    | 0.03                          | ft                  |
| /ater Depth                                                                                                                                          |                                    | T =                              | 3.93                                                    | 4.14                          | ft                  |
|                                                                                                                                                      |                                    | A =                              | 0.01                                                    | 0.11                          | sq ft               |
| op Width<br>ow Area                                                                                                                                  |                                    |                                  |                                                         | 4.10                          | ft                  |
| op Width<br>ow Area<br>/etted Perimeter                                                                                                              |                                    | P =                              | 3.93                                                    | 4.15                          |                     |
| op Width<br>iow Area<br>/etted Perimeter<br>ydraulic Radius                                                                                          |                                    | P =<br>R =                       | 0.00                                                    | 0.03                          | ft                  |
| op Width<br>ow Area<br>Yetted Perimeter<br>ydraulic Radius<br>anning's n                                                                             |                                    | P =<br>R =<br>n =                | 0.00<br>0.030                                           | 0.03 0.030                    | ft                  |
| op Width<br>Iow Area<br>/etted Perimeter<br>ydraulic Radius<br>anning's n<br>Iow Velocity                                                            |                                    | P =<br>R =<br>n =<br>V =         | 0.00<br>0.030<br>0.10                                   | 0.03<br>0.030<br>0.63         | ft<br>fps           |
| /ater Depth<br>op Width<br>low Area<br>/etted Perimeter<br>ydraulic Radius<br>lanning's n<br>low Velocity<br>elocity-Depth Product<br>ydraulic Depth |                                    | P =<br>R =<br>n =<br>V =<br>VR = | 0.00<br>0.030<br>0.10<br>0.00                           | 0.03<br>0.030<br>0.63<br>0.02 | ft                  |
| op Width<br>ow Area<br>fetted Perimeter<br>ydraulic Radius<br>anning's n<br>ow Velocity                                                              |                                    | P =<br>R =<br>n =<br>V =         | 0.00<br>0.030<br>0.10                                   | 0.03<br>0.030<br>0.63         | ft<br>fps<br>ft^2/s |


| Ridgegate - Lyric Condos - 1595010<br>Inlet DP111                                                                                                                                                                                |                   |               |                                                              |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|--------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                  | 1                 |               |                                                              | -                         |
| Inlet Design Information (Input)<br>Type of Inlet CDOT Type C                                                                                                                                                                    | - Inlet Type =    | CDOT 1        | Гуре С                                                       |                           |
| Angle of Inclined Grate (must be <= 30 degrees)<br>Width of Grate<br>Length of Grate<br>Open Area Ratio<br>Height of Inclined Grate<br>Clogging Factor<br>Grate Discharge Coefficient<br>Orifice Coefficient<br>Weir Coefficient |                   |               | 0.00<br>3.00<br>0.70<br>0.00<br>0.50<br>0.96<br>0.64<br>2.05 | degrees<br>ft<br>ft<br>ft |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)                                                                                                                                                      | d =               | MINOR<br>0.00 | MAJOR<br>0.03                                                |                           |
| Grate Capacity as a Weir                                                                                                                                                                                                         |                   |               |                                                              |                           |
| Submerged Side Weir Length                                                                                                                                                                                                       | X =               | 3.00          | 3.00                                                         | ft                        |
| Inclined Side Weir Flow                                                                                                                                                                                                          | Q <sub>ws</sub> = | 0.0           | 0.0                                                          | cfs                       |
| Base Weir Flow                                                                                                                                                                                                                   | Q <sub>wb</sub> = | 0.0           | 0.1                                                          | cfs                       |
| Interception Without Cloggging                                                                                                                                                                                                   | Q <sub>wi</sub> = | 0.0           | 0.2                                                          | cfs                       |
| Interception With Clogging                                                                                                                                                                                                       | Q <sub>wa</sub> = | 0.0           | 0.1                                                          | cfs                       |
| Grate Capacity as an Orifice                                                                                                                                                                                                     |                   |               |                                                              |                           |
| Interception Without Clogging                                                                                                                                                                                                    | Q <sub>oi</sub> = | 1.3           | 5.4                                                          | cfs                       |
| Interception With Clogging                                                                                                                                                                                                       | Q <sub>oa</sub> = | 0.7           | 2.7                                                          | cfs                       |
| Total Inlet Interception Capacity (assumes clogged condition)                                                                                                                                                                    | Qa =              | 0.0           | 0.1                                                          | cfs                       |
| Bypassed Flow                                                                                                                                                                                                                    | Q <sub>b</sub> =  | 0.0           | 0.0                                                          | cfs                       |
| Capture Percentage = Qa/Qo                                                                                                                                                                                                       | C% =              | 100           | 100                                                          | %                         |

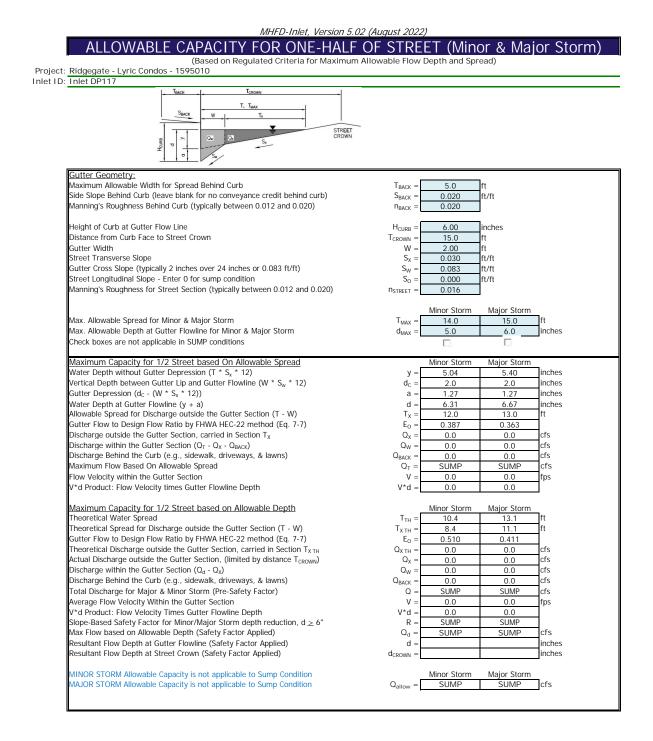
| _                                                                                                        | T                         |                                   |               | _             |
|----------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|---------------|---------------|
| T <sub>MAX</sub>                                                                                         | _ <b>-</b>                | This worksheet use                |               | al            |
| [ ]= T                                                                                                   |                           | retardance method<br>Manning's n. | to determine  |               |
|                                                                                                          | t f                       | wanning s n.                      |               |               |
|                                                                                                          |                           | For more informati                | on see        |               |
| Z. G                                                                                                     | ZR                        | Section 7.2.3 of the              |               |               |
| <b>⊸</b> <sup>†</sup> − в — <b>⊸</b>                                                                     |                           | 1                                 |               |               |
| 15 0.1 mil                                                                                               |                           |                                   |               |               |
| nalysis of Trapezoidal Grass-Lined Channel Using SCS Method<br>RCS Vegetal Retardance (A, B, C, D, or E) |                           |                                   | 1             |               |
| anning's n (Leave cell D16 blank to manually enter an n value)                                           | A, B, C, D, or E =<br>n = | 0.030                             |               |               |
| hannel Invert Slope                                                                                      | $S_0 =$                   | 0.0200                            | ft/ft         |               |
| pttom Width                                                                                              | B =                       | 3.92                              | ft            |               |
| eft Side Slope                                                                                           | Z1 =                      | 4.00                              | ft/ft         |               |
| ight Side Sloe                                                                                           | Z2 =                      | 4.00                              | ft/ft         |               |
| Check one of the following soil types:                                                                   |                           | Choose One:                       | -             | 1             |
| Soil Type: Max. Velocity (V <sub>MAX</sub> ) Max Froude No. (F <sub>MAX</sub> )                          | <u>v</u>                  | C Non-Cohesive                    | •             |               |
| Non-Cohesive 5.0 fps 0.60                                                                                |                           | C Cohesive                        |               |               |
| Cohesive         7.0 fps         0.80           Paved         N/A         N/A                            |                           | C Paved                           |               |               |
| ravou IN/A IN/A                                                                                          |                           | Minor Storm                       | Major Storm   |               |
| aximum Allowable Top Width of Channel for Minor & Major Storm                                            | T <sub>MAX</sub> =        | 9.00                              | 10.00         | ft            |
| aximum Allowable Water Depth in Channel for Minor & Major Storm                                          | d <sub>MAX</sub> =        | 0.40                              | 0.50          | ft            |
| -                                                                                                        |                           |                                   |               | <u> </u>      |
| aximum Channel Capacity Based On Allowable Top Width                                                     |                           | Minor Storm                       | Major Storm   |               |
| aximum Allowable Top Width                                                                               | T <sub>MAX</sub> =        | 9.00                              | 10.00         | ft            |
| /ater Depth                                                                                              | d =                       | 0.64                              | 0.76          | ft            |
| ow Area<br>/etted Perimeter                                                                              | A =<br>P =                | 4.10<br>9.16                      | 5.29<br>10.19 | sq ft<br>ft   |
| ydraulic Radius                                                                                          | P =<br>R =                | 0.45                              | 0.52          | ft            |
| anning's n                                                                                               | n =                       | 0.030                             | 0.030         |               |
| ow Velocity                                                                                              | V =                       | 4.11                              | 4.54          | fps           |
| elocity-Depth Product                                                                                    | VR =                      | 1.84                              | 2.36          | ft^2/s        |
| ydraulic Depth                                                                                           | D =                       | 0.46                              | 0.53          | ft            |
| roude Number                                                                                             | Fr =                      | 1.07                              | 1.10          |               |
| aximum Flow Based on Allowable Water Depth                                                               | $Q_T =$                   | 16.9                              | 24.0          | cfs           |
| laximum Channel Capacity Based On Allowable Water Depth                                                  |                           | Minor Storm                       | Major Storm   |               |
| aximum Allowable Water Depth                                                                             | d <sub>MAX</sub> =        | 0.40                              | 0.50          | ft            |
| p Width                                                                                                  | T =                       | 7.12                              | 7.92          | ft            |
| ow Area                                                                                                  | A =                       | 2.21                              | 2.96          | sq ft         |
| /etted Perimeter                                                                                         | P =                       | 7.22                              | 8.04          | ft            |
| ydraulic Radius                                                                                          | R =                       | 0.31                              | 0.37          | ft            |
| anning's n                                                                                               | n =                       | 0.030                             | 0.030         |               |
| ow Velocity                                                                                              | V =<br>VR =               | 3.19<br>0.98                      | 3.61<br>1.33  | fps<br>ft^2/s |
| elocity-Depth Product<br>ydraulic Depth                                                                  | VR =<br>D =               | 0.98                              | 0.37          | ft ft         |
| roude Number                                                                                             | Fr =                      | 1.01                              | 1.04          | -11           |
| aximum Flow Based On Allowable Water Depth                                                               | $Q_d =$                   | 7.0                               | 10.7          | cfs           |
|                                                                                                          |                           |                                   |               |               |
| Ilowable Channel Capacity Based On Channel Geometry                                                      |                           | Minor Storm                       | Major Storm   |               |
| INOR STORM Allowable Capacity is based on Depth Criterion                                                | Q <sub>allow</sub> =      | 7.0                               | 10.7          | cfs           |
| AJOR STORM Allowable Capacity is based on Depth Criterion                                                | d <sub>allow</sub> =      | 0.40                              | 0.50          | ft            |
| /ater Depth in Channel Based On Design Peak Flow                                                         |                           |                                   |               |               |
| esign Peak Flow                                                                                          | $Q_0 =$                   | 0.0                               | 0.2           | cfs           |
| ater Depth                                                                                               | d =                       | 0.00                              | 0.05          | ft            |
| pp Width                                                                                                 | T =                       | 3.93                              | 4.36          | ft            |
| ow Area                                                                                                  | Α =                       | 0.01                              | 0.23          | sq ft         |
| letted Perimeter                                                                                         | P =                       | 3.93                              | 4.37          | ft            |
| ydraulic Radius                                                                                          | R =                       | 0.00                              | 0.05          | ft            |
| anning's n                                                                                               | n =                       | 0.030                             | 0.030         |               |
| ow Velocity<br>elocity-Depth Product                                                                     | V =<br>VR =               | 0.10                              | 0.98          | fps<br>ft^2/s |
| ydraulic Depth                                                                                           | VR =<br>D =               | 0.00                              | 0.05          | ft            |
| roude Number                                                                                             | Fr =                      | 0.42                              | 0.75          | -1°           |
|                                                                                                          |                           |                                   |               |               |

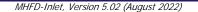

| Ridgegate - Lyric Condos - 1595010<br>Inlet DP112                                                                                                                                                                               |                                        |               |                                                              |                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|--------------------------------------------------------------|---------------------------------|
| Inlet Design Information (Input)                                                                                                                                                                                                |                                        |               |                                                              |                                 |
| Type of Inlet CDOT Type C +                                                                                                                                                                                                     | Inlet Type =                           | CDOT T        | ype C                                                        |                                 |
| Angle of Inclined Grate (must be <= 30 degrees)<br>Width of Grate<br>Length of Grate<br>Open Area Ratio<br>Height of Inclined Grate<br>Clogging Factor<br>Grate Discharge Coefficient<br>Orlice Coefficient<br>Weir Coefficient | Y .                                    |               | 0.00<br>3.00<br>0.70<br>0.00<br>0.50<br>0.96<br>0.64<br>2.05 | degrees<br>ft<br>ft<br>ft<br>ft |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)                                                                                                                                                     | d =                                    | MINOR<br>0.00 | MAJOR<br>0.05                                                |                                 |
| Grate Capacity as a Weir                                                                                                                                                                                                        |                                        |               |                                                              |                                 |
| Submerged Side Weir Length                                                                                                                                                                                                      | X =                                    | 3.00          | 3.00                                                         | ft                              |
| Inclined Side Weir Flow                                                                                                                                                                                                         | Q <sub>ws</sub> =                      | 0.0           | 0.1                                                          | cfs                             |
| Base Weir Flow                                                                                                                                                                                                                  | Q <sub>wb</sub> =                      | 0.0           | 0.2                                                          | cfs                             |
| Interception Without Cloggging<br>Interception With Clogging                                                                                                                                                                    | Q <sub>wi</sub> =<br>Q <sub>wa</sub> = | 0.0           | 0.5                                                          | cfs<br>cfs                      |
| Grate Capacity as an Orifice<br>Interception Without Clogging<br>Interception With Clogging                                                                                                                                     | $Q_{oi} =$<br>$Q_{oa} =$               | 1.3<br>0.7    | 7.6                                                          | cfs<br>cfs                      |
| Total Inlet Interception Capacity (assumes clogged condition)                                                                                                                                                                   | Q <sub>a</sub> =                       | 0.0           | 0.2                                                          | cfs                             |
| Bypassed Flow                                                                                                                                                                                                                   | Q <sub>b</sub> =                       | 0.0           | 0.0                                                          | cfs                             |
| Capture Percentage = Qa/Qo                                                                                                                                                                                                      | C% =                                   | 100           | 100                                                          | %                               |

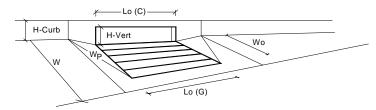

| · -                                                                                                      | 1                         |                                   |                     | =           |
|----------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|---------------------|-------------|
| - T <sub>MAX</sub>                                                                                       | -                         | This worksheet use                |                     | al          |
| T                                                                                                        |                           | retardance method<br>Manning's n. | to determine        |             |
|                                                                                                          | f                         | wanning s n.                      |                     |             |
|                                                                                                          |                           | For more informati                | on see              |             |
| 2                                                                                                        | ∠r<br>▼                   | Section 7.2.3 of the              |                     |             |
| - <b>−</b> B                                                                                             |                           |                                   |                     |             |
|                                                                                                          |                           |                                   |                     |             |
| nalysis of Trapezoidal Grass-Lined Channel Using SCS Method<br>RCS Vegetal Retardance (A, B, C, D, or E) | A, B, C, D, or E =        |                                   | 1                   |             |
| anning's n (Leave cell D16 blank to manually enter an n value)                                           | A, B, C, D, OI E =<br>n = | 0.030                             |                     |             |
| hannel Invert Slope                                                                                      | $S_0 =$                   | 0.0200                            | ft/ft               |             |
| ottom Width                                                                                              | B =                       | 3.92                              | ft                  |             |
| eft Side Slope                                                                                           | Z1 =                      | 4.00                              | ft/ft               |             |
| ight Side Sloe                                                                                           | Z2 =                      | 4.00                              | ft/ft               |             |
| Check one of the following soil types:                                                                   |                           | Choose One:                       |                     | 1           |
| Soil Type: Max. Velocity (V <sub>Max</sub> ) Max Froude No. (F <sub>Max</sub> )                          | <u>.</u>                  | C Non-Cohesive                    |                     |             |
| Non-Cohesive 5.0 fps 0.60                                                                                |                           | C Cohesive                        |                     |             |
| Cohesive         7.0 fps         0.80           Paved         N/A         N/A                            |                           | C Paved                           |                     |             |
| ravou IV/A IV/A                                                                                          |                           | Minor Storm                       | Major Storm         | 1           |
| aximum Allowable Top Width of Channel for Minor & Major Storm                                            | T <sub>MAX</sub> =        | 9.00                              | 10.00               | ft          |
| aximum Allowable Water Depth in Channel for Minor & Major Storm                                          | d <sub>MAX</sub> =        | 0.40                              | 0.50                | ft          |
| -                                                                                                        |                           |                                   |                     | <u> </u>    |
| laximum Channel Capacity Based On Allowable Top Width                                                    |                           | Minor Storm                       | Major Storm         |             |
| laximum Allowable Top Width                                                                              | T <sub>MAX</sub> =        | 9.00                              | 10.00               | ft          |
| /ater Depth                                                                                              | d =                       | 0.64                              | 0.76                | ft          |
| low Area<br>/etted Perimeter                                                                             | A =<br>P =                | 4.10<br>9.16                      | 5.29                | sq ft<br>ft |
| ydraulic Radius                                                                                          | P =<br>R =                | 0.45                              | 10.19<br>0.52       | ft          |
| lanning's n                                                                                              | n =                       | 0.030                             | 0.030               |             |
| ow Velocity                                                                                              | V =                       | 4.11                              | 4.54                | fps         |
| elocity-Depth Product                                                                                    | VR =                      | 1.84                              | 2.36                | ft^2/s      |
| ydraulic Depth                                                                                           | D =                       | 0.46                              | 0.53                | ft          |
| roude Number                                                                                             | Fr =                      | 1.07                              | 1.10                |             |
| aximum Flow Based on Allowable Water Depth                                                               | $Q_T =$                   | 16.9                              | 24.0                | cfs         |
| lavimum Channel Canacity Record On Allowable Water Donth                                                 |                           | Minor Storm                       | Malax Charm         |             |
| laximum Channel Capacity Based On Allowable Water Depth<br>laximum Allowable Water Depth                 | d <sub>MAX</sub> =        | Minor Storm<br>0.40               | Major Storm<br>0.50 | ft          |
| op Width                                                                                                 | T =                       | 7.12                              | 7.92                | ft          |
| low Area                                                                                                 | A =                       | 2.21                              | 2.96                | sq ft       |
| /etted Perimeter                                                                                         | P =                       | 7.22                              | 8.04                | ft          |
| ydraulic Radius                                                                                          | R =                       | 0.31                              | 0.37                | ft          |
| lanning's n                                                                                              | n =                       | 0.030                             | 0.030               |             |
| low Velocity                                                                                             | V =                       | 3.19                              | 3.61                | fps         |
| elocity-Depth Product                                                                                    | VR =                      | 0.98                              | 1.33                | ft^2/s      |
| ydraulic Depth<br>roude Number                                                                           | D =<br>Fr =               | 0.31                              | 0.37                | ft          |
| aximum Flow Based On Allowable Water Depth                                                               | $FF = Q_d =$              | 7.0                               | 1.04                | cfs         |
|                                                                                                          | 2 <sub>d</sub> -          |                                   |                     |             |
| llowable Channel Capacity Based On Channel Geometry                                                      |                           | Minor Storm                       | Major Storm         | _           |
| INOR STORM Allowable Capacity is based on Depth Criterion                                                | $Q_{allow} =$             | 7.0                               | 10.7                | cfs         |
| AJOR STORM Allowable Capacity is based on Depth Criterion                                                | d <sub>allow</sub> =      | 0.40                              | 0.50                | ft          |
| later Denth in Channel Record On Decign Beek Flow                                                        |                           |                                   |                     |             |
| /ater Depth in Channel Based On Design Peak Flow<br>esign Peak Flow                                      | $Q_0 =$                   | 0.0                               | 0.1                 | cfs         |
| ater Depth                                                                                               | d =                       | 0.00                              | 0.03                | ft          |
| op Width                                                                                                 | u =<br>T =                | 3.93                              | 4.14                | ft          |
| ow Area                                                                                                  | A =                       | 0.01                              | 0.11                | sq ft       |
| letted Perimeter                                                                                         | P =                       | 3.93                              | 4.15                | ft          |
| ydraulic Radius                                                                                          | R =                       | 0.00                              | 0.03                | ft          |
| lanning's n                                                                                              | n =                       | 0.030                             | 0.030               |             |
| ow Velocity                                                                                              | V =                       | 0.10                              | 0.63                | fps         |
| elocity-Depth Product                                                                                    | VR =                      | 0.00                              | 0.02                | ft^2/s      |
| ydraulic Depth<br>roude Number                                                                           | D =<br>Fr =               | 0.00                              | 0.03                | ft          |
|                                                                                                          |                           | 0.42                              | 11.68               |             |


| Ridgegate - Lyric Condos - 1595010<br>Inlet DP113                                                                                                                                                                             |                   |               |                                                              |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|--------------------------------------------------------------|---------------------------|
| Inlet Design Information (Input)                                                                                                                                                                                              | -                 |               |                                                              |                           |
| Type of Inlet CDOT Type C                                                                                                                                                                                                     | - Inlet Type =    | CDOT -        | Гуре С                                                       |                           |
| Angle of Inclined Grate (must be <= 30 degrees)<br>Width of Grate<br>Length of Grate<br>Open Area Ratio<br>Height of Inclined Grate<br>Clogging Factor<br>Grate Discharge Coefficient<br>Weir Coefficient<br>Weir Coefficient |                   |               | 0.00<br>3.00<br>0.70<br>0.00<br>0.50<br>0.96<br>0.64<br>2.05 | degrees<br>ft<br>ft<br>ft |
| Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)                                                                                                                                                   | d =               | MINOR<br>0.00 | MAJOR<br>0.03                                                |                           |
| <u>Grate Capacity as a Weir</u>                                                                                                                                                                                               |                   |               |                                                              |                           |
| Submerged Side Weir Length                                                                                                                                                                                                    | X =               | 3.00          | 3.00                                                         | ft                        |
| Inclined Side Weir Flow                                                                                                                                                                                                       | Q <sub>ws</sub> = | 0.0           | 0.0                                                          | cfs                       |
| Base Weir Flow                                                                                                                                                                                                                | Q <sub>wb</sub> = | 0.0           | 0.1                                                          | cfs                       |
| Interception Without Cloggging                                                                                                                                                                                                | Q <sub>wi</sub> = | 0.0           | 0.2                                                          | cfs                       |
| Interception With Clogging                                                                                                                                                                                                    | Q <sub>wa</sub> = | 0.0           | 0.1                                                          | cfs                       |
| Grate Capacity as an Orifice                                                                                                                                                                                                  |                   | 1.0           |                                                              | <b>_</b>                  |
| Interception Without Clogging                                                                                                                                                                                                 | Q <sub>oi</sub> = | 1.3           | 5.4                                                          | cfs                       |
| Interception With Clogging                                                                                                                                                                                                    | Q <sub>oa</sub> = | 0.7           | 2.7                                                          | cfs                       |
| Total Inlet Interception Capacity (assumes clogged condition)                                                                                                                                                                 | Q <sub>a</sub> =  | 0.0           | 0.1                                                          | cfs                       |
| Bypassed Flow                                                                                                                                                                                                                 | $Q_{b} =$         | 0.0           | 0.0                                                          | cfs                       |
| Capture Percentage = Qa/Qo                                                                                                                                                                                                    | C% =              | 100           | 100                                                          | %                         |

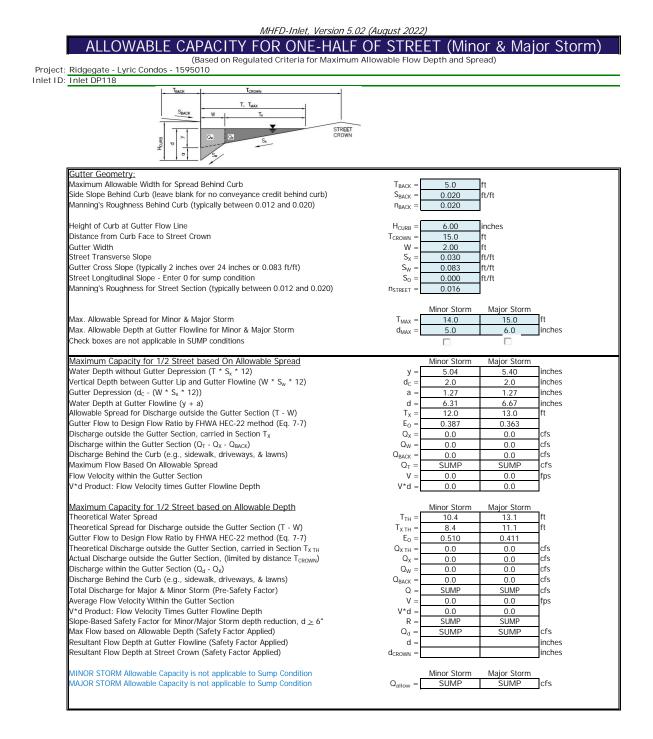


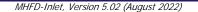

| Ridgegate - Lyric Condos -<br>Inlet DP114                                                                                                                                                                        | 1595010                                                                       |                                                               |                                    |                                                                      |                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|---------------------------|
| Inlet Design Information (In<br>Type of Inlet                                                                                                                                                                    | CDOT Type C                                                                   | Inlet Type =                                                  | CDOT Typ                           | be C                                                                 |                           |
| Angle of Inclined Grate (must b<br>Width of Grate<br>Length of Grate<br>Open Area Ratio<br>Height of Inclined Grate<br>Clogging Factor<br>Grate Discharge Coefficient<br>Orifice Coefficient<br>Weir Coefficient | e <= 30 degrees)                                                              |                                                               |                                    | 0.00<br>3.00<br>3.00<br>0.70<br>0.00<br>0.50<br>0.96<br>0.64<br>2.05 | degrees<br>ft<br>ft<br>ft |
| Water Depth at Inlet (for depre<br>Total Inlet Interception Capacit<br>Bypassed Flow<br>Capture Percentage = Qa/Qo                                                                                               | ssed inlets, 1 foot is added for depression)<br>y (assumes clogged condition) | $\begin{array}{c} d = \\ Q_a = \\ Q_b = \\ C\% = \end{array}$ | MINOR<br>0.00<br>0.0<br>0.0<br>100 | MAJOR<br>0.04<br>0.2<br>0.0<br>100                                   | cfs<br>cfs<br>%           |

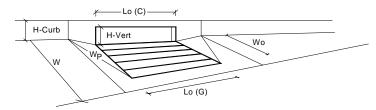


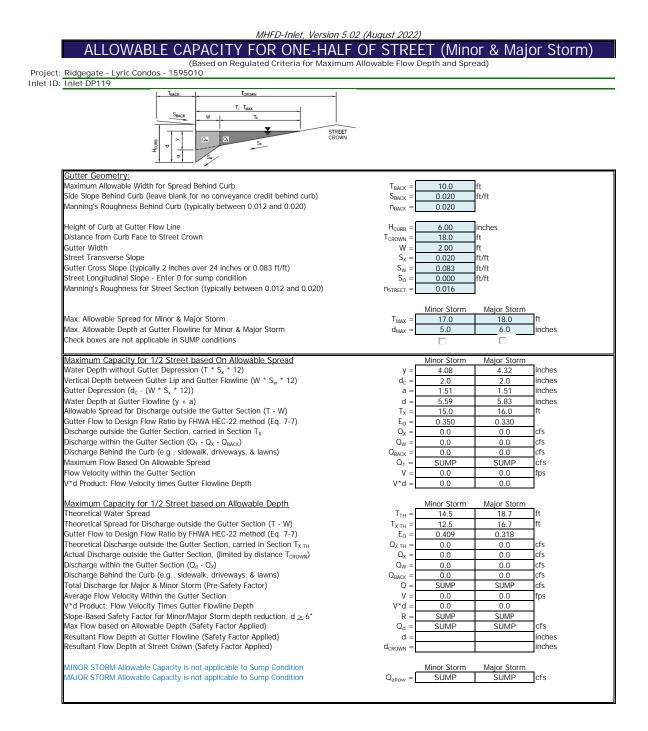




| Design Information (Input)                                                   |                              | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|------------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                       | CDOT Type R | Curb Opening | 1               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =         | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                         | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =              | 5.0         | 6.0          | inches          |
| Grate Information                                                            |                              | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_o(G) =$                   | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =             | N/A         | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =         | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_f(G) =$                   | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_w$ (G) =                  | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_o(G) =$                   | N/A         | N/A          |                 |
| Curb Opening Information                                                     |                              | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_o(C) =$                   | 5.00        | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =          | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =        | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                      | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =             | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                   | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                   | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_0$ (C) =                  | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                              | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =         | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =          | 0.25        | 0.33         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =        | N/A         | N/A          |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =         | 1.00        | 1.00         |                 |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> =  | N/A         | N/A          | ]               |
|                                                                              |                              | MINOR       | MAJOR        |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | Q <sub>a</sub> =             | 3.5         | 5.4          | cfs             |
|                                                                              |                              | 0.8         | 1.7          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | $Q_{\text{PEAK REQUIRED}} =$ |             |              |                 |

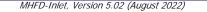


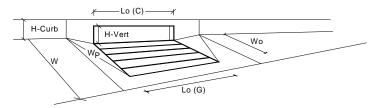





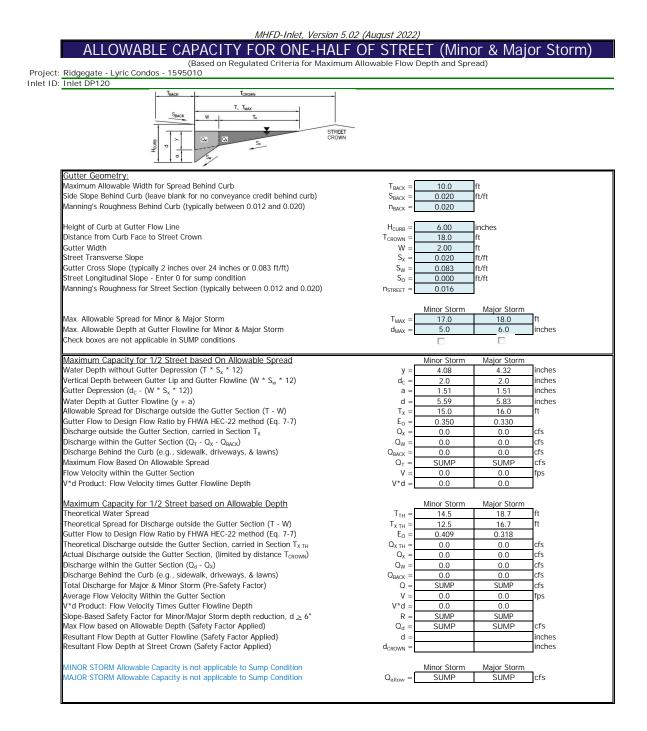


| Design Information (Input) CDOT Type R Curb Opening                          | <b>T</b>                    | MINOR                                 | MAJOR | -               |
|------------------------------------------------------------------------------|-----------------------------|---------------------------------------|-------|-----------------|
| Local Depression (additional to continuous gutter depression 'a' from above) | Type =                      | CDOT Type R Curb Opening<br>3.00 3.00 |       | inches          |
|                                                                              | a <sub>local</sub> =        |                                       | 3.00  | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1                                     | 1     |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.0                                   | 6.0   | inches          |
| Grate Information                                                            |                             | MINOR                                 | MAJOR | Override Depths |
| Length of a Unit Grate                                                       | $L_0$ (G) =                 | N/A                                   | N/A   | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A                                   | N/A   | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =        | N/A                                   | N/A   |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_f(G) =$                  | N/A                                   | N/A   |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_w$ (G) =                 | N/A                                   | N/A   |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_o(G) =$                  | N/A                                   | N/A   |                 |
| Curb Opening Information                                                     | -                           | MINOR                                 | MAJOR | -               |
| Length of a Unit Curb Opening                                                | $L_o(C) =$                  | 5.00                                  | 5.00  | feet            |
| Height of Vertical Curb Opening in Inches                                    | $H_{vert} =$                | 6.00                                  | 6.00  | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00                                  | 6.00  | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40                                 | 63.40 | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | $W_p =$                     | 2.00                                  | 2.00  | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                  | 0.10                                  | 0.10  |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60                                  | 3.60  |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_o(C) =$                  | 0.67                                  | 0.67  |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR                                 | MAJOR |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A                                   | N/A   | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.25                                  | 0.33  | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A                                   | N/A   |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 1.00                                  | 1.00  |                 |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A                                   | N/A   |                 |
| some never the contribute reduction ratio for Early milets                   | ··· Combination –           | 19/75                                 | 10/75 | <u> </u>        |
|                                                                              |                             | MINOR                                 | MAJOR | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | Q <sub>a</sub> =            | 3.5                                   | 5.4   | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | Q PEAK REQUIRED =           | 0.5                                   | 1.0   | cfs             |



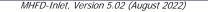


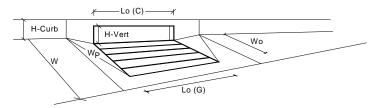




| Desting the forment in (langed)                                              |                             |                                       |       |                 |
|------------------------------------------------------------------------------|-----------------------------|---------------------------------------|-------|-----------------|
| Design Information (Input) CDOT Type R Curb Opening                          | <b>T</b>                    | MINOR                                 | MAJOR | -               |
| Type of Inlet                                                                | Type =                      | CDOT Type R Curb Opening<br>3.00 3.00 |       | inches          |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        |                                       | 3.00  | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1                                     | 1     |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.0                                   | 6.0   | inches          |
| <u>Grate Information</u>                                                     | . (m) E                     | MINOR                                 | MAJOR | Override Depths |
| Length of a Unit Grate                                                       | $L_0$ (G) =                 | N/A                                   | N/A   | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A                                   | N/A   | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | A <sub>ratio</sub> =        | N/A                                   | N/A   |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_f(G) =$                  | N/A                                   | N/A   |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_w$ (G) =                 | N/A                                   | N/A   |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_o(G) =$                  | N/A                                   | N/A   |                 |
| Curb Opening Information                                                     | _                           | MINOR                                 | MAJOR | -               |
| Length of a Unit Curb Opening                                                | $L_o(C) =$                  | 5.00                                  | 5.00  | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00                                  | 6.00  | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00                                  | 6.00  | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40                                 | 63.40 | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | $W_p =$                     | 2.00                                  | 2.00  | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                  | 0.10                                  | 0.10  |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60                                  | 3.60  |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_o(C) =$                  | 0.67                                  | 0.67  |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR                                 | MAJOR |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A                                   | N/A   | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.25                                  | 0.33  | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A                                   | N/A   |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 1.00                                  | 1.00  |                 |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A                                   | N/A   |                 |
| Some marter miler i chormanee reduction ractor for Eony milets               | Combination -               | 19775                                 | IW/A  |                 |
|                                                                              |                             | MINOR                                 | MAJOR | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | $Q_a =$                     | 3.5                                   | 5.4   | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | Q PEAK REQUIRED =           | 0.9                                   | 2.3   | cfs             |




## INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)




| Design Information (Input)                                                   |                             | MINOR | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      |       | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00  | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1     | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.0   | 5.8          | inches          |
| Grate Information                                                            |                             | MINOR | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{0}(G) =$                | N/A   | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>0</sub> =            | N/A   | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                       | $A_{ratio} =$               | N/A   | N/A          | 1001            |
| Clogging Factor for a Single Grate (typical values 0.50 - 0.70)              | $C_f(G) =$                  | N/A   | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | $C_{w}(G) =$                | N/A   | N/A          | -               |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_0(G) =$                  | N/A   | N/A          | -               |
| Curb Opening Information                                                     | 00(0)                       | MINOR | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{0}(C) =$                | 5.00  | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00  | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00  | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40 | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00  | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_f(C) =$                  | 0.10  | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60  | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | $C_{0}(C) =$                | 0.67  | 0.67         |                 |
| Grate Flow Analysis (Calculated)                                             |                             | MINOR | MAJOR        |                 |
| Clogging Coefficient for Multiple Units                                      | Coef =                      | N/A   | N/A          |                 |
| Clogging Factor for Multiple Units                                           | Clog =                      | N/A   | N/A          |                 |
| Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)                    |                             | MINOR | MAJOR        | _               |
| Interception without Clogging                                                | Q <sub>wi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | Q <sub>wa</sub> =           | N/A   | N/A          | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                |                             | MINOR | MAJOR        |                 |
| Interception without Clogging                                                | Q <sub>oi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | Q <sub>oa</sub> =           | N/A   | N/A          | cfs             |
| Grate Capacity as Mixed Flow                                                 |                             | MINOR | MAJOR        | _               |
| Interception without Clogging                                                | Q <sub>mi</sub> =           | N/A   | N/A          | cfs             |
| Interception with Clogging                                                   | Q <sub>ma</sub> =           | N/A   | N/A          | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                         | Q <sub>Grate</sub> =        | N/A   | N/A          | cfs             |
| Curb Opening Flow Analysis (Calculated)                                      |                             | MINOR | MAJOR        | _               |
| Clogging Coefficient for Multiple Units                                      | Coef =                      | 1.00  | 1.00         |                 |
| Clogging Factor for Multiple Units                                           | Clog =                      | 0.10  | 0.10         |                 |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                     | -                           | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>wi</sub> =           | 3.9   | 5.6          | cfs             |
| Interception with Clogging                                                   | Q <sub>wa</sub> =           | 3.5   | 5.0          | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                 | -                           | MINOR | MAJOR        | -               |
| Interception without Clogging                                                | Q <sub>oi</sub> =           | 8.9   | 9.6          | cfs             |
| Interception with Clogging                                                   | Q <sub>oa</sub> =           | 8.1   | 8.7          | cfs             |
| Curb Opening Capacity as Mixed Flow                                          | F                           | MINOR | MAJOR        | _               |
| Interception without Clogging                                                | Q <sub>mi</sub> =           | 5.5   | 6.8          | cfs             |
| Interception with Clogging                                                   | Q <sub>ma</sub> =           | 4.9   | 6.1          | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                  | $Q_{Curb} =$                | 3.5   | 5.0          | cfs             |
| Resultant Street Conditions                                                  | F                           | MINOR | MAJOR        | -               |
| Total Inlet Length                                                           | L =                         | 5.00  | 5.00         | feet            |
| Resultant Street Flow Spread (based on street geometry from above)           | T =                         | 14.5  | 18.0         | ft              |
| Resultant Flow Depth at Street Crown                                         | d <sub>CROWN</sub> =        | 0.0   | 0.0          | inches          |
|                                                                              |                             |       |              |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR | MAJOR        | -               |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A   | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.25  | 0.32         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A   | N/A          | _               |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 1.00  | 1.00         | _               |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A   | N/A          |                 |
|                                                                              |                             |       |              |                 |
|                                                                              |                             | MINOR | MAJOR        | <b>-</b> -      |
| Total Inlet Interception Capacity (assumes clogged condition)                | Q <sub>a</sub> =            | 3.5   | 5.0          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)                  | $Q_{PEAK REQUIRED} =$       | 1.0   | 2.7          | cfs             |

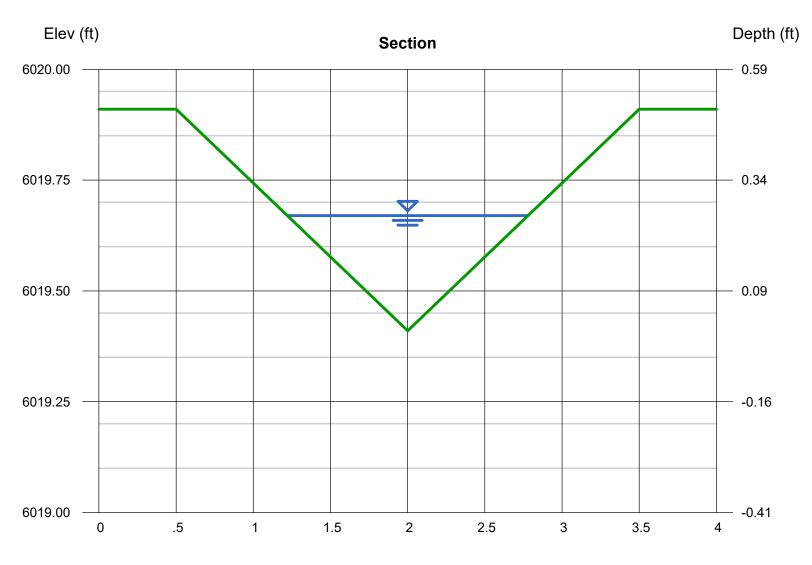


## INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)





| Design Information (Input)                                                                      |                             | MINOR        | MAJOR        |                 |
|-------------------------------------------------------------------------------------------------|-----------------------------|--------------|--------------|-----------------|
| Type of Inlet                                                                                   | Type =                      |              | Curb Opening | 1               |
| Local Depression (additional to continuous gutter depression 'a' from above)                    | a <sub>local</sub> =        | 3.00         | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                                   | No =                        | 1            | 1            | 1               |
| Water Depth at Flowline (outside of local depression)                                           | Ponding Depth =             | 5.0          | 5.8          | inches          |
| Grate Information                                                                               | · · J - · · ·               | MINOR        | MAJOR        | Override Depths |
| Length of a Unit Grate                                                                          | $L_0$ (G) =                 | N/A          | N/A          | feet            |
| Width of a Unit Grate                                                                           | W <sub>0</sub> =            | N/A          | N/A          | feet            |
| Open Area Ratio for a Grate (typical values 0.15-0.90)                                          | A <sub>ratio</sub> =        | N/A          | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)                                  | $C_f(G) =$                  | N/A          | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                                              | $C_w$ (G) =                 | N/A          | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                                           | $C_o(G) =$                  | N/A          | N/A          |                 |
| Curb Opening Information                                                                        |                             | MINOR        | MAJOR        |                 |
| Length of a Unit Curb Opening                                                                   | $L_o(C) =$                  | 10.00        | 10.00        | feet            |
| Height of Vertical Curb Opening in Inches                                                       | H <sub>vert</sub> =         | 6.00         | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                                         | H <sub>throat</sub> =       | 6.00         | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                                         | Theta =                     | 63.40        | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)                            | $W_p =$                     | 2.00         | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)                                  | $C_f(C) =$                  | 0.10         | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                                           | $C_w(C) =$                  | 3.60         | 3.60         | _               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                                    | $C_{o}(C) =$                | 0.67         | 0.67         |                 |
| Grate Flow Analysis (Calculated)                                                                | 0r                          | MINOR        | MAJOR        | 7               |
| Clogging Coefficient for Multiple Units                                                         | Coef =                      | N/A          | N/A          | _               |
| Clogging Factor for Multiple Units<br>Grate Capacity as a Weir (based on MHFD - CSU 2010 Study) | Clog =                      | N/A<br>MINOR | N/A<br>MAJOR |                 |
| Interception without Clogging                                                                   | o _F                        | N/A          | MAJOR<br>N/A | cfs             |
| Interception with Clogging                                                                      | Q <sub>wi</sub> =           | N/A<br>N/A   | N/A<br>N/A   | cfs             |
| Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)                                   | Q <sub>wa</sub> =           | MINOR        | MAJOR        | CIS             |
| Interception without Clogging                                                                   | Q <sub>oi</sub> =           | N/A          | N/A          | cfs             |
| Interception without clogging                                                                   | $Q_{oi} = Q_{oa} =$         | N/A          | N/A          | cfs             |
| Grate Capacity as Mixed Flow                                                                    | Ca <sup>03</sup> -          | MINOR        | MAJOR        | 013             |
| Interception without Clogging                                                                   | Q <sub>mi</sub> =           | N/A          | N/A          | cfs             |
| Interception with Clogging                                                                      | Q <sub>ma</sub> =           | N/A          | N/A          | cfs             |
| Resulting Grate Capacity (assumes clogged condition)                                            | Q <sub>Grate</sub> =        | N/A          | N/A          | cfs             |
| Curb Opening Flow Analysis (Calculated)                                                         | •                           | MINOR        | MAJOR        | •               |
| Clogging Coefficient for Multiple Units                                                         | Coef =                      | 1.25         | 1.25         | 7               |
| Clogging Factor for Multiple Units                                                              | Clog =                      | 0.06         | 0.06         |                 |
| Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)                                        | _                           | MINOR        | MAJOR        |                 |
| Interception without Clogging                                                                   | Q <sub>wi</sub> =           | 5.3          | 8.2          | cfs             |
| Interception with Clogging                                                                      | Q <sub>wa</sub> =           | 5.0          | 7.7          | cfs             |
| Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)                                    |                             | MINOR        | MAJOR        | _               |
| Interception without Clogging                                                                   | Q <sub>oi</sub> =           | 17.9         | 19.2         | cfs             |
| Interception with Clogging                                                                      | Q <sub>oa</sub> =           | 16.8         | 18.0         | cfs             |
| Curb Opening Capacity as Mixed Flow                                                             |                             | MINOR        | MAJOR        | ٦.              |
| Interception without Clogging                                                                   | Q <sub>mi</sub> =           | 9.1          | 11.7         | cfs             |
| Interception with Clogging                                                                      | Q <sub>ma</sub> =           | 8.5          | 10.9         | cfs             |
| Resulting Curb Opening Capacity (assumes clogged condition)                                     | $Q_{Curb} =$                | 5.0          | 7.7          | cfs             |
| Resultant Street Conditions                                                                     | . г                         | MINOR        | MAJOR        |                 |
| Total Inlet Length                                                                              | L =<br>T =                  | 10.00        | 10.00        | feet<br>ft      |
| Resultant Street Flow Spread (based on street geometry from above)                              |                             | 14.5<br>0.0  | 18.0<br>0.0  | ft<br>inches    |
| Resultant Flow Depth at Street Crown                                                            | d <sub>CROWN</sub> =        | 0.0          | 0.0          | inches          |
| Low Head Performance Reduction (Calculated)                                                     |                             | MINOR        | MAJOR        |                 |
| Depth for Grate Midwidth                                                                        | d <sub>Grate</sub> =        | N/A          | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                                            | d <sub>Curb</sub> =         | 0.25         | 0.32         | ft              |
| Grated Inlet Performance Reduction Factor for Long Inlets                                       | RF <sub>Grate</sub> =       | N/A          | N/A          | 1               |
| Curb Opening Performance Reduction Factor for Long Inlets                                       | RF <sub>Curb</sub> =        | 0.87         | 0.92         |                 |
| Combination Inlet Performance Reduction Factor for Long Inlets                                  | RF <sub>Combination</sub> = | N/A          | N/A          | 1               |
|                                                                                                 | compination                 |              |              | <b></b>         |
|                                                                                                 |                             | MINOR        | MAJOR        |                 |
| II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                          |                             |              |              |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                                   | Q <sub>a</sub> =            | 5.0          | 7.7          | cfs             |


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 29 2022

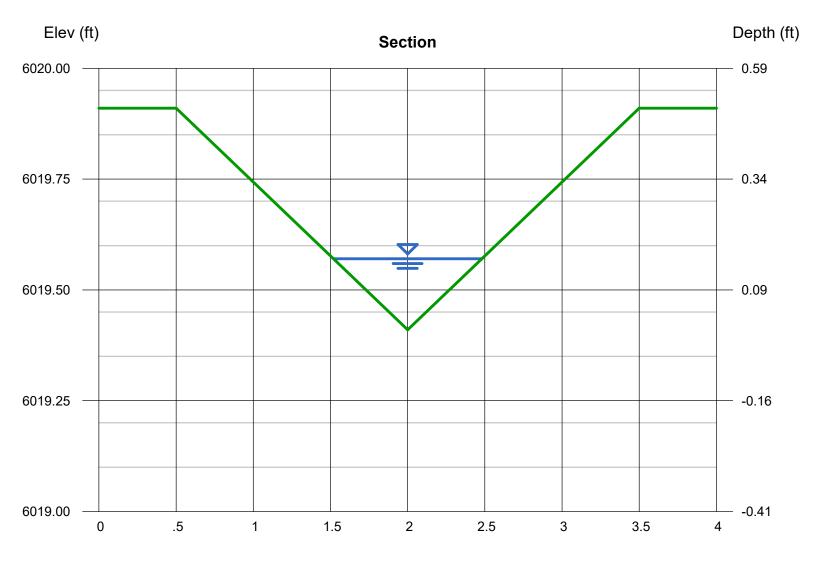
#### **Drainage Swale A-A**

| Triangular |
|------------|
|------------|

| Triangular        |              | Highlighted         |         |
|-------------------|--------------|---------------------|---------|
| Side Slopes (z:1) | = 3.00, 3.00 | Depth (ft)          | = 0.26  |
| Total Depth (ft)  | = 0.50       | Q (cfs)             | = 0.350 |
|                   |              | Area (sqft)         | = 0.20  |
| Invert Elev (ft)  | = 6019.41    | Velocity (ft/s)     | = 1.73  |
| Slope (%)         | = 2.20       | Wetted Perim (ft)   | = 1.64  |
| N-Value           | = 0.030      | Crit Depth, Yc (ft) | = 0.25  |
|                   |              | Top Width (ft)      | = 1.56  |
| Calculations      |              | EGL (ft)            | = 0.31  |
| Compute by:       | Known Q      |                     |         |
| Known Q (cfs)     | = 0.35       |                     |         |



Reach (ft)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 29 2022

#### **Drainage Swale B-B**

#### Triangular

| Triangular        |              | Highlighted         |         |
|-------------------|--------------|---------------------|---------|
| Side Slopes (z:1) | = 3.00, 3.00 | Depth (ft)          | = 0.16  |
| Total Depth (ft)  | = 0.50       | Q (cfs)             | = 0.180 |
|                   |              | Area (sqft)         | = 0.08  |
| Invert Elev (ft)  | = 6019.41    | Velocity (ft/s)     | = 2.34  |
| Slope (%)         | = 8.00       | Wetted Perim (ft)   | = 1.01  |
| N-Value           | = 0.030      | Crit Depth, Yc (ft) | = 0.19  |
|                   |              | Top Width (ft)      | = 0.96  |
| Calculations      |              | EGL (ft)            | = 0.25  |
| Compute by:       | Known Q      |                     |         |
| Known Q (cfs)     | = 0.18       |                     |         |



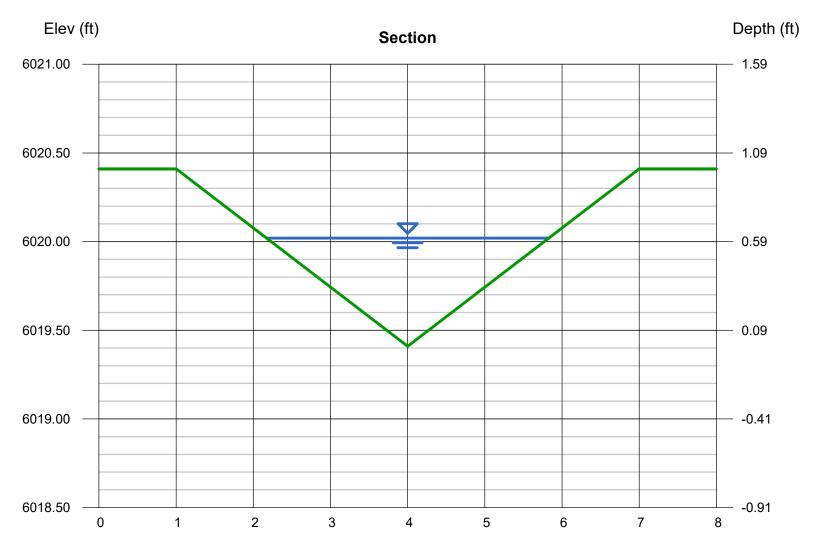
Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 29 2022

= 0.61 = 4.180 = 1.12 = 3.74

= 3.86

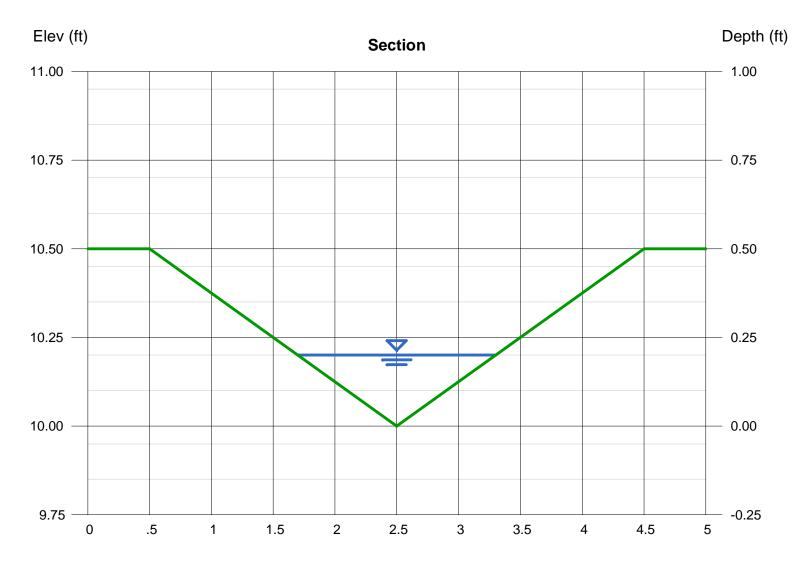

= 0.66

= 3.66 = 0.83

#### **Drainage Swale C-C**

| Triangular |
|------------|
|------------|

| Triangular        |              | Highlighted         |
|-------------------|--------------|---------------------|
| Side Slopes (z:1) | = 3.00, 3.00 | Depth (ft)          |
| Total Depth (ft)  | = 1.00       | Q (cfs)             |
|                   |              | Area (sqft)         |
| Invert Elev (ft)  | = 6019.41    | Velocity (ft/s)     |
| Slope (%)         | = 3.00       | Wetted Perim (ft)   |
| N-Value           | = 0.030      | Crit Depth, Yc (ft) |
|                   |              | Top Width (ft)      |
| Calculations      |              | EGL (ft)            |
| Compute by:       | Known Q      |                     |
| Known Q (cfs)     | = 4.18       |                     |

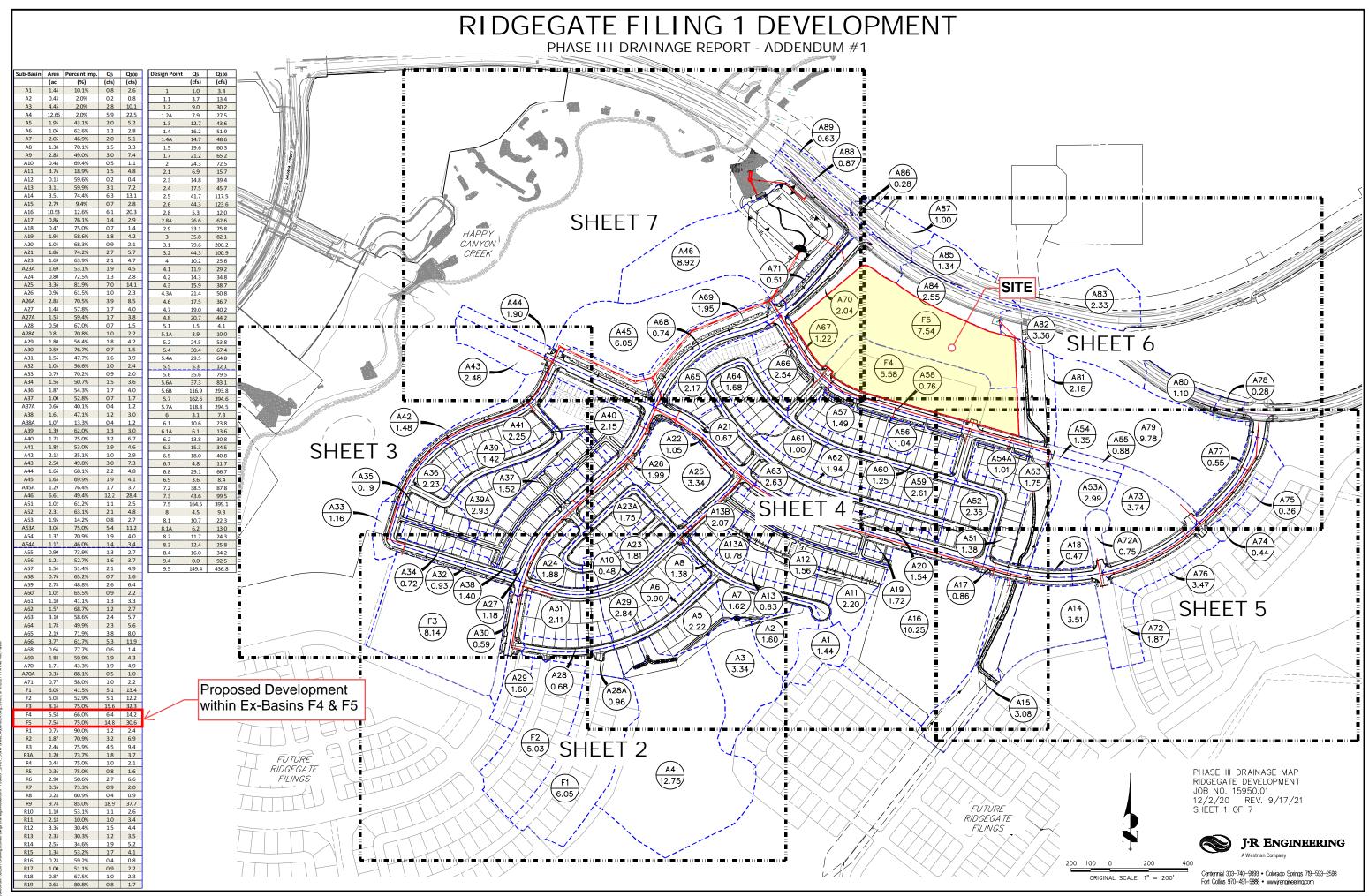


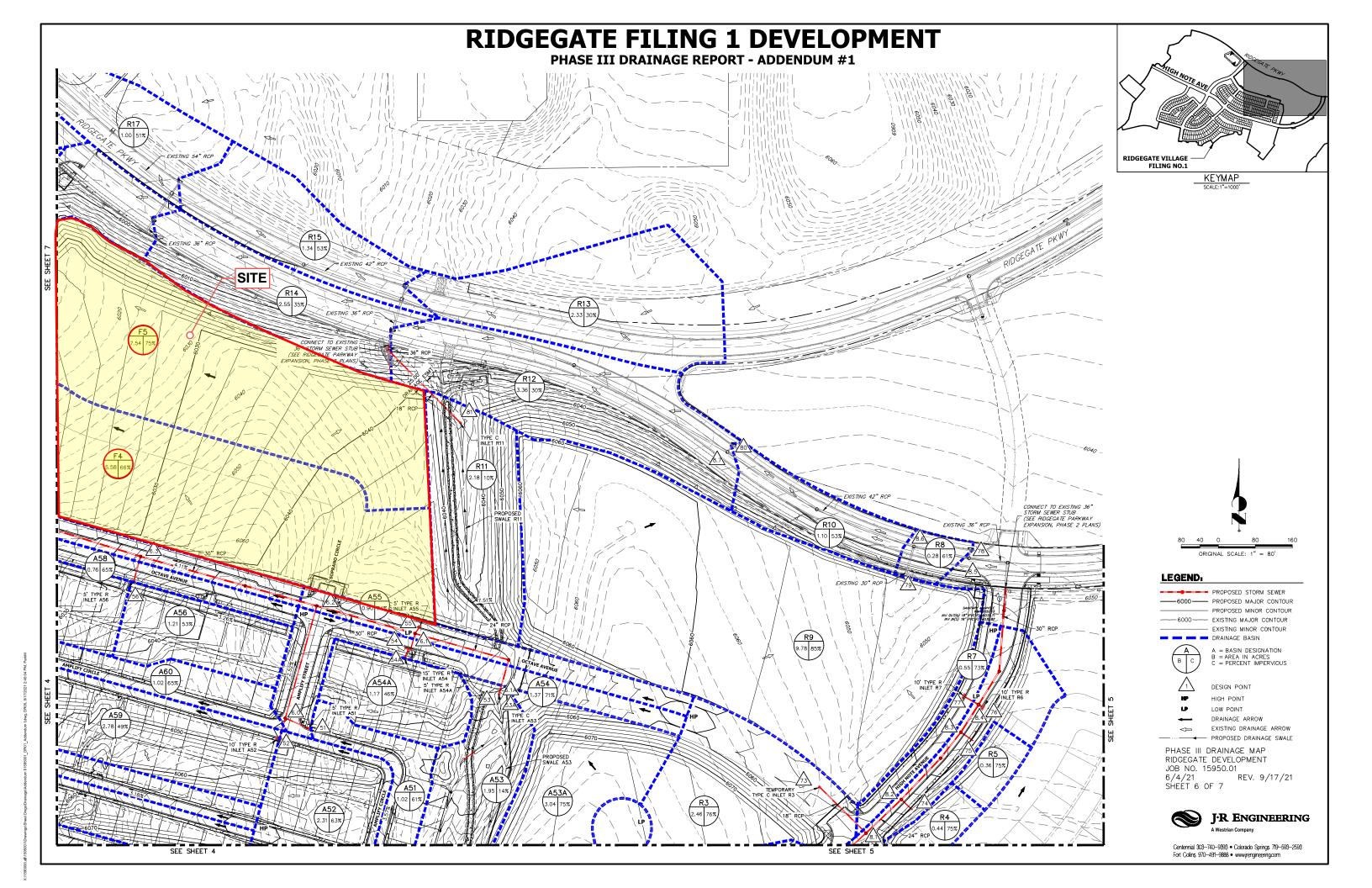

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### **Basin T23 Grass Swale**

| Triangular        |              | Highlighted         |         |
|-------------------|--------------|---------------------|---------|
| Side Slopes (z:1) | = 4.00, 4.00 | Depth (ft)          | = 0.20  |
| Total Depth (ft)  | = 0.50       | Q (cfs)             | = 0.370 |
|                   |              | Area (sqft)         | = 0.16  |
| Invert Elev (ft)  | = 10.00      | Velocity (ft/s)     | = 2.31  |
| Slope (%)         | = 5.00       | Wetted Perim (ft)   | = 1.65  |
| N-Value           | = 0.030      | Crit Depth, Yc (ft) | = 0.23  |
|                   |              | Top Width (ft)      | = 1.60  |
| Calculations      |              | EGL (ft)            | = 0.28  |
| Compute by:       | Known Q      |                     |         |
| Known Q (cfs)     | = 0.37       |                     |         |

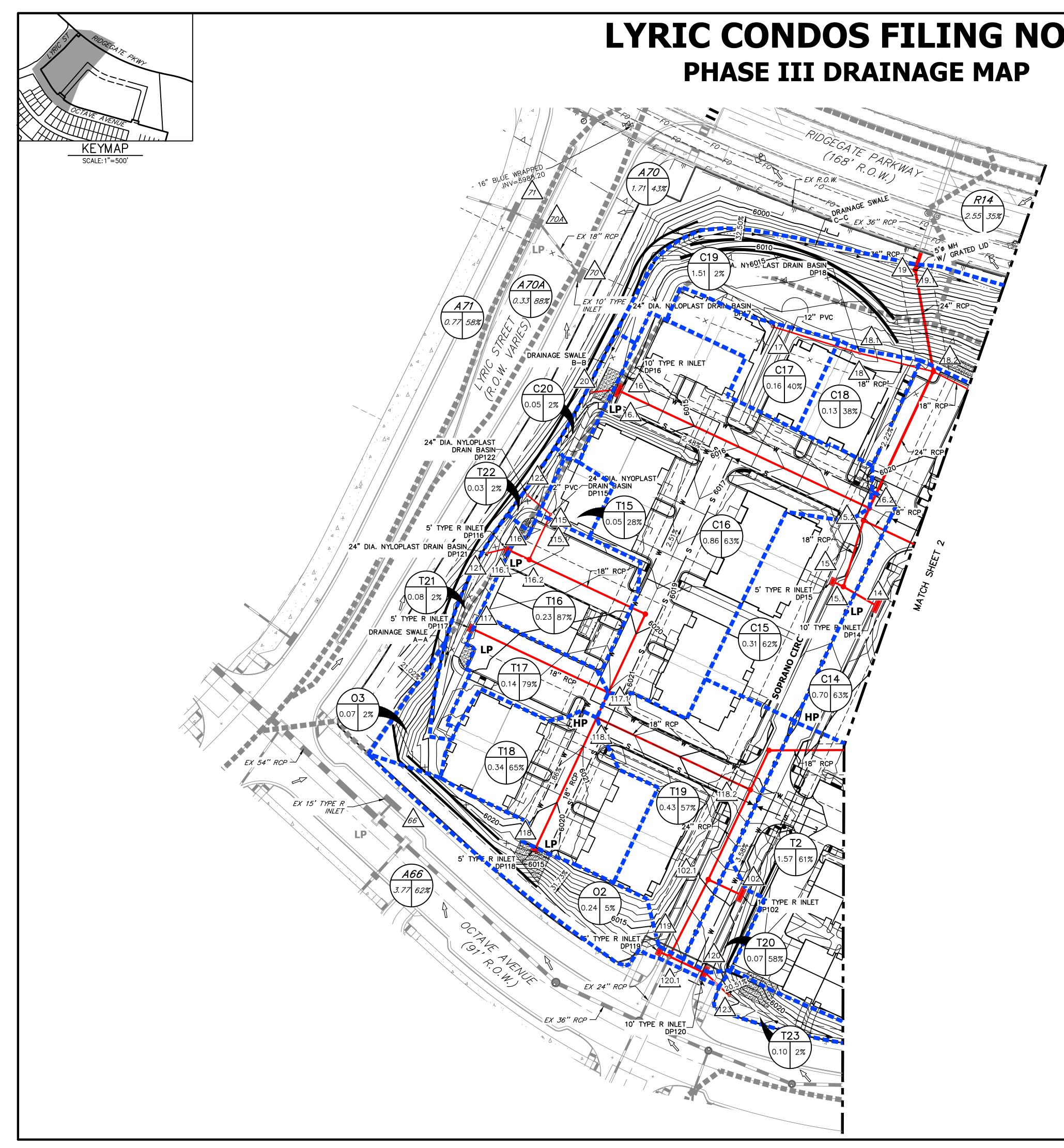




Reach (ft)


Friday, Feb 24 2023

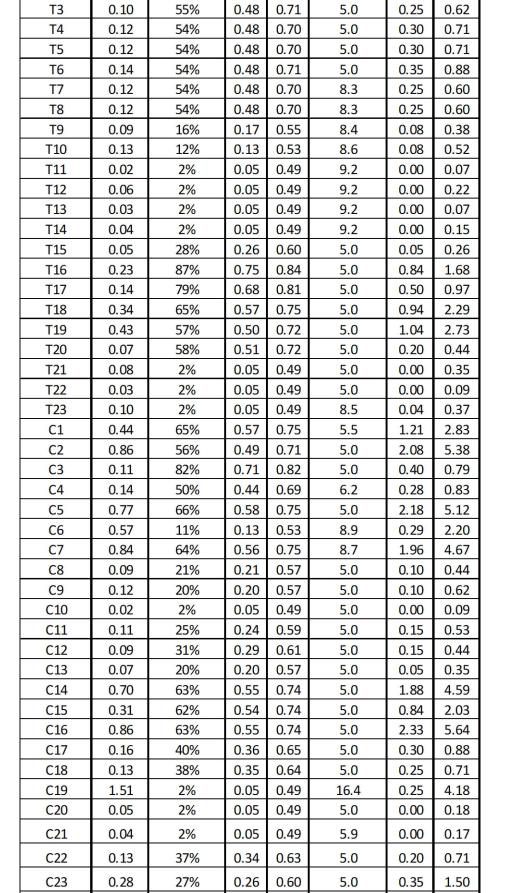
#### ATTACHMENT D

#### **REFERENCED MATERIAL**









#### ATTACHMENT E

#### DRAINAGE MAPS



# **LYRIC CONDOS FILING NO. 1**

|              | DESIGN POINT TABLE |                              |              |       |           |
|--------------|--------------------|------------------------------|--------------|-------|-----------|
| Design       | Basin              | Basin Direct Flow Cumulative |              |       |           |
| Point        | 61                 | Q5                           | Q100         | Q5    | Q100      |
| 1<br>2       | C1<br>C2           | 1.21<br>2.08                 | 2.83<br>5.38 |       |           |
| 3            | C2                 | 0.40                         | 0.79         |       |           |
| 2.1          |                    |                              |              | 3.62  | 8.69      |
| 4            | C4                 | 0.28                         | 0.83         |       |           |
| 4.1          |                    |                              |              | 3.77  | 9.22      |
| 24<br>24.1   | C4                 | 2.62                         | 6.09         | 6.23  | <br>14.94 |
| 21           | C4                 | 0.00                         | 0.17         |       |           |
| 21.1         |                    |                              |              | 6.23  | 15.10     |
| 22           | C4                 | 0.20                         | 0.71         |       |           |
| 22.1<br>23   | <br>C4             | 0.35                         | <br>1.50     | 6.42  | 15.77     |
| 23.1         |                    |                              | 1.50         | 6.74  | <br>17.18 |
| 5            | C5                 | 2.18                         | 5.12         |       |           |
| 7            | <b>C7</b>          | 1.96                         | 4.67         |       |           |
| 7.1<br>14    | <br>C14            | <br>1.99                     | <br>6.37     | 9.71  | 22.71     |
| 14           | C14<br>C15         | 0.84                         | 2.03         |       |           |
| 15.1         |                    |                              |              | 2.85  | 7.30      |
| 15.2         |                    |                              |              | 12.11 | 30.01     |
| 20           | C20                | 0.00                         | 0.18         |       |           |
| 16<br>16.1   | C16                | 2.33                         | 5.64         | 2.33  | 5.82      |
| 16.1         |                    |                              |              | 14.06 | 34.90     |
| 6            | C6                 | 0.29                         | 2.20         |       |           |
| 8            | C8                 | 0.10                         | 0.44         |       |           |
| 8.1<br>9     | <br>C9             |                              |              | 0.37  | 2.57      |
| 9.1          |                    | 0.10                         | 0.62         | 0.45  | 3.08      |
| 10           | C10                | 0.00                         | 0.09         |       |           |
| 10.1         |                    |                              |              | 0.45  | 3.16      |
| 11           | C11                | 0.15                         | 0.53         |       |           |
| 11.1<br>12   | <br>C12            | 0.15                         | <br>0.44     | 0.58  | 3.60      |
| 12.1         |                    |                              |              | 0.70  | 3.96      |
| 13           | C13                | 0.05                         | 0.35         |       |           |
| 13.1         |                    |                              |              | 0.74  | 4.26      |
| 17           | C17                | 0.30                         | 0.88         |       |           |
| 18<br>18.1   | C18                | 0.25                         | 0.71         | 0.54  | 1.59      |
| 18.2         |                    |                              |              | 15.12 | 40.15     |
| 19           | C19                | 0.25                         | 4.18         |       |           |
| 19.1         |                    |                              |              | 11.93 | 35.09     |
| 103          | <b>T</b> 3         | 0.25                         | 0.62         |       |           |
| 109          | Т9                 | 0.08                         | 0.38         |       |           |
| 109.1        |                    |                              |              | 0.30  | 0.90      |
| 104          | <b>T</b> 4         | 0.30                         | 0.71         |       |           |
| 110          | T10                | 0.08                         | 0.52         |       |           |
| 110.1        |                    |                              |              | 0.63  | 2.01      |
| 105          | T5                 | 0.30                         | 0.71         |       |           |
| 111          | T11                | 0.00                         | 0.07         |       |           |
| 111.1        |                    |                              |              | 0.86  | 2.61      |
| 101          | T1                 | 2.67                         | 6.70         |       |           |
| 106          | T6                 | 0.35                         | 0.88         |       |           |
| 106.1        |                    |                              |              | 2.09  | 3.81      |
| 112          | T12                | 0.00                         | 0.22         |       |           |
| 112.1        |                    |                              |              | 2.58  | 5.96      |
| 107          | T7                 | 0.25                         | 0.60         |       |           |
| 113          | T13                | 0.00                         | 0.07         |       |           |
| 113.1<br>108 | <br>T8             | 0.25                         | <br>0.60     | 2.82  | 6.62      |
| 108          | T14                | 0.25                         | 0.60         |       |           |
| 114.1        |                    |                              |              | 3.07  | 7.34      |
| 122          | T22                | 0.00                         | 0.09         |       |           |
| 115 1        | T15                | 0.05                         | 0.26         | 0.05  |           |
| 115.1<br>121 | <br>T21            | 0.00                         | 0.35         | 0.05  | 0.35      |
| 116          | T16                | 0.84                         | 1.68         |       |           |
| 116.1        |                    |                              |              | 0.84  | 2.03      |
| 116.2        | <br>T17            |                              |              | 0.89  | 2.38      |
| 117<br>117.1 | T17                | 0.50                         | 0.97         | 1.39  | 3.35      |
| 117.1        | T18                | 0.94                         | 2.29         |       | 5.55      |
| 118.1        |                    |                              |              | 2.33  | 5.64      |
| 118.2        |                    |                              |              | 4.99  | 11.99     |
| 102 1        | T2                 | 5.09                         | 13.92        |       |           |
| 102.1<br>119 | <br>T19            | 1.04                         | 2.73         | 8.85  | 18.72     |
| 123          | T23                | 0.04                         | 0.37         |       |           |
| 120          | T20                | 0.60                         | 6.19         |       |           |
|              |                    |                              |              | 10.24 | 26.43     |



**BASIN SUMMARY TABLE** 

0.51

0.54

C<sub>100</sub>

0.72

0.74

 $Q_5$ 

(cfs)

4.16

tc

(min)

5.0

5.0

Q100

(cfs)

10.14

2.67 6.70

2.62 6.09

0.05 0.50

0.10 1.06

Percent

mpervious

57%

61%

Tributary

Sub-basi

T1

T2

Area

1.06

1.57

#### LEGEND:

C24

01

02

0.91

0.13

0.24

PROPOSED STORM SEWER DRAINAGE BASIN Α HIGH POINT LOW POINT  $\leq$ 

67%

2%

5%

0.58

O3 0.07 2% 0.05 0.49 5.0 0.00 0.26

0.76

0.05 0.49

0.08 0.50

5.0

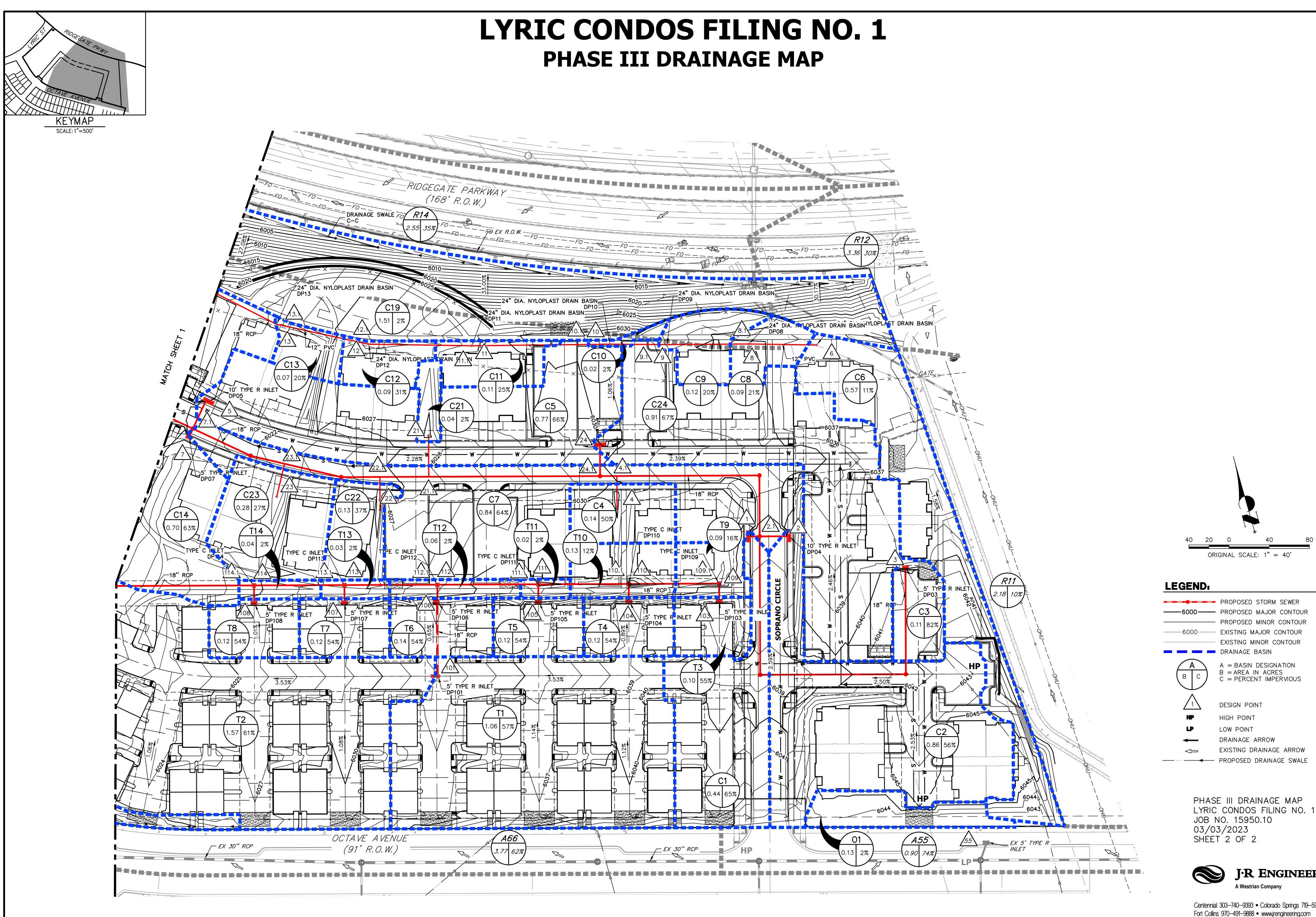
6.3

5.0

- PROPOSED MINOR CONTOUR -6000 ----- EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR

A = BASIN DESIGNATION B = AREA IN ACRES C = PERCENT IMPERVIOUS

DESIGN POINT DRAINAGE ARROW EXISTING DRAINAGE ARROW ------ PROPOSED DRAINAGE SWALE


> PHASE III DRAINAGE MAP LYRIC CONDOS FILING NO. 1 JOB NO. 15950.10 03/03/2023 SHEET 1 OF 2



J·R ENGINEERING A Westrian Company

40 20 0 40 80 ORIGINAL SCALE: 1'' = 40'

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com



# J·R ENGINEERING

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com