

December 29th, 2022

Mr. Jacob James PE, CFM City Engineer **City of Lone Tree Public Works** 9220 Kimmer Drive Lone Tree, CO 80124

Re: Lyric Condos at Ridgegate Filing 1 – Drainage Compliance Letter

Dear Mr. James:

Please accept this letter as verification of drainage compliance for Lyric Condos at Ridgegate Filing 1, located in a portion of Section 14, Section 22, Section 23, and Section 24, Township 6 South, Range 67 West of the Sixth Principal Meridian, City of Lone Tree, Douglas County, Colorado. Ridgegate Parkway bounds the site to the north, an existing drainage swale bounds the site to the east, Lyric Street bounds the site to the west, and Octave Avenue bounds the site to the south. A vicinity map for the project is included in the Appendix to this letter.

Currently, the project site is vacant. The site generally slopes northwest from the high point southeast of the proposed Lyric Condos development, with slopes ranging between 0.5% to 5%. This project consists of the development of multi-family lots with public roadways. Final design of Lyric Condos will include storm sewer, sanitary sewer and water line. Lyric Condos consists of approximately 14.41 acres.

The purpose of this letter is to demonstrate that the proposed project conforms to the established drainage patterns and criteria set forth in the previously approved Phase III Drainage Report for Ridgegate Southwest Village Filing 1. The governing master report is the Approved *Phase III Drainage Report for Ridgegate Southwest Village Filing 1* by JR Engineering, LLC, Addendum #1 revised September 28, 2021. The referenced information from the governing master report is included in the Appendix of the report.

The site is tributary to the Happy Canyon floodplain as defined by the FEMA Flood Insurance Rate Maps, FIRM #08035C0063H and effective September 4, 2020, and is included in the Appendix. The site lies entirely within Zone X which is the flood insurance rate zone that corresponds to areas outside the one percent annual chance floodplain.

The Natural Resources Conservation Service Web Soil Survey in the approved drainage reports identify the soil on the property as Hydrologic Soils Group C and D. Hydrologic Group C soils are described as "soils that have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine structure." Hydrologic Group D soils are described as "soils that have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface and shallow soils over nearly impervious material." A soils map has been included in the Attachments.

The Lyric Condos site is located within Basin F4 (66% impervious, 5.58 acres) and Basin F5 (75% impervious, 7.54 acres) as defined in the Phase III Drainage Report for Ridgegate Southwest Village Filing 1, see Appendix D. In the proposed condition, the site will consist of 42 sub-basins. Sub-Basins C1-C20 represent Basin F5 from the previously approved drainage report. Captured stormwater runoff from Sub-Basins C1-C20 will generally be routed northwest and discharge from the Lyric Condos site at an existing 36-inch RCP Stub. Runoff from Sub-Basins C1-C20 will then be conveyed via existing storm sewer in Ridgegate Parkway to an existing quality pond on the north side of Ridegate Parkway (described as Pond R in the Filing 1 report) where water quality will be provided. Captured stormwater runoff from Sub-Basins T1-T22 will generally route south and discharge from the Lyric Condos site at an existing 24-inch RCP stub. Sub-Basins O1-O3 represent on-site areas that will drain offsite and be captured by existing infrastructure. Runoff from Sub-Basins T1-T22 as well as Sub-Basins O1-O3 will be conveyed via existing storm sewer in Octave

Avenue and Lyric Street to an existing EURV Pond A in the regional park northwest of the Lyric/Octave intersection where water quality will be provided. 100-yr flood control volume will be provided by on-line peak shaving ponds in Happy Canyon Creek.

Table 1: Approved Filing 1 Imperviousness vs. Proposed Imperviousness

Approved Filling I Das	shister rieviously Ap	proveu Dramage Repu	лι		
Basin ID	Percent Impervious	Area Onsite	Impervious Area		
EX-Basin F4	66%	5.58 Acres	3.68 Acres		
Ex-Basin F5	75%	7.54 Acres	5.66 Acres		
Total	<mark>70.5%</mark>	13.12 Acres	9.34 Acres		

Approved Filing 1 Basins Per Previously Approved Drainage Report

Proposed Basins Onsite

Basin	Percent Impervious	Area Onsite (ac)	Impervious Area (ac)	
T1	57.4%	1.37	0.79	
T2	63.1%	1.6	1.01	
T3	54.7%	0.1	0.05	
T4	54.0%	0.12	0.06	
T5	54.0%	0.12	0.06	
T6	54.3%	0.14	0.08	
T7	54.0%	0.12	0.06	
T8	54.0%	0.12	0.06	
Т9	2.0%	0.03	0.00	
T10	2.0%	0.04	0.00 0.00 0.00	
T11	2.0%	0.02		
T12	2.0%	0.06		
T13	2.0%	0.03	0.00	
T14	2.0%	0.04	0.00	
T15	27.8%	0.05	0.01	
T16	87.2%	0.23	0.20	
T17	79.0%	0.14	0.11	
T18	65.1%	0.34	0.22	
T19	56.6%	0.43	0.24	
T20	58.0%	0.07	0.04	
T21	2.0%	0.08	0.00	
T22	2.0%	0.03	0.00	
Total Basin T	57.2%	5.28	3.02	

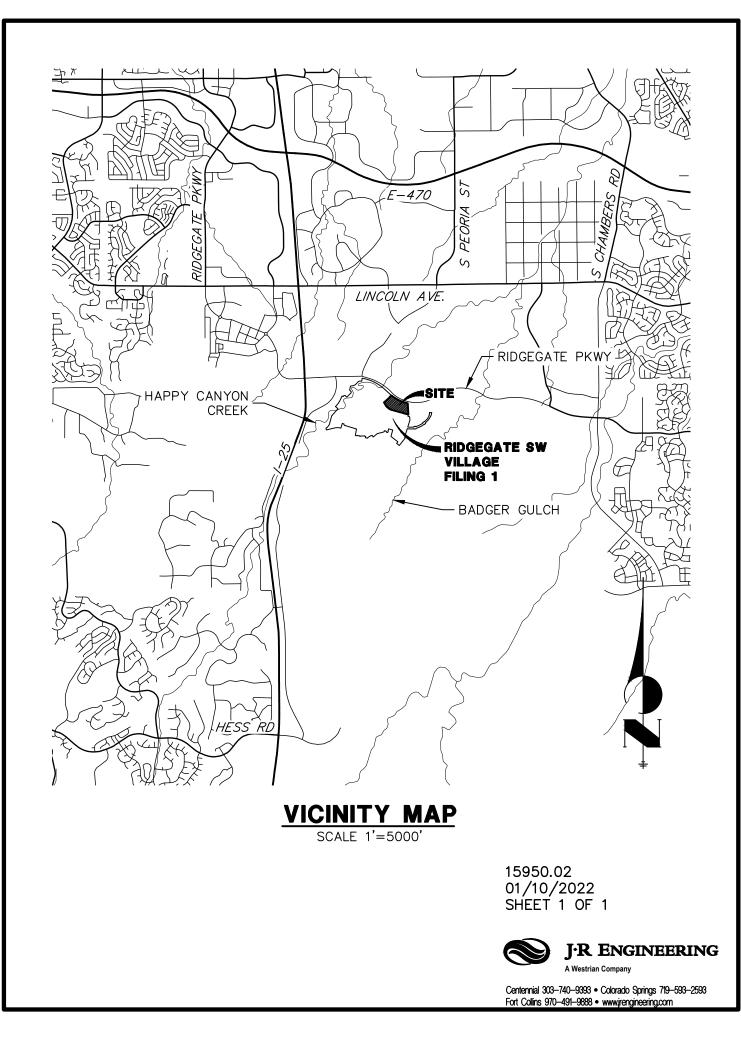
	Percent	Area	Impervio	
Basin		Onsite	us Area	
	Impervious	(ac)	(ac)	
C1	100.0%	0.05	0.05	
C2	51.9%	0.15	0.08	
C3	82.2%	0.11	0.09	
C4	73.2%	0.66	0.48	
C5	69.5%	1.49	1.04	
C6	13.7%	0.66	0.09	
C7	63.4%	1.54	0.98	
C8	23.5%	0.1	0.02	
C9	20.8%	0.16	0.03	
C10	2.0%	0.02	0.00	
C11	34.3%	0.2	0.07	
C12	34.9%	0.17	0.06	
C13	20.4%	0.14	0.03	
C14	49.9%	0.44	0.22	
C15	63.5%	0.3	0.19	
C16	65.1%	1.09	0.71	
C17	39.6%	0.16	0.06	
C18	38.4%	0.13	0.05	
C19	2.0%	1.51	0.03	
C20	2.0%	0.05		
Total Basin C	46.9%	9.13	4.28	

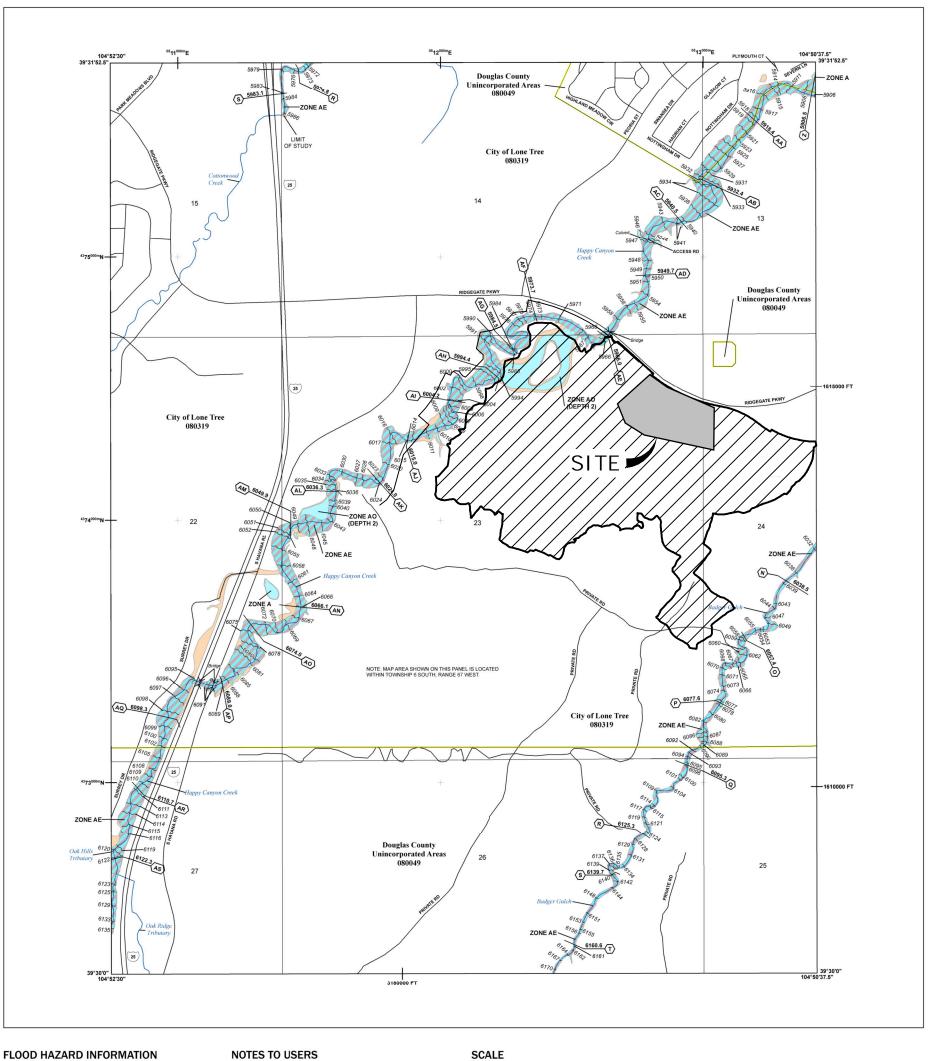
Basin	Percent	Area Onsite	Impervious
Dasiii	Impervious	(ac)	Area (ac)
TOTAL	50.7%	14.41	7.30

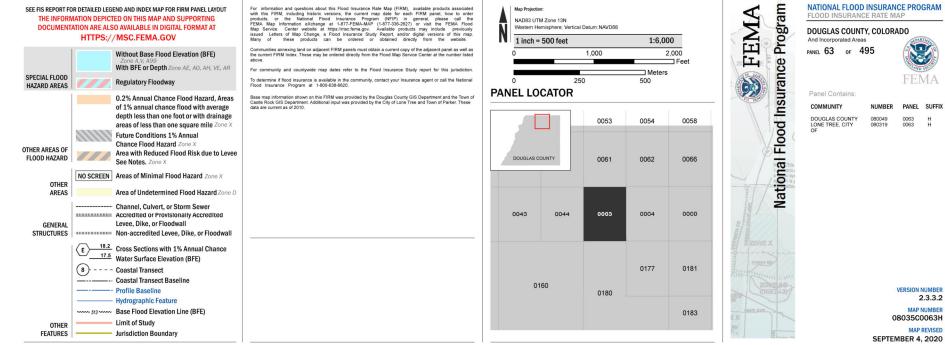
As shown in Table 1, the historic impervious area assumed from the Phase III Drainage Report for Ridgegate Southwest Village Filing 1 is 9.34 acres and the proposed impervious area is 7.30 acres. As a result, the decrease in impervious area will not affect the previously approved Filing 1 Phase III Drainage Plan and thus this project is in conformance with the Filing 1 Phase III Drainage Report and City of Lone Tree Drainage Criteria.

Sincerely, JR ENGINEERING, LLC

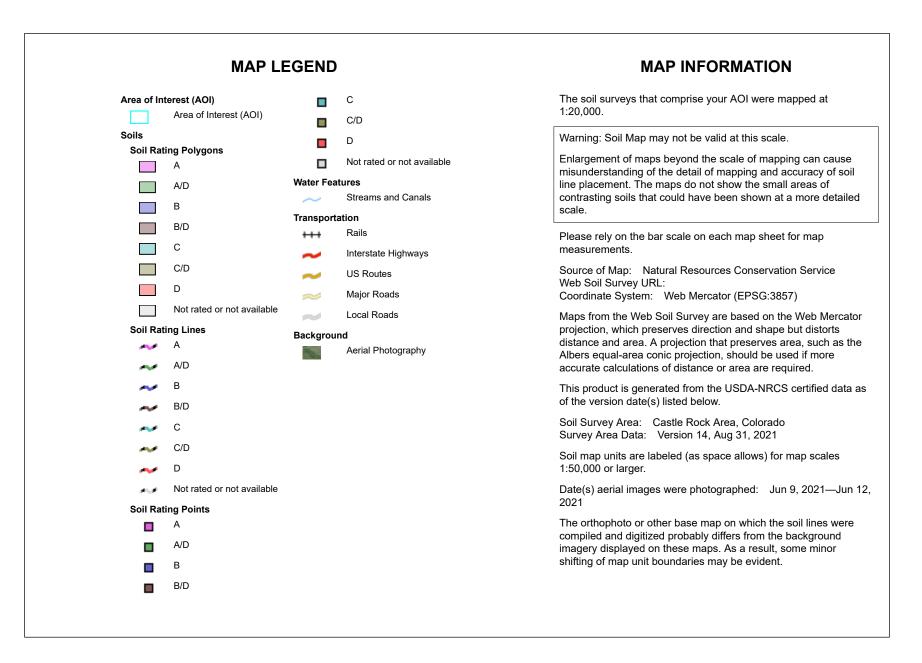
Kurtis W. Williams, P.E.


Attachments:


- Attachment A
 - Vicinity Map
 - FEMA Flood Insurance Rate Map
 - NRCS Soils Map
- Attachment B
 - o Hydrologic Calculations
- Attachment C
 - o Hydraulic Calculations
- Attachment D
 - o References-Previously Approved Phase III Drainage Report, Addendum #1, Sheet 4
- Attachment E
 - Proposed Drainage Plan


ATTACHMENT A

FIGURES


1-877-FE

PROJECT NO.: 15950.10

Natural Resources Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
En	Englewood clay loam	С	13.5	44.7%
Fu	Fondis-Kutch association	С	2.8	9.3%
NsE	Newlin-Satanta complex, 5 to 20 percent slopes	В	1.1	3.6%
RmE	Renohill-Buick complex, 5 to 25 percent slopes	D	12.8	42.5%
Totals for Area of Intere	est		30.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

ATTACHMENT B

HYDROLOGIC CALCULATIONS

Location: City of Lone Tree	_

Calculated By: MJP Date: 12/27/2022

Project Name: Ridgegate Filing No. 1 Project No.: 15950.10

		BASIN SU	MM	ARY T	ABLE		
Tributary	Area	Percent			t _c	Q ₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
T1	1.37	57%	0.51	0.72	5.0	3.42	8.73
T2	1.60	63%	0.55	0.74	5.2	4.32	10.40
T3	0.10	55%	0.48	0.71	5.0	0.25	0.62
Τ4	0.12	54%	0.48	0.70	5.0	0.30	0.71
T5	0.12	54%	0.48	0.70	5.0	0.30	0.71
T6	0.14	54%	0.48	0.71	5.0	0.35	0.88
Τ7	0.12	54%	0.48	0.70	8.3	0.25	0.60
Т8	0.12	54%	0.48	0.70	8.3	0.25	0.60
Т9	0.03	2%	0.05	0.49	9.2	0.00	0.07
T10	0.04	2%	0.05	0.49	9.2	0.00	0.15
T11	0.02	2%	0.05	0.49	9.2	0.00	0.07
T12	0.06	2%	0.05	0.49	9.2	0.00	0.22
T13	0.03	2%	0.05	0.49	9.2	0.00	0.07
T14	0.04	2%	0.05	0.49	9.2	0.00	0.15
T15	0.05	28%	0.26	0.60	5.0	0.05	0.26
T16	0.23	87%	0.75	0.84	5.0	0.84	1.68
T17	0.14	79%	0.68	0.81	5.0	0.50	0.97
T18	0.34	65%	0.57	0.75	5.0	0.94	2.29
T19	0.43	57%	0.50	0.72	5.0	1.04	2.73
T20	0.07	58%	0.51	0.72	5.0	0.20	0.44
T21	0.08	2%	0.05	0.49	5.0	0.00	0.35
T22	0.03	2%	0.05	0.49	5.0	0.00	0.09
C1	0.05	100%	0.86	0.89	5.0	0.20	0.35
C2	0.15	52%	0.46	0.70	5.0	0.35	0.88
C3	0.11	82%	0.71	0.82	5.0	0.40	0.79
C4	0.66	73%	0.63	0.78	6.3	1.94	4.29
C5	1.49	70%	0.61	0.77	6.6	4.12	9.38
C6	0.66	14%	0.15	0.54	8.8	0.41	2.65
C7	1.54	63%	0.56	0.74	9.5	3.42	8.23
C8	0.10	24%	0.23	0.58	5.0	0.10	0.53
C9	0.16	21%	0.21	0.57	5.0	0.15	0.79
C10	0.02	2%	0.05	0.49	5.0	0.00	0.09
C11	0.20	34%	0.32	0.62	5.0	0.30	1.06
C12	0.17	35%	0.32	0.63	5.0	0.25	0.97
C13	0.14	20%	0.20	0.57	5.0	0.15	0.71
C14	0.44	50%	0.44	0.69	5.0	0.99	2.65
C15	0.30	64%	0.56	0.74	5.0	0.84	1.94
C16	1.09	65%	0.57	0.75	5.0	3.07	7.23
C17	0.16	40%	0.36	0.65	5.0	0.30	0.88
C18	0.13	38%	0.35	0.64	5.0	0.25	0.71
C19	1.51	2%	0.05	0.49	16.4	0.25	4.18
C20	0.05	2%	0.05	0.49	5.0	0.00	0.18
01	0.14	16%	0.17	0.55	5.7	0.10	0.68
02	0.32	4%	0.07	0.50	5.0	0.10	1.41
03	0.07	2%	0.05	0.49	5.0	0.00	0.26

Subdivision: Lyric Condos

Calculated By: MJP

Date:

12/27/2022

Location: City of Lone Tree

Project Name: Ridgegate Filing No. 1

Project No.: 15950.10

DESIGN POINT TABLE										
Design		Direct	t Flow	Cumulat	ive Flow					
Point	Basin	Q5	Q100	Q5	Q100					
1	C1	0.20	0.35							
2	C2	0.35	0.88							
2.1				0.54	1.23					
3	C3	0.40	0.79							
3.1				0.94	2.03					
4	C4	1.94	4.29							
4.1				2.82	6.19					
5	C5	4.12	9.38							
7	C7	3.42	8.23							
7.1				8.70	15.90					
14	C14	1.78	6.89							
15	C15	0.84	1.94							
15.1				2.80	7.96					
15.2				10.97	23.86					
20	C20	0.00	0.18							
16	C16	3.07	9.17							
16.1				3.07	9.51					
16.2				13.47	31.58					
6	C6	0.41	2.65							
8	C8	0.10	0.53							
8.1				0.50	3.10					
9	C9	0.15	0.79							
9.1				0.62	3.76					
10	C10	0.00	0.09							
10.1				0.62	3.83					
11	C11	0.30	1.06							
11.1				0.87	4.72					
12	C12	0.25	0.97							
12.1				1.08	5.53					
13	C13	0.15	0.71							
13.1				1.20	6.12					
17	C17	0.30	0.88							
18	C18	0.25	0.71							
18.1				0.54	1.59					
18.2				15.08	38.81					

Subdivision: Lyric Condos

Calculated By: MJP

Date:

12/27/2022

Location: City of Lone Tree

Project Name: Ridgegate Filing No. 1

Project No.: 15950.10

DESIGN POINT TABLE										
Design		Direct	t Flow	Cumulat	ive Flow					
Point	Basin	Q5	Q100	Q5	Q100					
19	C19	0.25	4.18							
19.1				12.18	34.80					
103	T3	0.25	0.62							
109	T9	0.00	0.07							
109.1				0.20	0.58					
104	T4	0.30	0.71							
110	T10	0.00	0.15							
110.1				0.45	1.31					
105	T5	0.30	0.71							
111	T11	0.00	0.07							
111.1				0.69	1.96					
101	T1	3.42	8.73							
106	T6	0.35	0.88							
106.1				2.34	4.27					
112	T12	0.00	0.22							
112.1				2.62	5.70					
107	Τ7	0.25	0.60							
113	T13	0.00	0.07							
113.1				2.87	6.35					
108	T8	0.25	0.60							
114	T14	0.00	0.15							
114.1				3.11	7.08					
122	T22	0.00	0.09							
115	T15	0.05	0.26							
115.1				0.05	0.35					
121	T21	0.00	0.35							
116	T16	0.84	1.68							
116.1				0.84	2.03					
116.2				0.89	2.38					
117	T17	0.50	0.97							
117.1				1.39	3.35					
118	T18	0.94	2.29							

Subdivision: Lyric Condos

Calculated By: MJP 12/27/2022

Date:

Location: City of Lone Tree Project Name: Ridgegate Filing No. 1

Project No.: 15950.10

DESIGN POINT TABLE													
Design	Basin	Direct	t Flow	Cumulative Flow									
Point	Dasiii	Q5	Q100	Q5	Q100								
118.1				2.33	5.64								
118.2				5.03	11.72								
102	T2	5.74	15.74										
102.1				9.30	19.03								
119	T19	1.04	2.73										
120	T20	0.79	7.33										
120.1				10.81	27.37								

COMPOSITE % IMPERVIOUS CALCULATIONS

Subdivision: Ridgegate

Location: Douglas County - Zone 1

Project Name: Lyric Condos

Project No.: 15950.10 Calculated By: MJP

Checked By:

Date: 12/27/22

		Single Family Roads/Pond Residential/Commercial		Single Family Residential/Commercial			Open Space/Park			Basins Total	
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
T1	1.37	45%	0.42	13.8%	100%	0.59	43.1%	2%	0.36	0.5%	57.4%
T2	1.60	45%	0.45	12.7%	100%	0.80	50.0%	2%	0.35	0.4%	63.1%
T3	0.10	45%	0.05	20.3%	100%	0.03	34.0%	2%	0.02	0.4%	54.7%
T4	0.12	45%	0.05	20.3%	100%	0.04	33.3%	2%	0.03	0.4%	54.0%
T5	0.12	45%	0.05	20.3%	100%	0.04	33.3%	2%	0.03	0.4%	54.0%
T6	0.14	45%	0.06	20.3%	100%	0.05	33.6%	2%	0.03	0.4%	54.3%
T7	0.12	45%	0.05	20.3%	100%	0.04	33.3%	2%	0.03	0.4%	54.0%
Т8	0.12	45%	0.05	20.3%	100%	0.04	33.3%	2%	0.03	0.4%	54.0%
Т9	0.03	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.03	2.0%	2.0%
T10	0.04	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.04	2.0%	2.0%
T11	0.02	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.02	2.0%	2.0%
T12	0.06	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.06	2.0%	2.0%
T13	0.03	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.03	2.0%	2.0%
T14	0.04	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.04	2.0%	2.0%
T15	0.05	45%	0.03	27.0%	100%	0.00	0.0%	2%	0.02	0.8%	27.8%
T16	0.23	45%	0.00	0.0%	100%	0.20	87.0%	2%	0.03	0.3%	87.2%
T17	0.14	45%	0.00	0.0%	100%	0.11	78.6%	2%	0.03	0.4%	79.0%
T18	0.34	45%	0.18	23.8%	100%	0.14	41.2%	2%	0.02	0.1%	65.1%
T19	0.43	45%	0.09	9.4%	100%	0.20	46.5%	2%	0.14	0.7%	56.6%
T20	0.07	45%	0.00	0.0%	100%	0.04	57.1%	2%	0.03	0.9%	58.0%
T21	0.08	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.08	2.0%	2.0%
T22	0.03	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.03	2.0%	2.0%
TOTAL	5.28										57.2%

	Single Family Residential/Commercial			Roads/Ponc	I	Ор	en Space/P	ark	Basins Total		
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
C1	0.05	45%	0.00	0.0%	100%	0.05	100.0%	2%	0.00	0.0%	100.0%
C2	0.15	45%	0.06	18.0%	100%	0.05	33.3%	2%	0.04	0.5%	51.9%
C3	0.11	45%	0.00	0.0%	100%	0.09	81.8%	2%	0.02	0.4%	82.2%
C4	0.66	45%	0.25	17.0%	100%	0.37	56.1%	2%	0.04	0.1%	73.2%
C5	1.49	45%	0.06	1.8%	100%	1.00	67.1%	2%	0.43	0.6%	69.5%
C6	0.66	45%	0.18	12.3%	100%	0.00	0.0%	2%	0.48	1.5%	13.7%
C7	1.54	45%	0.42	12.3%	100%	0.78	50.6%	2%	0.34	0.4%	63.4%
C8	0.10	45%	0.05	22.5%	100%	0.00	0.0%	2%	0.05	1.0%	23.5%
С9	0.16	45%	0.07	19.7%	100%	0.00	0.0%	2%	0.09	1.1%	20.8%
C10	0.02	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.02	2.0%	2.0%
C11	0.20	45%	0.15	33.8%	100%	0.00	0.0%	2%	0.05	0.5%	34.3%
C12	0.17	45%	0.13	34.4%	100%	0.00	0.0%	2%	0.04	0.5%	34.9%
C13	0.14	45%	0.06	19.3%	100%	0.00	0.0%	2%	0.08	1.1%	20.4%
C14	0.44	45%	0.08	8.2%	100%	0.18	40.9%	2%	0.18	0.8%	49.9%
C15	0.30	45%	0.11	16.5%	100%	0.14	46.7%	2%	0.05	0.3%	63.5%
C16	1.09	45%	0.30	12.4%	100%	0.57	52.3%	2%	0.22	0.4%	65.1%
C17	0.16	45%	0.14	39.4%	100%	0.00	0.0%	2%	0.02	0.3%	39.6%
C18	0.13	45%	0.11	38.1%	100%	0.00	0.0%	2%	0.02	0.3%	38.4%
C19	1.51	45%	0.00	0.0%	100%	0.00	0.0%	2%	1.51	2.0%	2.0%
C20	0.05	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.05	2.0%	2.0%
TOTAL	9.13										46.9%
01	0.14	45%	0.00	0.0%	100%	0.02	14.3%	2%	0.12	1.7%	16.0%
02	0.32	45%	0.00	0.0%	100%	0.01	2.2%	2%	0.31	2.0%	4.1%
03	0.07	45%	0.00	0.0%	100%	0.00	0.0%	2%	0.07	2.0%	2.0%
TOTAL	0.53										7.0%

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Ridgegate

Location: Douglas County - Zone 1

Project Name: Lyric Condos

Project No.: 15950.10 Calculated By: MJP

Checked By:

Date: 12/27/22

		Basins Total	Hydro	ologic Soil	Group	Hydro	ologic Soil (Group	Mir	nor Coeffici	ents	Major	Coefficien	ts		
Basin ID	Total Area (ac)	Weighted % Imp.	Area A (ac)	Area B (ac)	Area C/D (ac)	% A (ac)	% B (ac)	% C/D (ac)	C _{5,A}	C _{5,B}	C _{5,C/D}	C _{100,A}	C _{100,B}	C _{100,C/D}	Basins Total Weighted C_5	Basins Total Weighted C_{100}
T1	1.37	57.4%	0.00	0.00	1.37	0%	0%	100%	0.42	0.47	0.51	0.56	0.70	0.72	0.51	0.72
T2	1.60	63.1%	0.00	0.00	1.60	0%	0%	100%	0.48	0.52	0.55	0.60	0.72	0.74	0.55	0.74
Т3	0.10	54.7%	0.00	0.00	0.10	0%	0%	100%	0.40	0.45	0.48	0.54	0.68	0.71	0.48	0.71
Τ4	0.12	54.0%	0.00	0.00	0.12	0%	0%	100%	0.39	0.44	0.48	0.53	0.68	0.70	0.48	0.70
T5	0.12	54.0%	0.00	0.00	0.12	0%	0%	100%	0.39	0.44	0.48	0.53	0.68	0.70	0.48	0.70
T6	0.14	54.3%	0.00	0.00	0.14	0%	0%	100%	0.39	0.44	0.48	0.53	0.68	0.71	0.48	0.71
Τ7	0.12	54.0%	0.00	0.00	0.12	0%	0%	100%	0.39	0.44	0.48	0.53	0.68	0.70	0.48	0.70
Т8	0.12	54.0%	0.00	0.00	0.12	0%	0%	100%	0.39	0.44	0.48	0.53	0.68	0.70	0.48	0.70
Т9	0.03	2.0%	0.00	0.00	0.03	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
T10	0.04	2.0%	0.00	0.00	0.04	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
T11	0.02	2.0%	0.00	0.00	0.02	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
T12	0.06	2.0%	0.00	0.00	0.06	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
T13	0.03	2.0%	0.00	0.00	0.03	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
T14	0.04	2.0%	0.00	0.00	0.04	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
T15	0.05	27.8%	0.00	0.00	0.05	0%	0%	100%	0.17	0.21	0.26	0.33	0.56	0.60	0.26	0.60
T16	0.23	87.2%	0.00	0.00	0.23	0%	0%	100%	0.72	0.74	0.75	0.79	0.84	0.84	0.75	0.84
T17	0.14	79.0%	0.00	0.00	0.14	0%	0%	100%	0.64	0.67	0.68	0.73	0.80	0.81	0.68	0.81
T18	0.34	65.1%	0.00	0.00	0.34	0%	0%	100%	0.50	0.54	0.57	0.62	0.73	0.75	0.57	0.75
T19	0.43	56.6%	0.00	0.00	0.43	0%	0%	100%	0.42	0.46	0.50	0.55	0.69	0.72	0.50	0.72
T20	0.07	58.0%	0.00	0.00	0.07	0%	0%	100%	0.43	0.47	0.51	0.56	0.70	0.72	0.51	0.72
T21	0.08	2.0%	0.00	0.00	0.08	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
T22	0.03	2.0%	0.00	0.00	0.03	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
C1	0.05	100.0%	0.00	0.00	0.05	0%	0%	100%	0.86	0.86	0.86	0.89	0.90	0.89	0.86	0.89
C2	0.15	51.9%	0.00	0.00	0.15	0%	0%	100%	0.37	0.42	0.46	0.51	0.67	0.70	0.46	0.70
C3	0.11	82.2%	0.00	0.00	0.11	0%	0%	100%	0.67	0.69	0.71	0.75	0.81	0.82	0.71	0.82
C4	0.66	73.2%	0.00	0.00	0.66	0%	0%	100%	0.58	0.61	0.63	0.68	0.77	0.78	0.63	0.78
C5	1.49	69.5%	0.00	0.00	1.49	0%	0%	100%	0.54	0.58	0.61	0.65	0.75	0.77	0.61	0.77
C6	0.66	13.7%	0.00	0.00	0.66	0%	0%	100%	0.07	0.10	0.15	0.22	0.49	0.54	0.15	0.54

		Basins Total	Hydro	ologic Soil (Group	Hydro	ologic Soil (Group	Mir	nor Coeffici	ents	Major	Coefficien	ts		
Basin ID	Total Area (ac)	Weighted % Imp.	Area A (ac)	Area B (ac)	Area C/D (ac)	% A (ac)	% B (ac)	% C/D (ac)	C _{5,A}	C _{5,B}	C _{5,C/D}	C _{100,A}	C _{100,B}	C _{100,C/D}	Basins Total Weighted C_5	Basins Total Weighted C ₁₀₀
C7	1.54	63.4%	0.00	0.00	1.54	0%	0%	100%	0.48	0.52	0.56	0.60	0.72	0.74	0.56	0.74
C8	0.10	23.5%	0.00	0.00	0.10	0%	0%	100%	0.14	0.18	0.23	0.29	0.54	0.58	0.23	0.58
С9	0.16	20.8%	0.00	0.00	0.16	0%	0%	100%	0.12	0.16	0.21	0.27	0.52	0.57	0.21	0.57
C10	0.02	2.0%	0.00	0.00	0.02	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
C11	0.20	34.3%	0.00	0.00	0.20	0%	0%	100%	0.22	0.27	0.32	0.38	0.59	0.62	0.32	0.62
C12	0.17	34.9%	0.00	0.00	0.17	0%	0%	100%	0.22	0.27	0.32	0.38	0.59	0.63	0.32	0.63
C13	0.14	20.4%	0.00	0.00	0.14	0%	0%	100%	0.11	0.15	0.20	0.27	0.52	0.57	0.20	0.57
C14	0.44	49.9%	0.00	0.00	0.44	0%	0%	100%	0.35	0.40	0.44	0.50	0.66	0.69	0.44	0.69
C15	0.30	63.5%	0.00	0.00	0.30	0%	0%	100%	0.48	0.52	0.56	0.61	0.72	0.74	0.56	0.74
C16	1.09	65.1%	0.00	0.00	1.09	0%	0%	100%	0.50	0.54	0.57	0.62	0.73	0.75	0.57	0.75
C17	0.16	39.6%	0.00	0.00	0.16	0%	0%	100%	0.26	0.31	0.36	0.42	0.61	0.65	0.36	0.65
C18	0.13	38.4%	0.00	0.00	0.13	0%	0%	100%	0.25	0.30	0.35	0.41	0.61	0.64	0.35	0.64
C19	1.51	2.0%	0.00	0.00	1.51	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
C20	0.05	2.0%	0.00	0.00	0.05	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
01	0.14	16.0%	0.00	0.00	0.14	0%	0%	100%	0.08	0.12	0.17	0.23	0.50	0.55	0.17	0.55
02	0.32	4.1%	0.00	0.00	0.32	0%	0%	100%	0.01	0.03	0.07	0.14	0.44	0.50	0.07	0.50
03	0.07	2.0%	0.00	0.00	0.07	0%	0%	100%	0.01	0.01	0.05	0.13	0.44	0.49	0.05	0.49
TOTAL	14.94		0.00	0.00	14.94	0%	0%	100%							0.44	0.69

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

NRCS				Storm Ret	turn Period		
Soil Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year
A	C _A = 0.84 <i>i</i> ^{1.302}	C _A = 0.86 <i>i</i> ^{1.276}	C _A = 0.87 <i>i</i> ^{1.232}	$C_A =$ 0.84 <i>i</i> ^{1.124}	C _A = 0.85 <i>i</i> +0.025	C _A = 0.78 <i>i</i> +0.110	C _A = 0.65 <i>i</i> +0.254
В	C _B = 0.84 <i>i</i> ^{1.169}	C _B = 0.86 <i>i</i> ^{1.088}	C _B = 0.81 <i>i</i> +0.057	C _B = 0.63 <i>i</i> +0.249	C _B = 0.56 <i>i</i> +0.328	C _B = 0.47 <i>i</i> +0.426	C _B = 0.37 <i>i</i> +0.536
C/D	Ссъ= 0.83 <i>i</i> ^{1.122}	C _{C/D} = 0.82 <i>i</i> +0.035	C _{CD} = 0.74 <i>i</i> +0.132	C _{CD} = 0.56 <i>i</i> +0.319	C _{CD} = 0.49 <i>i</i> +0.393	C _{CD} = 0.41 <i>i</i> +0.484	C _{CD} = 0.32 <i>i</i> +0.588

Where:

i = % imperviousness (expressed as a decimal)

 C_{4} = Runoff coefficient for Natural Resources Conservation Service (NRCS) HSG A soils

 C_B = Runoff coefficient for NRCS HSG B soils

 $C_{C/D}$ = Runoff coefficient for NRCS HSG C and D soils.

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Ridgegate

Location: Douglas County - Zone 1

Project Name:	Lyric Condos
Project No.:	15950.10
Calculated By:	MJP
Checked By:	
Date:	12/27/22

		SUB-E	BASIN			INITI	AL/OVER	AND]	RAVEL TIM	1E			tc CHECK		
		DA	TA				(T _i)				(T _t)			(L	JRBANIZED BA	(SINS)	FINAL
BASIN ID	D.A. (ac)	Hydrologic Soils Group	Impervious (%)	C_5	C ₁₀₀	<i>L</i> (ft)	S _o (%)	t _i (min)	L _t (ft)	S _t (%)	К	VEL. (ft/s)	t _t (min)	COMP. t _c (min)	TOTAL LENGTH (ft)	Urbanized t _c (min)	t _c (min)
T1	1.37	С	57%	0.51	0.72	50	33.0%	2.4	326	2.7%	20.0	3.3	1.7	4.0	376.0	18.2	5.0
T2	1.60	С	63%	0.55	0.74	50	33.0%	2.2	583	2.7%	20.0	3.3	3.0	5.2	633.0	18.6	5.2
T3	0.10	С	55%	0.48	0.71	30	33.0%	1.9	65	1.0%	20.0	2.0	0.5	2.5	95.0	17.4	5.0
T4	0.12	С	54%	0.48	0.70	30	33.0%	1.9	65	1.0%	20.0	2.0	0.5	2.5	95.0	17.5	5.0
T5	0.12	С	54%	0.48	0.70	30	33.0%	1.9	65	1.0%	20.0	2.0	0.5	2.5	95.0	17.5	5.0
T6	0.14	С	54%	0.48	0.71	30	33.0%	1.9	65	1.0%	20.0	2.0	0.5	2.5	95.0	17.4	5.0
T7	0.12	С	54%	0.48	0.70	30	0.5%	7.7	65	1.0%	20.0	2.0	0.5	8.3	95.0	17.5	8.3
T8	0.12	С	54%	0.48	0.70	30	0.5%	7.7	65	1.0%	20.0	2.0	0.5	8.3	95.0	17.5	8.3
Т9	0.03	С	2%	0.05	0.49	10	0.5%	7.5	50	0.5%	7.0	0.5	1.7	9.2	60.0	26.9	9.2
T10	0.04	С	2%	0.05	0.49	10	0.5%	7.5	50	0.5%	7.0	0.5	1.7	9.2	60.0	26.9	9.2
T11	0.02	С	2%	0.05	0.49	10	0.5%	7.5	50	0.5%	7.0	0.5	1.7	9.2	60.0	26.9	9.2
T12	0.06	С	2%	0.05	0.49	10	0.5%	7.5	50	0.5%	7.0	0.5	1.7	9.2	60.0	26.9	9.2
T13	0.03	С	2%	0.05	0.49	10	0.5%	7.5	50	0.5%	7.0	0.5	1.7	9.2	60.0	26.9	9.2
T14	0.04	С	2%	0.05	0.49	10	0.5%	7.5	50	0.5%	7.0	0.5	1.7	9.2	60.0	26.9	9.2
T15	0.05	С	28%	0.26	0.60	50	33.0%	3.4	20	0.5%	20.0	1.4	0.2	3.6	70.0	21.6	5.0
T16	0.23	С	87%	0.75	0.84	10	33.0%	0.6	134	0.5%	20.0	1.4	1.6	2.2	144.0	12.7	5.0
T17	0.14	С	79%	0.68	0.81	10	33.0%	0.8	113	2.5%	20.0	3.2	0.6	1.3	123.0	13.2	5.0
T18	0.34	С	65%	0.57	0.75	50	33.0%	2.1	148	2.5%	20.0	3.2	0.8	2.9	198.0	15.8	5.0
T19	0.43	С	57%	0.50	0.72	50	33.0%	2.4	286	2.5%	20.0	3.2	1.5	3.9		18.2	5.0
T20	0.07	С	58%	0.51	0.72	50	33.0%	2.4	286	2.5%	20.0	3.2	1.5	3.9	336.0	17.9	5.0
T21	0.08	С	2%	0.05	0.49	10	25.0%	2.1	150	2.0%	7.0	1.0	2.5				5.0
T22	0.03	С	2%	0.05	0.49	10	25.0%	2.1	41	2.0%	7.0	1.0	0.7	2.8			5.0
C1	0.05	С	100%	0.86	0.89	25	2.0%	1.8	91	2.7%	20.0	3.3	0.5	2.2	116.0	9.4	5.0
C2	0.15	С	52%	0.46	0.70	25	33.0%	1.8	91	2.7%	20.0	3.3	0.5	2.3			5.0
C3	0.11	С	82%	0.71	0.82	50	33.0%	1.6	87	2.3%	20.0	3.0	0.5	2.1		12.5	5.0
C4	0.66	С	73%	0.63	0.78	40	2.0%	4.2	401	2.5%	20.0	3.2	2.1	6.3			6.3
C5	1.49	С	70%	0.61	0.77	40	33.0%	1.8	852	2.2%	20.0	3.0	4.8	6.6	892.0	19.3	6.
C6	0.66	С	14%	0.15	0.54	55	33.0%	4.0	613	2.0%	15.0	2.1	4.8				8.
C7	1.54	С	63%	0.56	0.74	45	2.0%	5.3	765	2.2%	20.0	3.0	4.3	9.5	810.0	20.0	9.

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Ridgegate

Location: Douglas County - Zone 1

Project Name:	Lyric Condos
Project No.:	15950.10
Calculated By:	MJP
Checked By:	
Date:	12/27/22

		SUB-E	BASIN			INITI	AL/OVER	LAND		1	RAVEL TIN	1E			tc CHECK		
		DA	TA				(T _i)				(T _t)			(U	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
C8	0.10	С	24%	0.23	0.58	45	33.0%	3.3	65	1.0%	20.0	2.0	0.5	3.9	110.0	22.9	5.0
С9	0.16	С	21%	0.21	0.57	45	33.0%	3.4	98	1.0%	20.0	2.0	0.8	4.2	143.0	23.8	5.0
C10	0.02	С	2%	0.05	0.49	20	33.0%	2.7	65	1.0%	20.0	2.0	0.5	3.2	85.0	26.8	5.0
C11	0.20	С	34%	0.32	0.62	40	33.0%	2.8	70	1.0%	20.0	2.0	0.6	3.4	110.0	21.0	5.0
C12	0.17	С	35%	0.32	0.63	40	33.0%	2.8	70	1.0%	20.0	2.0	0.6	3.4	110.0	20.9	5.0
C13	0.14	С	20%	0.20	0.57	40	33.0%	3.2	70	1.0%	20.0	2.0	0.6	3.8	110.0	23.5	5.0
C14	0.44	С	50%	0.44	0.69	55	33.0%	2.8	276	2.3%	20.0	3.0	1.5	4.3	331.0	19.4	5.0
C15	0.30	С	64%	0.56	0.74	55	33.0%	2.3	116	2.4%	20.0	3.1	0.6	2.9	171.0	15.9	5.0
C16	1.09	С	65%	0.57	0.75	55	33.0%	2.2	382	2.5%	20.0	3.2	2.0	4.3	437.0	17.2	5.0
C17	0.16	С	40%	0.36	0.65	32	33.0%	2.4	30	1.0%	20.0	2.0	0.3	2.6	62.0	19.6	5.0
C18	0.13	С	38%	0.35	0.64	32	33.0%	2.4	30	1.0%	20.0	2.0	0.3	2.7	62.0	19.8	5.0
C19	1.51	С	2%	0.05	0.49	10	5.0%	3.5	765	2.0%	7.0	1.0	12.9	16.4	775.0	35.4	16.4
C20	0.05	С	2%	0.05	0.49	10	5.0%	3.5	54	2.0%	7.0	1.0	0.9	4.4	64.0	26.3	5.0
01	0.14	С	16%	0.17	0.55	10	1.0%	5.3	20	2.0%	7.0	1.0	0.3	5.7	30.0	23.5	5.7
02	0.32	С	4%	0.07	0.50	10	33.0%	1.9	40	33.0%	7.0	4.0	0.2	2.0	50.0	25.4	5.0
03	0.07	С	2%	0.05	0.49	10	33.0%	1.9	40	33.0%	7.0	4.0	0.2	2.1	50.0	25.8	5.0

NOTES:

$t_c = t_i + t_t$	Equation	$0.395(1.1-C_{c})\sqrt{L_{c}}$	C	Table 6-2. NRCS Convey	ance factors, K
$i_c = i_i + i_t$	Equation of	$t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_0^{0.033}}$	Equation 6-3	Type of Land Surface	Conveyance Factor, K
here:				Heavy meadow	2.5
t_c = computed time of concentration (minutes)		Where:		Tillage/field	5
		t_i = overland (initial) flow time (minutes)		Short pasture and lawns	7
t_i = overland (initial) flow time (minutes)		$C_5 =$ runoff coefficient for 5-year frequency (from Table 6-4) $L_i =$ length of overland flow (ft)		Nearly bare ground	10
t_t = channelized flow time (minutes).		$S_o =$ average slope along the overland flow path (ft/ft).		Grassed waterway	15
L. L.		<i>L</i> ,		Paved areas and shallow paved swales	20
$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$	Equation 6-4	$t_{c} = (26 - 17i) + \frac{L_{t}}{60(14i + 9)\sqrt{S_{t}}}$	Equation 6-5		
iere:		Where:			
t_t = channelized flow time (travel time, min) L_t = waterway length (ft)		$t_c = \min \min$ time of concentration for first design point when less t	nan t _c from Equation 6-1.		

 $t_t = \text{channelized now time (travet time, min)}$ $L_t = \text{waterway length (ft)}$ $S_0 = \text{waterway slope (ft/ft)}$ $V_t = \text{travel time velocity (ft/sec)} = K \sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2). $t_c = \min unimum time of concentration for first design point when less than t_c from Equation 6-1$ $<math>L_t = \text{length of channelized flow path (ft)}$ t = imperviousness (expressed as a decimal) $S_t = \text{slope of the channelized flow path (ft/ft)}$

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Subdivisior Locatior Design Storm P	n: Dougla	is Coun	,	ne 1												Са	Projec Iculate Checke	t No.: d By:	1595 MJP		S		
		1		DIDE	CT RUI				г	OTAL		CC		STREE	-		PIF			TRAV		AE.	
				DIKL		NOFF				UTAL				JIKEE			FIF			IKAV		VIL	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	C1	0.05	0.86	5.0	0.04	4.95	0.20															Basin C1 flows routed via curb & gutter to on-grade inlet at DP01
	2	C2	0.15	0.46	5.0	0.07	4.95	0.35															Basin Č1 flows routed via curb & gutter to on-grade inlet at DP02
		62	0.15	0.40	5.0	0.07	4.90	0.55															Combined flows routed via pipe
	2.1								5.0	0.11	4.95	0.54											to DP3.1 Basin C3 flows routed via alley
	3	C3	0.11	0.71	5.0	0.08	4.95	0.40															to sump inlet DP03
	3.1								5.0	0.19	4.95	0.94											Combined flows routed via pipe to DP4.1
	4	C4	0.66	0.63	6.3	0.42	4.63	1 0/															Basin C4 flows routed via alley to on-grade inlet DP04
		04	0.00	0.03	0.5	0.42	4.05	1.74															Combined flows routed via pipe
	4.1								6.3	0.61	4.63	2.82											to DP7.1 Basin C5 flows routed via curb & gutter
	5	C5	1.49	0.61	6.6	0.90	4.58	4.12															to on-grade inlet at DP05 Basin C7 flows routed via curb & gutter
	7	C7	1.54	0.56	9.5	0.85	4.02	3.42								2.6	0.65	2.2	18		6.5		to on-grade inlet at DP07
													0.79	0.197	2.2					84	3.0	0.5	
																							Combined flows routed via pipe
	7.1								9.5	2.16	4.02	8.70											to DP15.2 Basin C14 flows routed via curb & gutter
	14	C14	0.44	0.44	5.0	0.20	4.95	0.99	5.0	0.40	4.49	1.78											to sump inlet at DP14 Basin C15 flows routed via curb & gutter
	15	C15	0.30	0.56	5.0	0.17	4.95	0.84															to sump inlet at DP15
	15.1								5.0	0.57	4.95	2.80											Combined flows routed via pipe to DP15.2
	15.0								9.5			10.97											Combined flows routed via pipe
	15.2								9.5	2.73	4.02	10.97											to DP16.2 Basin C20 flows routed via drainage swale
	20	C20	0.05	0.05	5.0	0.00	4.95	0.00															to 24-inch nyoplast inlet at DP20 Basin C16 flows routed via alley
	16	C16	1.09	0.57	5.0	0.62	4.95	3.07															to sump inlet at DP16
	16.1								5.0	0.62	4.95	3.07											Combined flows routed via pipe to DP16.2
	16.2								9.5	2 2⊑	102	13.47											Combined flows routed via pipe to DP18.2
									7.0	3.30	4.UZ	13.47		-									Basin C06 flows routed via drainage swale
	6	C6	0.66	0.15	8.8	0.10	4.14	0.41															to 24-inch nyoplast inlet at DP06 Basin C08 flows routed via drainage swale
	8	C8	0.10	0.23	5.0	0.02	4.95	0.10															to 24-inch nyoplast inlet at DP08 Combined flows routed via pipe
	8.1								8.8	0.12	4.14	0.50											to DP9.1
	9	C9	0.16	0.21	5.0	0.03	4.95	0.15															Basin C09 flows routed via drainage swale to 24-inch nyoplast inlet at DP09
		5,	0.10	0.21	0.0	0.00		5.15						1									Combined flows routed via pipe
	9.1								8.8	0.15	4.14	0.62										I	to DP10.1

Design Storm	n: Dougla	s Coun	,	ne 1												Ca	Projec lculate Checke	ct No.: ed By:	1595 MJP		S		
1	1: 1.10	Incrites		DIDE						OTAL				OTDEE	-	-			12/2		FI T I		
				DIRE	CT RUI	NOFF				FOTAL F	KUNOI			STREE"			PI	25		TRAV	EL II	IME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	10	C10	0.02	0.05	5.0	0.00	4.95	0.00															Basin C10 flows routed via drainage swale to 24-inch nyoplast inlet at DP10
	10.1								8.8	0 15	4.14	0.62											Combined flows routed via pipe to DP11.1
	11	C11	0.20	0.32	5.0	0.06	4.05	0.30															Basin C11 flows routed via drainage swale to 24-inch nyoplast inlet at DP11
		CII	0.20	0.32	5.0	0.00	4.73	0.30	8.8	0.21	4.1.4	0.07											Combined flows routed via pipe to DP12.1
	11.1								8.8	0.21	4.14	0.87											Basin C12 flows routed via drainage swale
	12	C12	0.17	0.32	5.0	0.05	4.95	0.25															to 24-inch nyoplast inlet at DP12 Combined flows routed via pipe
	12.1								8.8	0.26	4.14	1.08											to DP13.1 Basin C13 flows routed via drainage swale
	13	C13	0.14	0.20	5.0	0.03	4.95	0.15															to 24-inch nyoplast inlet at DP13 Combined flows routed via pipe
	13.1								8.8	0.29	4.14	1.20											to DP18.2 Basin C17 flows routed via drainage swale
	17	C17	0.16	0.36	5.0	0.06	4.95	0.30															to 24-inch nyoplast inlet at DP17
	18	C18	0.13	0.35	5.0	0.05	4.95	0.25															Basin C18 flows routed via drainage swale to 24-inch nyoplast inlet at DP18
	18.1								5.0	0.11	4.95	0.54											Combined flows routed via pipe to DP18.2
	18.2								9.5	3.75	4.02	15.08											Combined flows routed via pipe to DP19.1
	19	C19	1.51	0.05	16.4	0.08	3.18	0.25															Basin C19 flows routed via drainage swale to 24-inch nyoplast inlet at DP19
	19.1								16.4	3.83	3.18	12 18											Combined flows routed via pipe to existing 36" RCP stub
									10.1	0.00	0.10	12.10											
	103	T3	0.10	0.48	5.0	0.05	4.95	0.25															Basin T3 flows routed via alley to sump inlet at DP103
	109	T9	0.03		9.2																		Basin T9 flows routed via property swales to area inlet at DP109
	109	17	0.03	0.00	7.Z	0.00	4.08	0.00	9.2	0.05	1.00	0.20								\square			Combined flows routed via pipe to DP110.1
		T4	0.12	0.40	FO	0.04	4.05	0.30	7.2	0.03	4.00	0.20								1			Basin T4 flows routed via alley to sump inlet at DP104
	104	T4				0.06														1		+	Basin T10 flows routed via property swales
	110	T10	0.04	0.05	9.2	0.00	4.08	0.00				a (=											to area inlet at DP110 Combined flows routed via pipe
	110.1								9.2	0.11	4.08	0.45											to DP111.1 Basin T5 flows routed via alley
	105	T5	0.12		5.0															├		+	to sump inlet at DP105 Basin T11 flows routed via property swales
	111	T11	0.02	0.05	9.2	0.00	4.08	0.00												<u> </u>			to area inlet at DP111 Combined flows routed via pipe
	111.1								9.2	0.17	4.08	0.69											to DP112.1

Design Storm	n: Dougla	s Cour	,	ne 1												Ca	oject N Projec Iculate Checke	ct No.: ed By:	1595 MJP	0.10	S		
1	1: 1.10		5	DIDE						OTAL				OTDEE	-	T			12/2		FI T	. 45	
				DIRE	CT RUN	NOFF	1			TOTAL P				STREE	1		PI	15		TRAV	EL II	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)		REMARKS
	101	T1	1.37	0.51	5.0	0.69	4.95	3.42								2.0	0.40	2.8	18	587	6.4		Basin T1 flows routed via alley to valley interval to valley inlet at DP101
													1.42	0.287	2.7					446	3.3	3 2.3	
																							Basin T6 flows routed via alley
	106	T6	0.14	0.48	5.0	0.07	4.95	0.35															to sump inlet at DP106 Combined flows routed via pipe
	106.1								5.0	0.47	4.95	2.34											to DP112.1
	112	T12	0.06	0.05	0.2	0.00	4.08	0.00															Basin T12 flows routed via property swales to area inlet at DP112
		112	0.00	0.05	7.2	0.00	4.00	0.00															Combined flows routed via pipe
	112.1								9.2	0.64	4.08	2.62		-						-		_	to DP113.1 Basin T7 flows routed via alley
	107	T7	0.12	0.48	8.3	0.06	4.24	0.25															to sump inlet at DP107
	113	T13	0.03	0.05	9.2	0.00	4.08	0.00															Basin T13 flows routed via property swales to area inlet at DP113
		115	0.00	0.00	7.2	0.00	4.00	0.00															Combined flows routed via pipe
	113.1								9.2	0.70	4.08	2.87											to DP114.1 Basin T8 flows routed via alley
	108	T8	0.12	0.48	8.3	0.06	4.24	0.25													-		to sump inlet at DP108
	114	T14	0.04	0.05	9.2	0.00	4.08	0.00															Basin T14 flows routed via property swales to area inlet at DP114
																							Combined flows routed via pipe
	114.1								9.2	0.76	4.08	3.11											to DP118.2 Basin T22 flows routed via drainage swale
	122	T22	0.03	0.05	5.0	0.00	4.95	0.00															to 24-inch nyoplast inlet at DP122
	115	T15	0.05	0.26	5.0	0.01	4.95	0.05															Basin T15 flows routed via property swale to 24-inch area inlet at DP115
	115.1								5.0	0.01	4.05	0.05											Combined flows routed via pipe
	115.1								5.0	0.01	4.95	0.05											to DP116.2 Basin T21 flows routed via drainage swale
	121	T21	0.08	0.05	5.0	0.00	4.95	0.00															to 24-inch nyoplast inlet at DP121
	116	T16	0.23	0.75	5.0	0.17	4.95	0.84															Basin T116 flows routed via alley to sump inlet at DP116
										0 17	4.05	0.84		1		l		1		1			Combined flows routed via pipe
	116.1								5.0		4.95								-	1			to DP116.2 Combined flows routed via pipe
	116.2							ļ	5.0	0.18	4.95	0.89						-		I			to DP117.1 Basin T117 flows routed via alley
	117	T17	0.14	0.68	5.0	0.10	4.95	0.50															to sump inlet at DP117
	117.1								5.0	0.20	4.95	1.39											Combined flows routed via pipe to DP118.1
	117.1						-		5.0	0.28	4.95	1.39											Basin T118 flows routed via alley
	118	T18	0.34	0.57	5.0	0.19	4.95	0.94	I					<u> </u>		<u> </u>				<u> </u>			to sump inlet at DP118 Combined flows routed via pipe
	118.1								5.0	0.47	4.95	2.33											to DP118.2
	110.0																						Combined flows routed via pipe
	118.2	I					1	<u> </u>	9.2	1.23	4.08	5.03		<u> </u>	<u> </u>	I	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1	to DP102.1

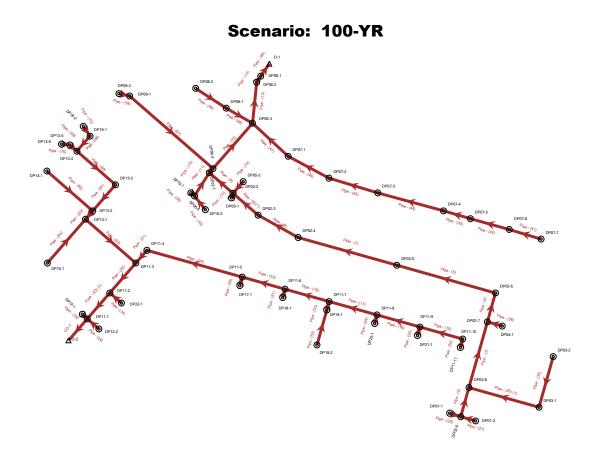
Subdivision: Location: Design Storm: P1:		s Coun		ne 1												Pro Cal (necke	lame: et No.: ed By: ed By: Date:			DS		
				DIRE	CT RUI	NOFF			T	OTAL F	RUNOF	F	9	STREET			PII	ΡE		TRAV	'EL TIM	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	102	T2	1.60	0.55	5.2	0.88	4.91	4.32	5.2	1.17	4.92	5.74				5.2	1.05	2.0	24	69	7.3		Basin T2 flows routed via curb & gutter 2 to on-grade inlet at DP102
													0.59	0.12	3.5					70	3.7		
	102.1								9.2	2.28	4.08	9.30											Combined flows routed via pipe to DP120.1
	119	T19	0.43	0.50	5.0	0.21	4.95	1.04															Basin T119 flows routed via curb & gutter to on-grade inlet at DP119
	120	T20	0.07	0.51	5.0	0.04	4.95	0.20	5.2	0.16	4.92	0.79											Basin T20 flows routed via curb & gutter to on-grade inlet at DP120
	120.1								9.2	2.65	4.08	10.81											Combined flows routed via pipe to Existing 24-inch stub

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Design Storm	: Douglas	County r		e 1							_				Ca	oject Na Project Iculated Checked	t No.: <u>1</u> d By: <u>N</u>	5950. ЛЈР	.10	ŝ	
				DIRE	CT RUN	IOFF			T	OTAL RUN	OFF		STREET			PIP	E	1	TRAVI	EL TIME	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac) I (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps) t. (min)	
	1	C1	0.05	0.89	5.0	0.04	8.82	0.35													Basin C1 flows routed via curb & gutter to on-grade inlet at DP01
	2	C2	0.15	0.70	5.0		8.82	0.88													Basin Č1 flows routed via curb & gutter to on-grade inlet at DP02
		02	0.10	0.70	0.0	0.10	0.02	0.00	5.0	0.14 0.0	. 1.	_									Combined flows routed via pipe
	2.1								5.0	0.14 8.8	2 1.2	3						_			to DP3.1 Basin C3 flows routed via alley
	3	C3	0.11	0.82	5.0	0.09	8.82	0.79													to sump inlet DP03 Combined flows routed via pipe
	3.1								5.0	0.23 8.8	2 2.0	3									to DP4.1 Basin C4 flows routed via alley
	4	C4	0.66	0.78	6.3	0.52	8.25	4.29													to on-grade inlet DP04
	4.1								6.3	0.75 8.2	5 6.1	9									Combined flows routed via pipe to DP7.1
	5	C5	1.49	0.77	6.6	1.15	8.16	9.38							7.4	0.91	2.2	18	119	8.7 0	Basin C5 flows routed via curb & gutter .2 to on-grade inlet at DP05
	-											1.94	0.24	2.2					84		5
	7	C7	1.54	0.74	9.5	1.15	7.16	8.23							4.0	0.56	2.2	18	119	7.3 0	Basin C7 flows routed via curb & gutter .3 to on-grade inlet at DP07
												4.24	0.59	2.2					84	3.0 0	.5
	7.1								9.5	2.22 7.1	6 15.9	D									Combined flows routed via pipe to DP15.2
	14	C14	0.44	0.69	5.0	0.30	8.82	2.65	9.5	0.89 7.3	2 6.8	9									Basin C14 flows routed via curb & gutter to sump inlet at DP14
	15	C15		0.74			8.82														Basin C15 flows routed via curb & gutter to sump inlet at DP15
		010	0.00	0.74	0.0	0.22	0.02	1.74													Combined flows routed via pipe
	15.1							+	9.5	1.11 7.1								\dashv			to DP15.2 Combined flows routed via pipe
	15.2								9.5	3.33 7.1	6 23.8	6						\dashv			to DP16.2 Basin C20 flows routed via drainage swale
	20	C20	0.05	0.49	5.0	0.02	8.82	0.18													to 24-inch nyoplast inlet at DP20 Basin C16 flows routed via alley
	16	C16	1.09	0.75	5.0	0.82	8.82	7.23	6.6	1.06 8.0	7 9.1	7									to sump inlet at DP16
	16.1								5.0	1.08 8.8	2 9.5	1									Combined flows routed via pipe to DP16.2
	16.2								9.5	4.41 7.1	6 31.5	в									Combined flows routed via pipe to DP18.2
	6	C6	0.66	0.54	8.8	0.36	7.37														Basin C06 flows routed via drainage swale to 24-inch nyoplast inlet at DP06
													1								Basin C08 flows routed via drainage swale
	8	C8	0.10	0.58	5.0	0.06	8.82														to 24-inch nyoplast inlet at DP08 Combined flows routed via pipe
	8.1								8.8	0.42 7.3	7 3.1	D									to DP9.1

Subdivision: Location: Design Storm:	Douglas	County	y - Zone	e 1												Ca	oject N Projec alculate Checke	ct No.: ed By:	1595 MJP	Condo 0.10	S		
P _{1:}	2.60	Inches	5															Date:	12/2	7/22			
				DIRE	CT RUN	NOFF			1	TOTAL P	RUNOF	F		STREET		1	PI	РЕ		TRAV	EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	9	C9	0.16	0.57	5.0	0.09	8.82	0.79															Basin C09 flows routed via drainage swale to 24-inch nyoplast inlet at DP09
	0.1								0.0	0.51	7 07	2.7/											Combined flows routed via pipe to DP10.1
	9.1								8.8	0.51	7.37	3.70											Basin C10 flows routed via drainage swale
	10	C10	0.02	0.49	5.0	0.01	8.82	0.09														-	to 24-inch nyoplast inlet at DP10 Combined flows routed via pipe
	10.1								8.8	0.52	7.37	3.83											to DP11.1
	11	C11	0.20	0.62	5.0	0.12	8.82	1.06															Basin C11 flows routed via drainage swale to 24-inch nyoplast inlet at DP11
	11.1								8.8	0.64	7.37	4.72											Combined flows routed via pipe to DP12.1
		010	0.17	0.63	E O	0.11	0.00	0.07															Basin C12 flows routed via drainage swale
	12	C12	0.17	0.03	5.0	0.11	8.82	0.97															to 24-inch nyoplast inlet at DP12 Combined flows routed via pipe
	12.1								8.8	0.75	7.37	5.53											to DP13.1 Basin C13 flows routed via drainage swale
	13	C13	0.14	0.57	5.0	0.08	8.82	0.71														-	to 24-inch nyoplast inlet at DP13 Combined flows routed via pipe
	13.1								8.8	0.83	7.37	6.12											to DP18.2
	17	C17	0.16	0.65	5.0	0.10	8.82	0.88															Basin C17 flows routed via drainage swale to 24-inch nyoplast inlet at DP17
	18	C18	0.13	0.64	5.0	0.08	8.82	0.71															Basin C18 flows routed via drainage swale to 24-inch nyoplast inlet at DP18
		010	0.15	0.04	5.0	0.00	0.02	0.71															Combined flows routed via pipe
	18.1								5.0	0.18	8.82	1.59											to DP18.2 Combined flows routed via pipe
	18.2								9.5	5.42	7.16	38.81											to DP19.1 Basin C19 flows routed via drainage swale
	19	C19	1.51	0.49	16.4	0.74	5.65	4.18														-	to 24-inch nyoplast inlet at DP19
	19.1								16.4	6.16	5.65	34.80											Combined flows routed via pipe to existing 36" RCP stub
	100	т.	0.10	0.74	5.0	0.07	0.00	0.46															Basin T3 flows routed via alley
	103	Т3		0.71			8.82																to sump inlet at DP103 Basin T9 flows routed via property swales
	109	Т9	0.03	0.49	9.2	0.01	7.26	0.07								<u> </u>							to area inlet at DP109 Combined flows routed via pipe
	109.1								9.2	0.08	7.26	0.58											to DP110.1
	104	T4	0.12	0.70	5.0	0.08	8.82	0.71															Basin T4 flows routed via alley to sump inlet at DP104
	110	T10		0.49		0.02	7.26	0.15															Basin T10 flows routed via property swales to area inlet at DP110
	110.1	110	0.04	0.17	1.2	0.02	1.20	0.10		0.18	7.04												Combined flows routed via pipe to DP111.1

Location: Design Storm:	Subdivision: Ridgegate Location: Douglas County - Zone 1 Design Storm: 100-Year P1: 2.60 Inches															Cal	Projec culate Checke	lame: ct No.: ed By: ed By:	15950 MJP	0.10	ŝ	
r _{1:}	2.00	linches)															Date:				
				DIRE	CT RUI	NOFF		1		TOTAL I	RUNOF	F		STREET	1		PIF	1 1		TRAVI	L TIME	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps) t. (min)	F
	105	T5	0.12	0.70	5.0	0.08	8.82	0.71														Basin T5 flows routed via alley to sump inlet at DP105
																						Basin T11 flows routed via property swales
	111	T11	0.02	0.49	9.2	0.01	7.26	0.07														to area inlet at DP111 Combined flows routed via pipe
	111.1								9.2	0.27	7.26	1.96										to DP112.1 Basin T1 flows routed via alley
	101	T1	1.37	0.72	5.0	0.99	8.82	8.73								3.4	0.38	2.8	18	587	7.6 1	3 to valley inlet at DP101
													5.34	0.61	2.7					446	3.3 2	.3
																						Basin T6 flows routed via alley
	106	T6	0.14	0.71	5.0	0.10	8.82	0.88														to sump inlet at DP106 Combined flows routed via pipe
	106.1								5.0	0.48	8.82	4.27										to DP112.1
	112	T12	0.06	0.49	9.2	0.03	7.26	0.22														Basin T12 flows routed via property swales to area inlet at DP112
		112	0.00	0.47	7.2	0.03	7.20	0.22														Combined flows routed via pipe
	112.1								9.2	0.78	7.26	5.70										to DP113.1 Basin T7 flows routed via alley
	107	T7	0.12	0.70	8.3	0.08	7.55	0.60														to sump inlet at DP107
	113	T13	0.02	0.49	9.2	0.01	7 26	0.07														Basin T13 flows routed via property swales to area inlet at DP113
		115	0.03	0.47	7.2	0.01	7.20	0.07														Combined flows routed via pipe
	113.1								9.2	0.87	7.26	6.35										to DP114.1 Basin T8 flows routed via alley
	108	T8	0.12	0.70	8.3	0.08	7.55	0.60														to sump inlet at DP108
	114	T14	0.04	0.49	9.2	0.02	7.26	0.15														Basin T14 flows routed via property swales to area inlet at DP114
		114	0.04	0.47	7.2	0.02	7.20	0.15														Combined flows routed via pipe
	114.1								9.2	0.97	7.26	7.08										to DP118.2 Basin T22 flows routed via drainage swale
	122	T22	0.03	0.49	5.0	0.01	8.82	0.09														to 24-inch nyoplast inlet at DP122
	115	T15	0.05	0.60	5.0	0.03	8.82	0.26														Basin T15 flows routed via property swale to 24-inch area inlet at DP115
	115	115	0.05	0.00	5.0	0.03	0.02	0.20														Combined flows routed via pipe
	115.1								5.0	0.04	8.82	0.35										to DP116.2 Basin T21 flows routed via drainage swale
	121	T21	0.08	0.49	5.0	0.04	8.82	0.35														to 24-inch nyoplast inlet at DP121
	11/	T1/					8.82	1.68														Basin T116 flows routed via alley
	116	T16	0.23	U.84	5.0	0.19	ö.ö2	1.08														to sump inlet at DP116 Combined flows routed via pipe
	116.1								5.0	0.23	8.82	2.03										to DP116.2
	116.2								5.0	0.27	8.82	2.38										Combined flows routed via pipe to DP117.1
		T17	0.14	0.01		0.11	0.00	0.07														Basin T117 flows routed via alley
	117	T17	0.14	0.81	5.0	0.11	8.82	0.97			$\left \right $					┨──┤		$\left \right $				to sump inlet at DP117 Combined flows routed via pipe
	117.1								5.0	0.38	8.82	3.35										to DP118.1


Subdivision: Location: Design Storm: P 1:	Ridgegat Douglas 100-Yeau 2.60	County r		91												Ca	oject N Projec Ilculate Checke	d By: d By:	MJP		OS .		
				DIRE	CT RUI	NOFF				FOTAL R	RUNOF	F		STREET			PIF	ΡE		TRAV	EL TI	ME	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	118	T18	0 34	0.75	5.0	0.26	8 82	2.29															Basin T118 flows routed via alley to sump inlet at DP118
	118.1	110	0.04	0.75	0.0	0.20	0.02	2.27	5.0	0.64	8 82	5.64											Combined flows routed via pipe to DP118.2
	118.2								9.2			11.72											Combined flows routed via pipe to DP102.1
	102	T2	1.60	0.74	5.2	1.19	8.74	10.40	5.2			15.74				8.9	1.01	2.0	24	69		7 0.1	Basin T2 flows routed via curb & gutter to on-grade inlet at DP102
													6.89	0.79	3.5					70	3.	7 0.3	
	102.1								9.2	2.62	7.26	19.03											Combined flows routed via pipe to DP120.1
	119	T19	0.43	0.72	5.0	0.31	8.82	2.73															Basin T119 flows routed via curb & gutter to on-grade inlet at DP119
	120	T20	0.07	0.72	5.0	0.05	8.82	0.44	5.2	0.84	8.74	7.33											Basin T20 flows routed via curb & gutter to on-grade inlet at DP120
	120.1								9.2	3.77	7.26	27.37											Combined flows routed via pipe to Existing 24-inch stub

Notes:

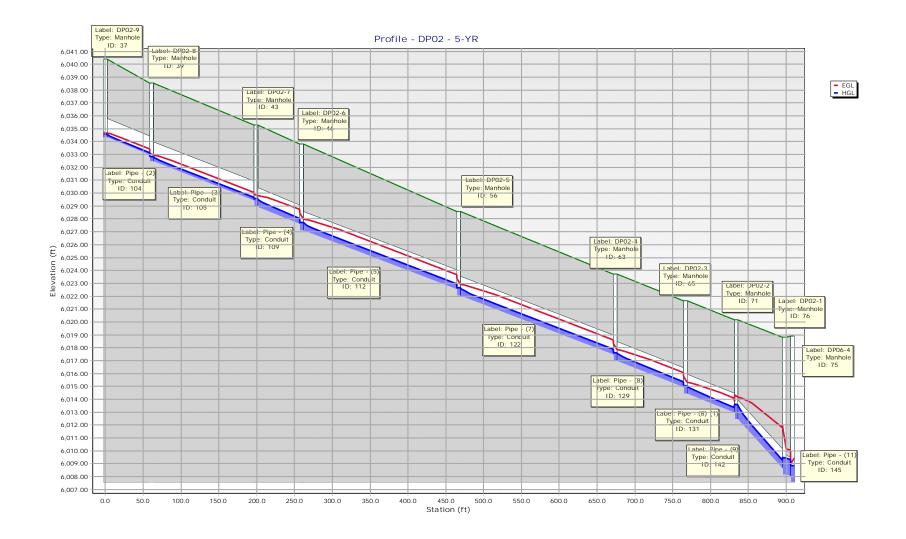
Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

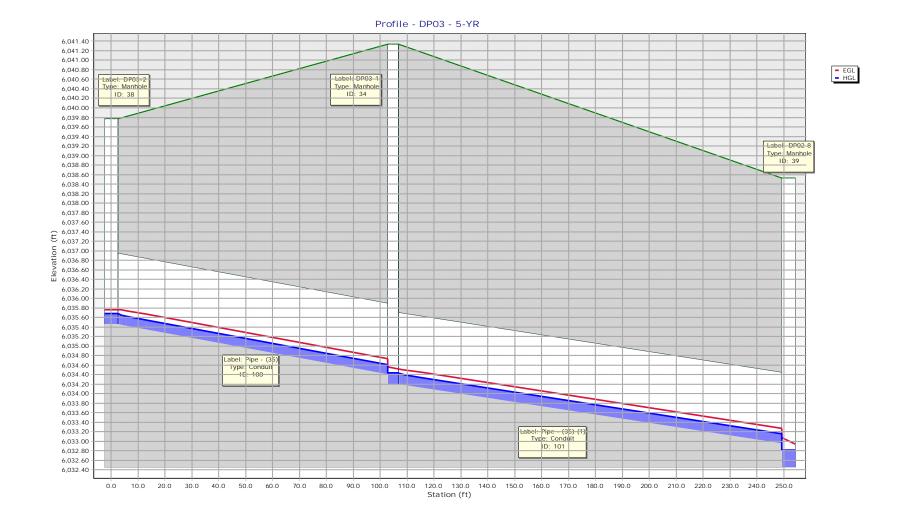
ATTACHMENT C

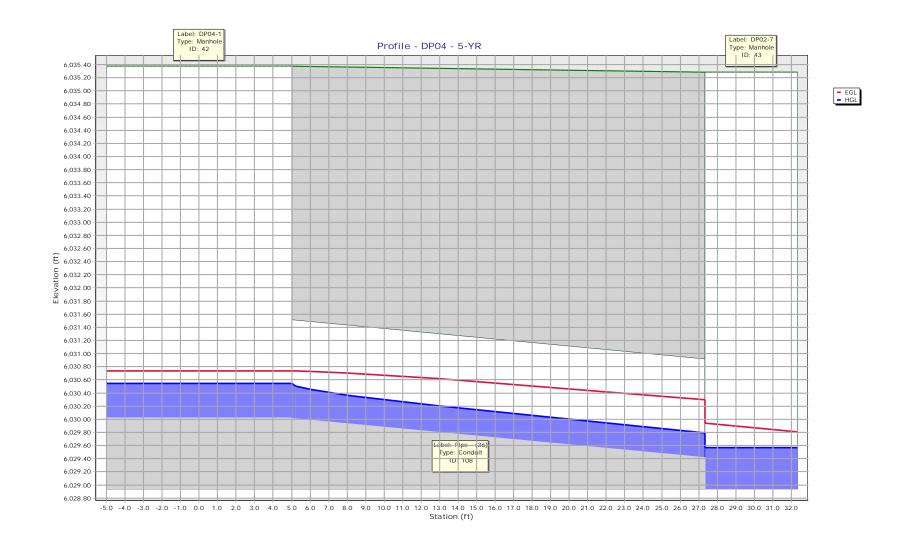
HYDRAULIC CALCULATIONS

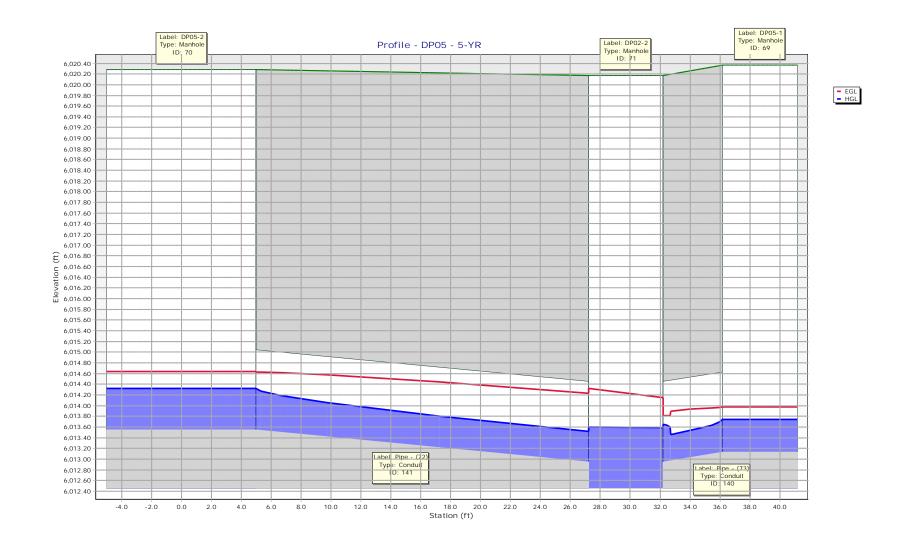
1595010 StormCAD.stsw 12/29/2022

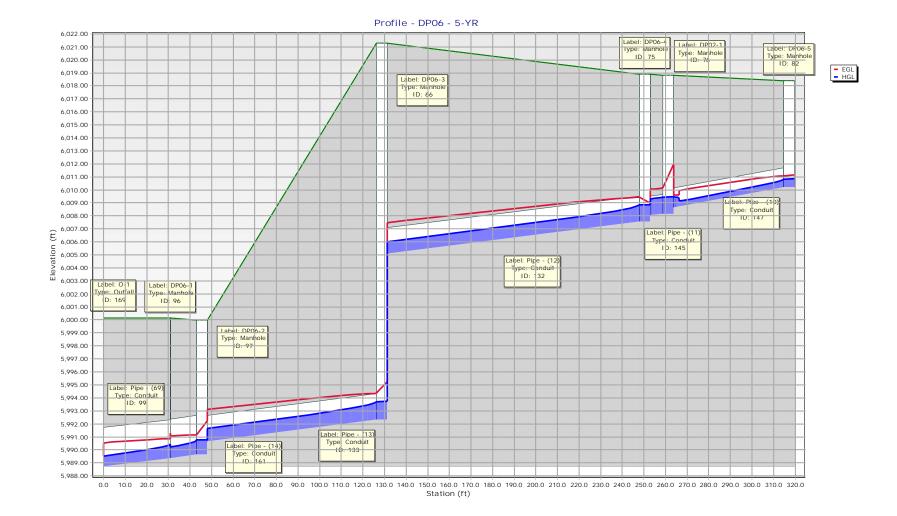
Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666 StormCAD [10.03.04.53] Page 1 of 1

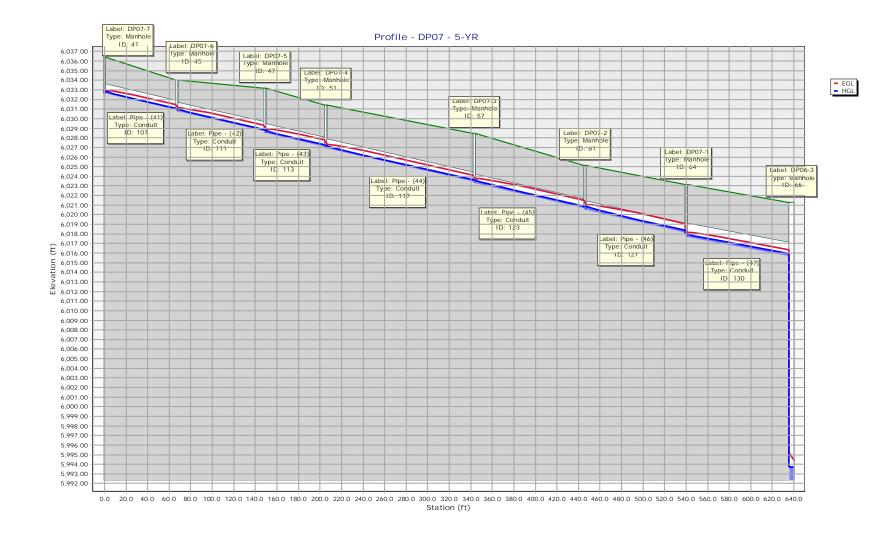

Scenario: 5-YR Current Time Step: 0.000 h FlexTable: Conduit Table

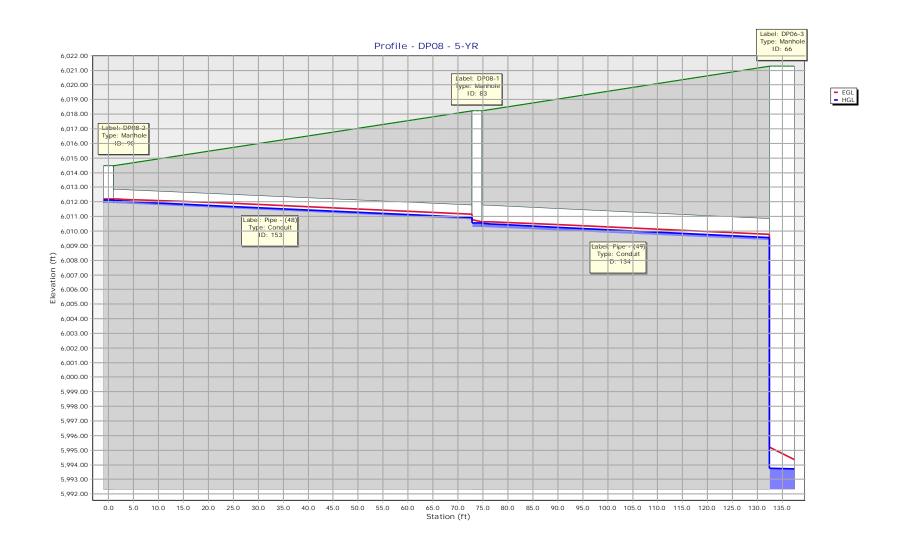

Upstream Structure	Label	Flow (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Upstream Structure Headloss Coefficient	Velocity (ft/s)	Manning's n
DP11-1	CO-1	10.81	24.0	57.7	0.011	6,005.59	6,004.94	6,012.67	6,012.84	6,007.26	6,006.72	6,006.77	6,005.89	0.014	7.44	0.013
DP02-9	Pipe - (2)	0.54	18.0	61.2	0.022	6,034.30	6,032.95	6,040.39	6,038.53	6,034.66	6,033.41	6,034.57	6,033.14	0.045	4.12	0.013
DP02-8	Pipe - (3)	0.94	18.0	137.9	0.022	6,032.45	6,029.42	6,038.53	6,035.28	6,032.94	6,030.04	6,032.81	6,029.67	0.016	4.86	0.013
DP02-7	Pipe - (4)	2.82	18.0	60.7	0.022	6,028.93	6,027.59	6,035.28	6,033.81	6,029.81	6,028.72	6,029.56	6,028.02	0.026	6.69	0.013
DP02-6	Pipe - (5)	2.82	18.0	207.2	0.022	6,027.09	6,022.53	6,033.81	6,028.55	6,027.97	6,023.66	6,027.73	6,022.96	0.075	6.69	0.013
DP02-5	Pipe - (7)	2.82	18.0	207.2	0.022	6,022.03	6,017.47	6,028.55	6,023.70	6,022.91	6,018.60	6,022.67	6,017.90	0.015	6.69	0.013
DP02-4	Pipe - (8)	2.82	18.0	92.6	0.022	6,016.97	6,014.93	6,023.70	6,021.63	6,017.85	6,016.06	6,017.61	6,015.36	0.029	6.69	0.013
DP02-3	Pipe - (8) (1)	2.82	18.0	67.2	0.022	6,014.43	6,012.95	6,021.63	6,020.18	6,015.31	6,013.83	6,015.07	6,013.60	0.027	6.69	0.013
DP02-2	Pipe - (9)	8.70	18.0	63.4	0.060	6,012.45	6,008.65	6,020.18	6,018.82	6,014.15	6,011.79	6,013.59	6,009.27	0.021	13.14	0.013
DP06-5	Pipe - (10)	2.80	18.0	55.8	0.028	6,010.20	6,008.65	6,018.39	6,018.82	6,011.08	6,009.59	6,010.84	6,009.47	0.103	7.26	0.013
DP02-1	Pipe - (11)	10.97	18.0	11.0	0.010	6,008.15	6,008.04	6,018.82	6,018.91	6,010.15	6,010.04	6,009.44	6,009.31	0.036	6.74	0.013
DP06-4	Pipe - (12)	13.47	24.0	121.6	0.020	6,007.54	6,005.09	6,018.91	6,021.28	6,009.44	6,007.48	6,008.86	6,005.99	0.000	9.77	0.013
DP06-3	Pipe - (13)	15.08	24.0	83.2	0.020	5,992.31	5,990.64	6,021.28	5,999.97	5,994.35	5,993.12	5,993.71	5,991.63	0.013	10.03	0.013
DP06-2	Pipe - (14)	12.18	36.0	14.6	0.020	5,989.64	5,989.35	5,999.97	6,000.13	5,991.16	5,991.04	5,990.75	5,990.21	0.033	9.19	0.013
DP11-10	Pipe - (15)	0.20	18.0	90.0	0.020	6,029.05	6,027.23	6,032.51	6,033.01	6,029.27	6,027.49	6,029.22	6,027.35	0.031	2.96	0.013
DP11-9	Pipe - (16)	0.20	18.0	90.0	0.020	6,027.03	6,026.13	6,033.01	6,030.09	6,023.27	6,026.48	6,023.22	6,026.34	0.009	2.96	0.013
DP11-8	Pipe - (17)	0.43	18.0	100.5	0.020	6,025.93	6,023.92	6,030.09	6,028.73	6,026.35	6,024.43	6,026.24	6,024.14	0.009	4.29	0.013
DP11-7	Pipe - (18)	2.62	18.0	92.5	0.020	6,023.42	6,020.65	6,028.73	6,026.59	6,024.27	6,024.45	6,024.04	6,021.03	0.003	7.32	0.013
DP11-6	Pipe - (19)	2.02	18.0	92.5 90.1	0.035	6,023.42	6,016.99	6,026.59	6,020.39	6,024.27	6,018.36	6,020.79	6,017.38	0.010	7.93	0.013
DP11-5	Pipe - (20)	3.11	18.0	200.1	0.031	6,016.49	6,010.33	6,024.79	6,019.60	6.017.42	6.011.72	6,017.16	6,010.79	0.010	7.74	0.013
DP11-4	Pipe - (21)	3.11	18.0	34.2	0.020	6,010.43	6,009.49	6,019.60	6,018.79	6,011.10	6,010.61	6,010.84	6,009.97	0.072	6.65	0.013
DP11-4	Pipe - (22)	5.03	24.0	79.9	0.020	6,008.99	6,007.39	6,018.79	6,015.17	6,010.08	6,008.50	6,009.78	6,008.29	0.012	7.42	0.013
DP11-3 DP11-2	Pipe - (22) (1)	9.30	24.0	69.4	0.020	6,007.19	6,007.39	6,015.17	6,012.67	6,008.72	6,007.71	6,008.28	6,006.55	0.013	8.82	0.013
DP12-2	Pipe - (22) (1) Pipe - (24)	0.79	18.0	31.2	0.020	6,007.19	6,005.80	6,014.16	6,012.67	6,007.87	6,007.35	6,007.76	6,007.04	0.000	4.46	0.013
DP12-2 DP12-1	Pipe - (25)	1.04	18.0	9.1	0.020	6,006.98	6,006.80	6,012.72	6,012.67	6,007.50	6,007.39	6,007.37	6,007.04	0.000	4.40	0.013
DP12-1 DP01-1	Pipe - (25) Pipe - (26)	0.20	18.0	7.7	0.020	6,008.98	6,034.80	6,040.49	6,040.39	6,035.18	6,035.06	6,007.37	6,034.92	0.000	4.64 2.95	0.013
DP01-2	Pipe - (20)	0.20	18.0	29.7	0.020	6,035.40	6,034.80	6,040.49	6,040.39	6,035.69	6,035.00	6,035.61	6,034.92	0.000	3.50	0.013
DP01-2 DP03-2	Pipe - (35)	0.35	18.0	104.8	0.020	6,035.40	6,034.80	6,039.77	6,041.34	6,035.77	6,034.73	6,035.69	6,034.90	0.000	2.86	0.013
DP03-2 DP03-1	Pipe - (35) (1)	0.40	18.0	147.0	0.010	6,034.20	6,032.95	6,041.34	6,038.53	6,034.52	6,033.27	6,034.44	6,033.16	0.000	2.80	0.013
DP03-1 DP04-1	Pipe - (36)	1.94	18.0	29.8	0.009	6,030.02	6,029.42	6,035.38	6,035.28	6,034.52	6,030.30	6,030.54	6,029.79	0.040	5.81	0.013
DP10-1	Pipe - (30)	0.84	18.0	29.0 9.5	0.020	6,010.89	6,010.70	6,018.51	6,018.39	6,011.35	6,011.23	6,011.23	6,010.96	0.000	4.54	0.013
DP10-1	Pipe - (40)	1.78	18.0	34.1	0.020	6,011.38	6,010.70	6,018.41	6,018.39	6,012.07	6,011.55	6,011.89	6,011.05	0.000	5.67	0.013
DP07-7	Pipe - (41)	0.41	12.0	67.3	0.025	6,032.61	6,030.93	6,036.40	6,034.01	6,032.97	6,031.48	6,032.88	6,031.09	0.000	5.02	0.010
DP07-6	Pipe - (42)	0.50	12.0	81.4	0.025	6,030.73	6,028.69	6,034.01	6,033.17	6,031.13	6,029.31	6,031.02	6,028.87	0.000	5.33	0.010
DP07-5	Pipe - (43)	0.62	12.0	56.7	0.025	6,028.49	6,027.07	6,033.17	6,031.39	6,028.94	6,023.31	6,028.82	6,027.27	0.020	5.68	0.010
DP07-4	Pipe - (44)	0.62	12.0	137.8	0.025	6,026.88	6,023.43	6,031.39	6,028.46	6,027.32	6,024.13	6,027.20	6,023.63	0.009	5.68	0.010
DP07-3	Pipe - (45)	0.02	12.0	107.8	0.025	6,023.23	6,020.66	6,028.46	6,025.14	6,023.77	6,024.13	6,023.62	6,020.89	0.003	6.27	0.010
DP07-2	Pipe - (46)	1.08	12.0	93.7	0.025	6,020.46	6,018.12	6,025.14	6,023.13	6,021.07	6,019.07	6,020.90	6,018.38	0.088	6.67	0.010
DP07-1	Pipe - (47)	1.20	18.0	98.1	0.020	6,017.62	6,015.66	6,023.13	6,021.28	6,018.18	6,016.34	6,018.03	6,015.95	0.000	5.05	0.013
DP08-2	Pipe - (48)	0.30	12.0	73.8	0.015	6,011.88	6,010.77	6,014.48	6,018.21	6,012.19	6,011.16	6,012.11	6,010.93	0.000	3.83	0.010
DP08-1	Pipe - (49)	0.54	18.0	61.1	0.015	6,010.27	6,009.36	6,018.21	6,021.28	6.010.64	6,009.77	6,010.55	6,009.57	0.006	3.60	0.013
DP17-1	Pipe - (50)	0.25	18.0	17.9	0.050	6.017.88	6.016.99	6.025.28	6.024.79	6.018.13	6.017.24	6.018.07	6.017.18	0.000	4.35	0.013
DP18-1	Pipe - (51)	0.25	18.0	17.9	0.050	6,021.53	6,020.64	6,027.57	6,026.59	6,021.78	6,021.04	6,021.72	6,020.75	0.000	4.35	0.013
DP19-2	Pipe - (52)	2.00	18.0	73.0	0.020	6,026.40	6,024.94	6,030.17	6,030.06	6,027.13	6,025.85	6,026.94	6,025.31	0.000	5.86	0.013
DP19-1	Pipe - (53)	2.34	18.0	17.8	0.035	6,024.55	6,023.92	6,030.06	6,028.73	6,025.34	6,025.01	6,025.12	6,024.30	0.034	7.49	0.013
DP20-1	Pipe - (54)	0.30	18.0	17.9	0.050	6,027.02	6,026.13	6,032.70	6,030.09	6,027.29	6,026.58	6,027.23	6,026.25	0.000	4.59	0.013
DP20-1 DP21-1	Pipe - (55)	0.30	18.0	17.9	0.050	6,028.12	6,027.23	6,035.10	6,033.01	6,027.29	6,020.58	6,027.23	6,020.25	0.000	4.59	0.013
DP11-11	Pipe - (56)	0.30	18.0	17.8	0.030	6,029.79	6,029.25	6,037.59	6,032.51	6,030.04	6,029.58	6,029.97	6,029.38	0.000	3.63	0.013
DP09-1	Pipe - (57)	3.07	18.0	222.1	0.005	6,009.14	6,008.04	6.013.69	6,018.91	6.010.06	6.009.04	6,009.81	6.008.91	0.000	3.99	0.013
DP13-5	Pipe - (59)	0.84	18.0	17.9	0.005	6,013.04	6,012.86	6,018.07	6,017.70	6,013.50	6,013.34	6,013.38	6,013.15	0.049	3.56	0.013
DP13-5 DP13-4	Pipe - (60)	0.84	18.0	103.3	0.010	6,013.04	6,012.66	6,017.70	6,017.70	6,013.14	6,013.34	6,013.00	6,013.15	0.003	3.62	0.013
DP13-4 DP13-3	Pipe - (61)	0.89	18.0	70.0	0.010	6,012.00	6,010.94	6,019.57	6,021.03	6,013.14	6,012.13	6,011.78	6,011.92	0.002	3.02	0.013
DP13-3 DP13-2	Pipe - (61) Pipe - (62)	1.39	18.0	22.3	0.007	6,011.43	6,010.94	6,021.03	6,021.03	6,011.31	6,011.42	6,011.78	6,011.20	0.055	3.19	0.013
DP13-2 DP13-1		2.33	18.0	134.8	0.007	6,010.74			6,021.14		6,010.29	6,010.96		0.017	4.12	0.013
DP13-1 DP15-1	Pipe - (63) Pipe - (64)	2.33	18.0	134.8	0.007	6,010.38	6,009.49 6,010.58	6,021.14 6,018.44	6,018.79	6,011.17 6,014.01	6,010.29	,	6,010.03	0.023	4.12 5.08	0.013
0110-1	i ipe = (04)	0.94	10.0	117.5	0.025	0,013.52	0,010.00	0,010.44	0,021.14	0,014.01	0,011.07	6,013.88	6,010.96	0.000	5.00	0.013

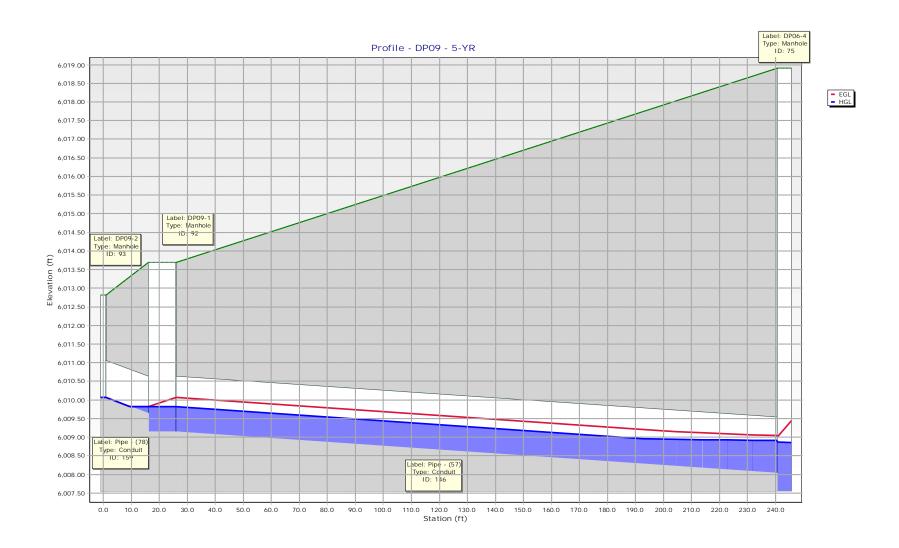

DP14-1	Pipe - (65)	0.50	18.0	121.3	0.027	6,014.28	6,010.94	6,019.40	6,021.03	6,014.63	6,011.41	6,014.54	6,011.12	0.000	4.35	0.013
DP16-1	Pipe - (66)	0.05	18.0	40.3	0.006	6,013.11	6,012.86	6,018.78	6,017.70	6,013.22	6,013.02	6,013.19	6,013.01	0.019	1.28	0.013
DP06-1	Pipe - (69)	12.18	36.0	30.8	0.020	5,989.34	5,988.72	6,000.13	6,000.13	5,990.86	5,990.54	5,990.45	5,989.52	0.000	9.21	0.013
DP05-2	Pipe - (72)	4.12	18.0	29.7	0.020	6,013.55	6,012.95	6,020.28	6,020.18	6,014.63	6,014.23	6,014.32	6,013.51	0.000	7.19	0.013
DP05-1	Pipe - (73)	2.60	18.0	9.0	0.020	6,013.13	6,012.95	6,020.36	6,020.18	6,013.97	6,013.81	6,013.74	6,013.65	0.000	6.32	0.013
DP22-1	Pipe - (74)	5.20	18.0	31.3	0.050	6,009.45	6,007.89	6,015.56	6,015.17	6,010.70	6,009.88	6,010.33	6,008.41	0.000	10.67	0.013
DP16-2	Pipe - (75)	0.00	12.0	24.2	0.010	6,013.85	6,013.61	6,016.47	6,018.78	6,013.85	6,013.61	6,013.85	6,013.61	0.000	0.00	0.010
DP13-6	Pipe - (76)	0.00	12.0	15.9	0.030	6,014.02	6,013.54	6,017.02	6,018.07	6,014.02	6,013.54	6,014.02	6,013.54	0.000	0.00	0.010
DP09-2	Pipe - (78)	0.00	12.0	21.0	0.020	6,010.06	6,009.64	6,012.81	6,013.69	6,010.06	6,009.83	6,010.06	6,009.83	0.000	0.00	0.010

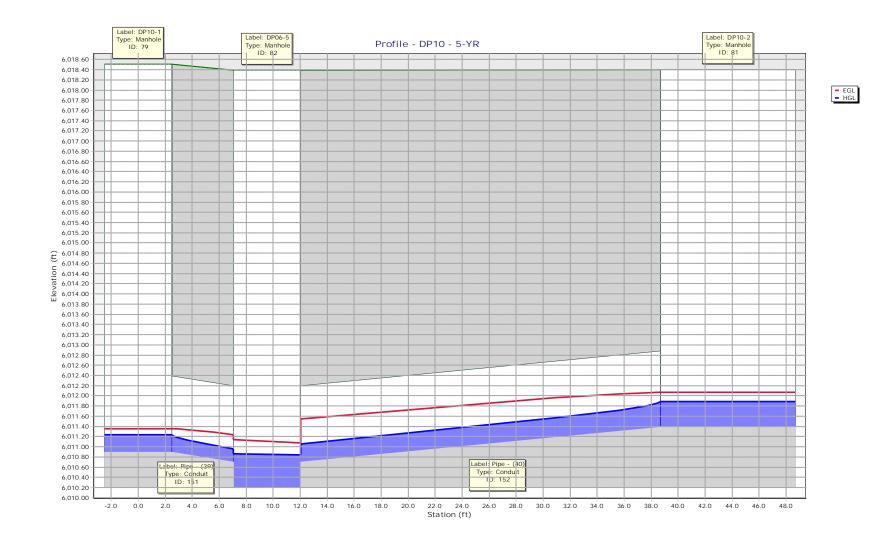

X:\1590000.all\1595010\StormCAD\1595010 StormCAD.stsw

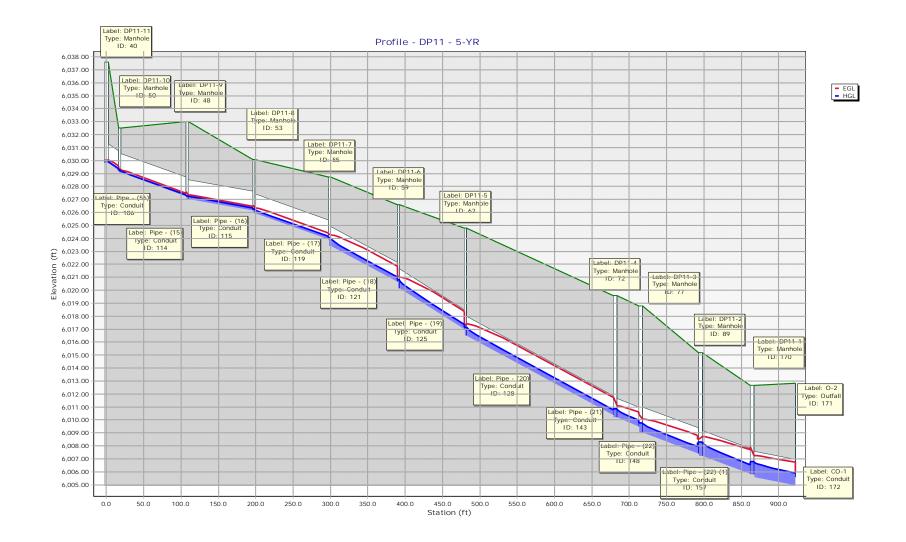


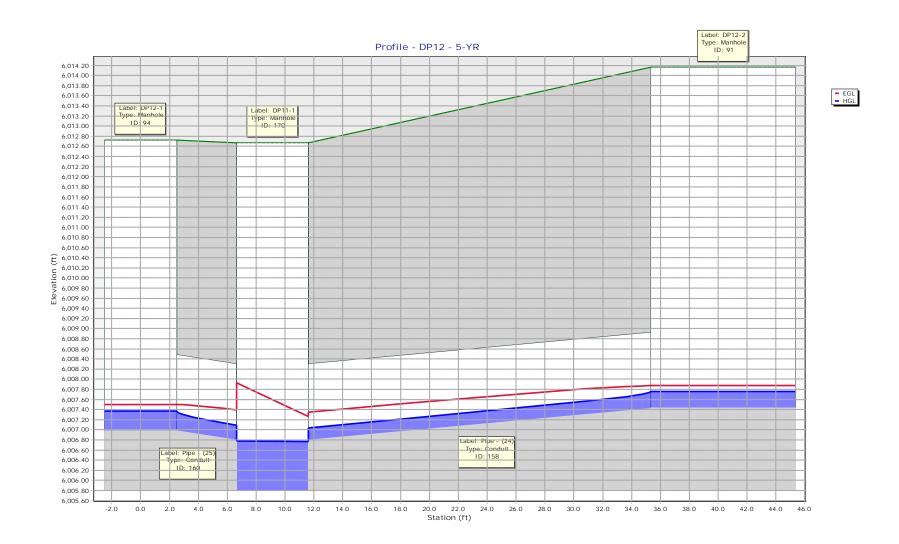


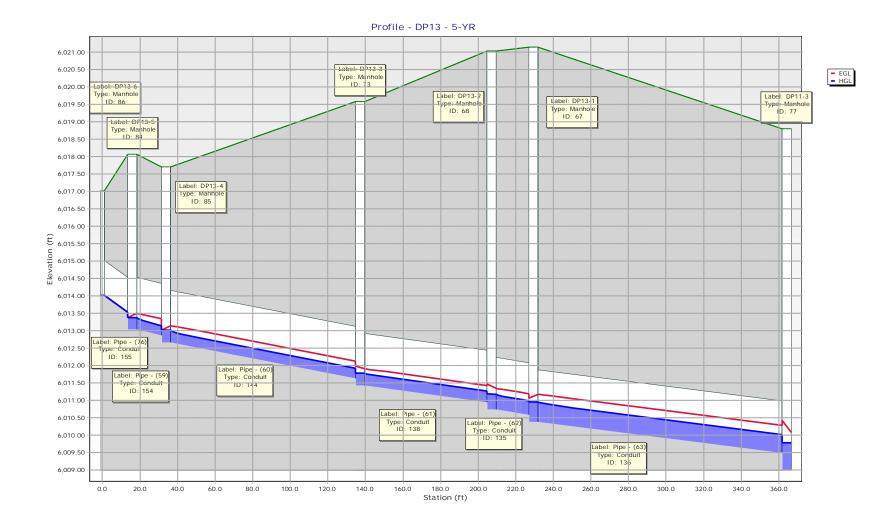


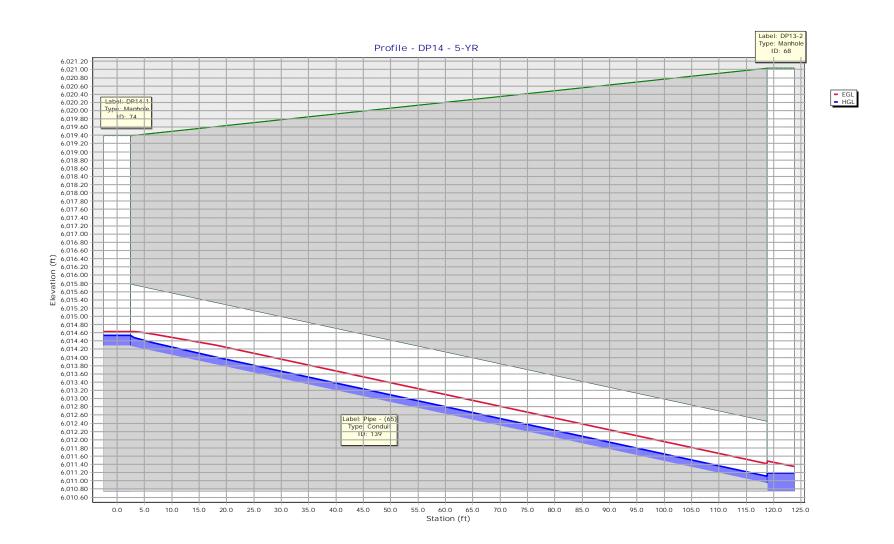


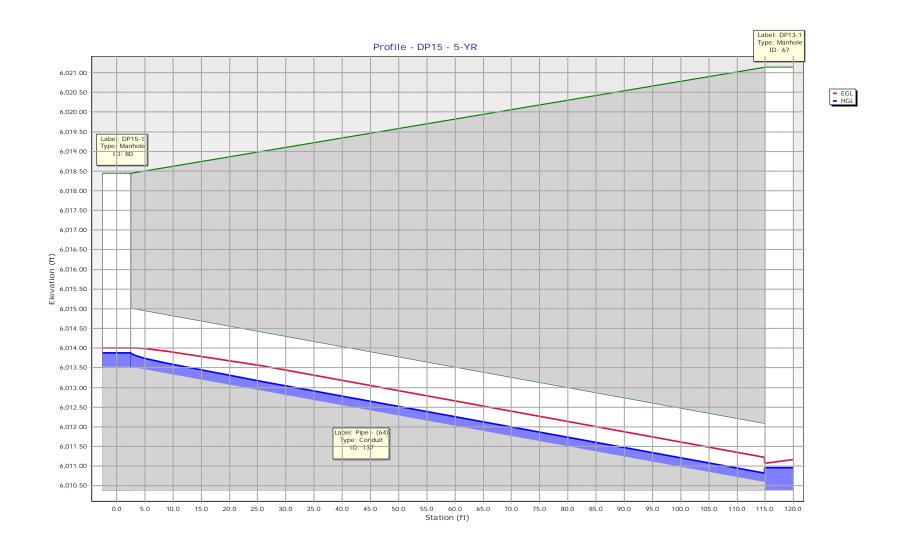


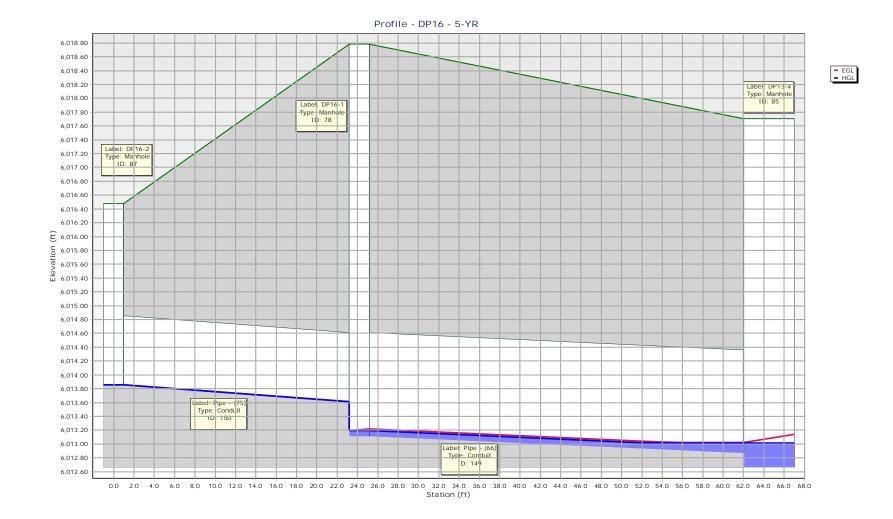


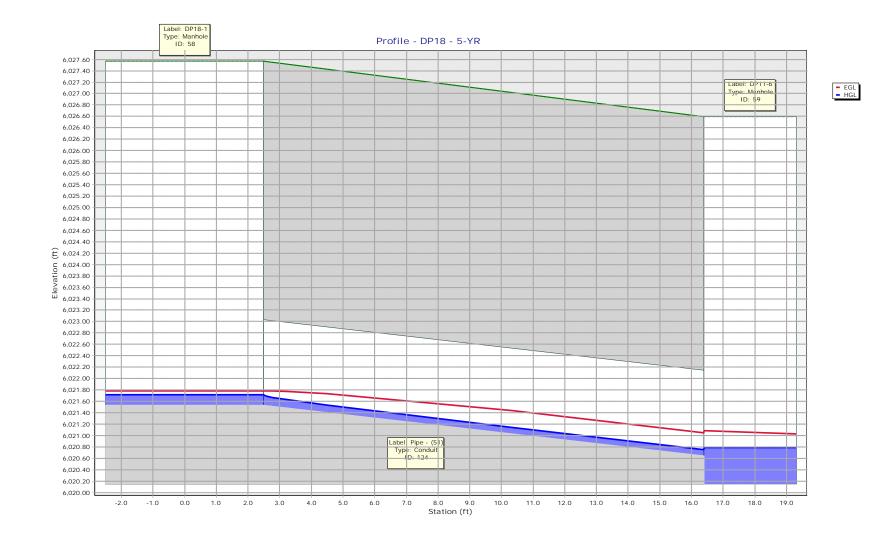


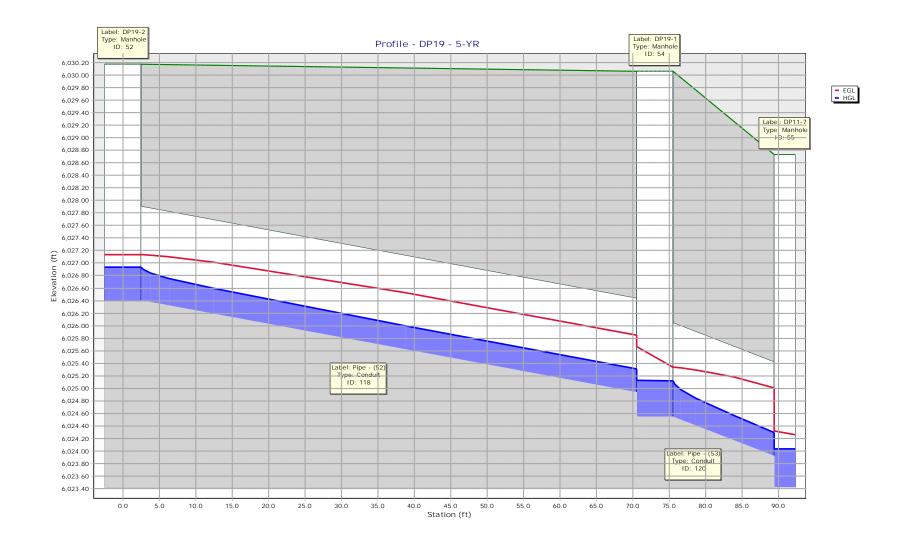


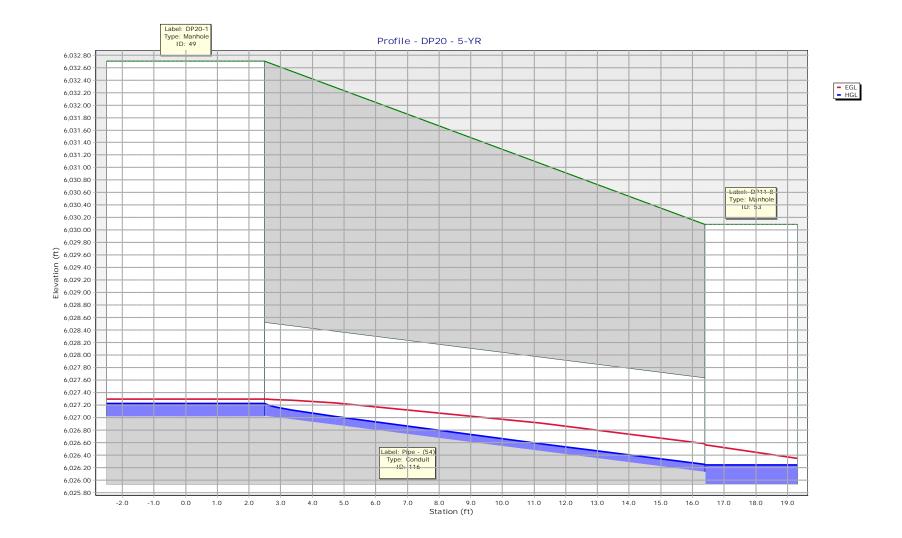


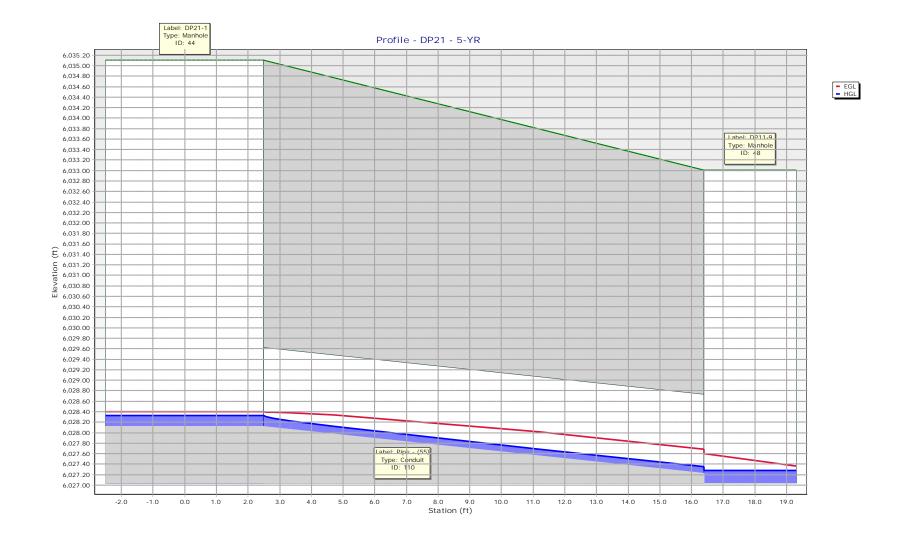


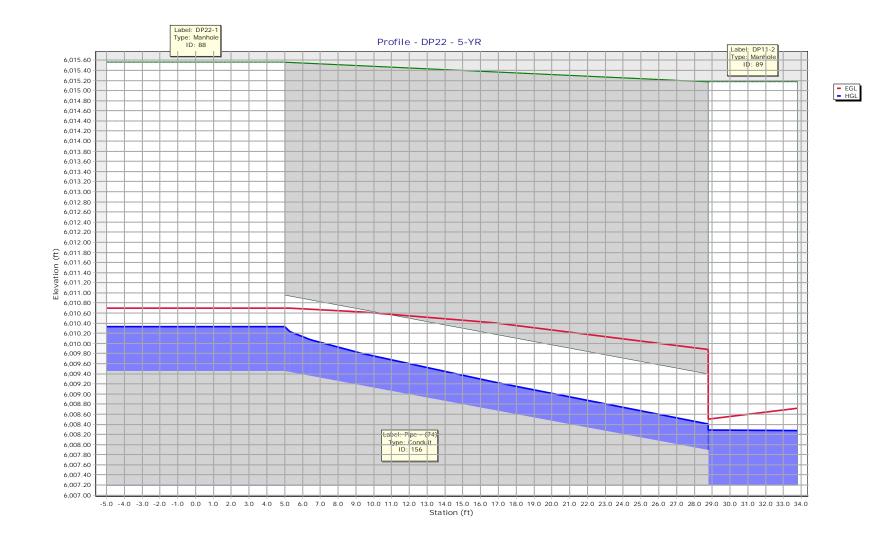


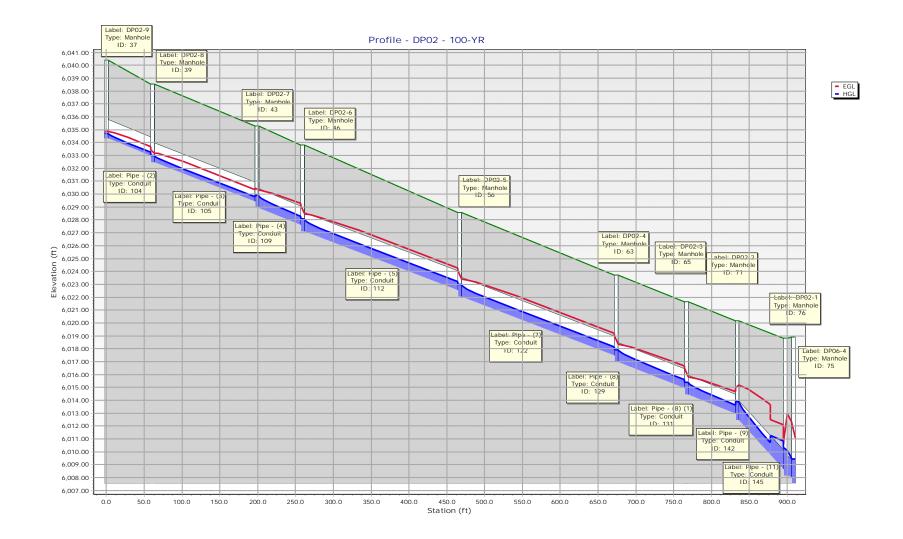


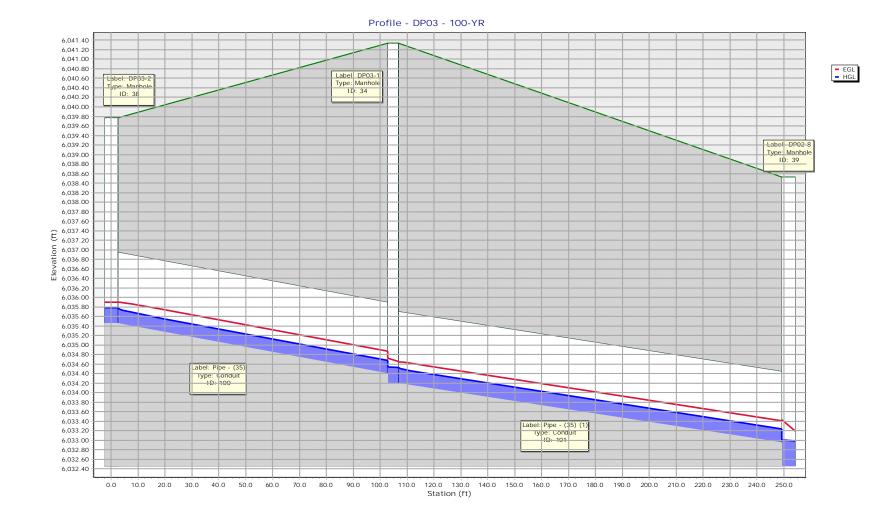


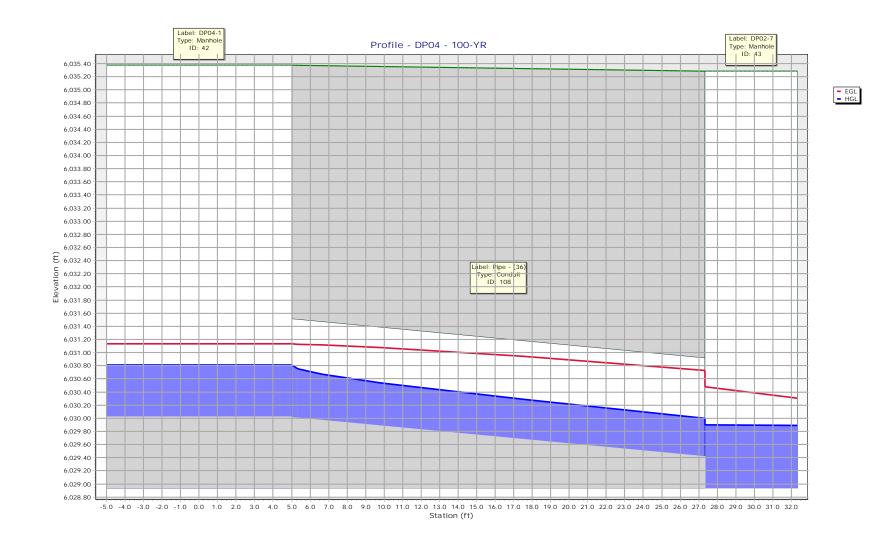


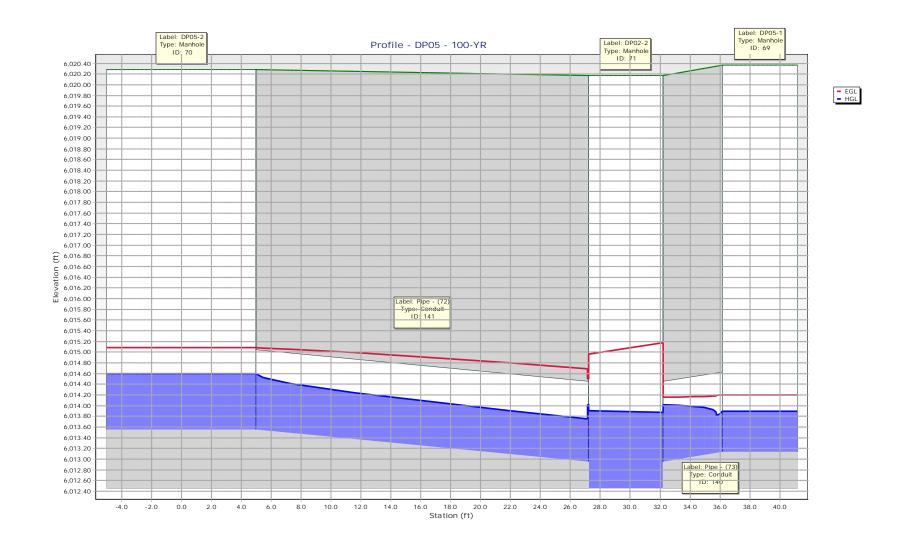


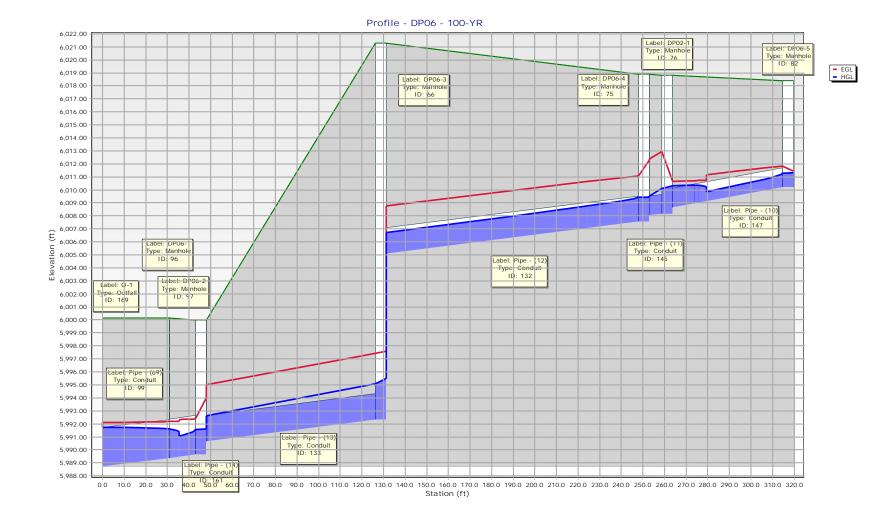


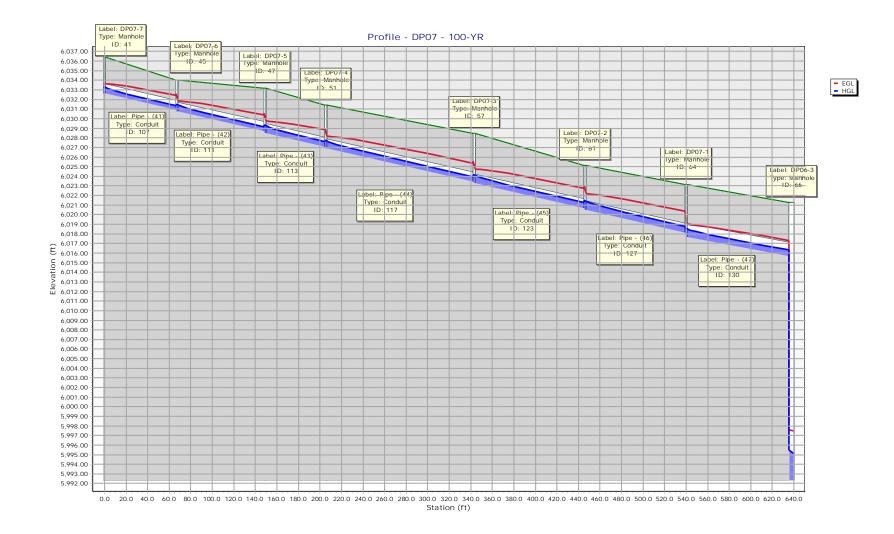

Scenario: 100-YR Current Time Step: 0.000 h FlexTable: Conduit Table

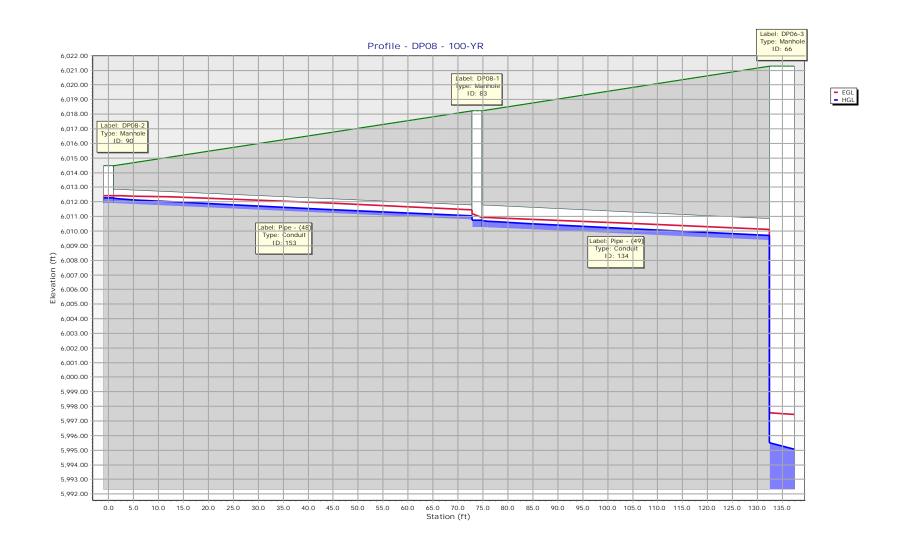

Upstream Structure	Label	Flow (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Upstream Structure Headloss Coefficient	Velocity (ft/s)	Manning's n
DP11-1	CO-1	27.37	24.0	57.7	0.011	6,005.59	6,004.94	6,012.67	6,012.84	6,008.96	6,008.12	6,007.78	6,006.94	0.025	8.71	0.013
DP02-9	Pipe - (2)	1.23	18.0	61.2	0.022	6,034.30	6,032.95	6,040.39	6,038.53	6,034.86	6,033.67	6,034.71	6,033.24	0.058	5.26	0.013
DP02-8	Pipe - (3)	2.03	18.0	137.9	0.022	6,032.45	6,029.42	6,038.53	6,035.28	6,033.19	6,030.36	6,032.99	6,029.79	0.066	6.09	0.013
DP02-7	Pipe - (4)	6.19	18.0	60.7	0.022	6,028.93	6,027.59	6,035.28	6,033.81	6,030.30	6,029.30	6,029.89	6,028.26	0.033	8.31	0.013
DP02-6	Pipe - (5)	6.19	18.0	207.2	0.022	6,027.09	6,022.53	6,033.81	6,028.55	6,028.47	6,024.26	6,028.05	6,023.19	0.096	8.31	0.013
DP02-5	Pipe - (7)	6.19	18.0	207.2	0.022	6,022.03	6.017.47	6,028.55	6,023.70	6,023.41	6,019.20	6,022.99	6,018.13	0.019	8.31	0.013
DP02-4	Pipe - (8)	6.19	18.0	92.6	0.022	6,016.97	6,014.93	6,023.70	6,021.63	6,018.35	6,016.66	6,017.93	6,015.59	0.037	8.31	0.013
DP02-3	Pipe - (8) (1)	6.19	18.0	67.2	0.022	6,014.43	6,012.95	6,021.63	6,020.18	6,015.81	6,014.67	6,015.39	6,013.61	0.035	8.31	0.013
DP02-2	Pipe - (9)	15.90	18.0	63.4	0.060	6,012.45	6,008.65	6,020.18	6,018.82	6,015.18	6,012.08	6,013.87	6,010.82	0.024	15.31	0.013
DP06-5	Pipe - (10)	7.96	18.0	55.8	0.028	6,010.20	6,008.65	6,018.39	6,018.82	6,011.81	6,010.64	6,011.30	6,010.33	0.021	9.68	0.013
DP02-1	Pipe - (11)	23.86	18.0	11.0	0.010	6,008.15	6,008.04	6,018.82	6,018.91	6,012.93	6,012.36	6,010.10	6,009.52	0.080	13.50	0.013
DP06-4	Pipe - (12)	31.58	24.0	121.6	0.020	6,007.54	6,005.09	6,018.91	6,021.28	6,011.07	6,008.79	6,009.42	6,006.72	0.018	11.64	0.013
DP06-3	Pipe - (13)	38.81	24.0	83.2	0.020	5,992.31	5,990.64	6,021.28	5,999.97	5,997.44	5,995.00	5,995.07	5,992.59	0.181	12.35	0.013
DP06-2	Pipe - (14)	34.80	36.0	14.6	0.020	5,989.64	5,989.35	5,999.97	6,000.13	5,992.39	5,992.18	5,991.56	5,991.60	0.046	12.34	0.013
DP11-10	Pipe - (15)	0.58	18.0	90.0	0.020	6,029.05	6,027.23	6,032.51	6,033.01	6,029.43	6,027.69	6,029.33	6,027.43	0.043	4.09	0.013
DP11-9	Pipe - (16)	1.31	18.0	90.0	0.010	6,027.03	6,026.13	6,033.01	6,030.09	6,027.61	6,026.74	6,027.46	6,026.49	0.041	4.05	0.013
DP11-8	Pipe - (17)	1.96	18.0	100.5	0.020	6,025.93	6,023.92	6,030.09	6,028.73	6,026.65	6,024.82	6,026.46	6,024.29	0.013	5.83	0.013
DP11-7	Pipe - (18)	5.70	18.0	92.5	0.030	6,023.42	6,020.65	6,028.73	6,026.59	6,024.73	6,022.51	6,024.34	6,021.22	0.022	9.10	0.013
DP11-6	Pipe - (19)	6.35	18.0	90.1	0.035	6,020.14	6,016.99	6,026.59	6,024.79	6,021.54	6,019.11	6,021.12	6,017.58	0.013	9.92	0.013
DP11-5	Pipe - (20)	7.08	18.0	200.1	0.031	6,016.49	6,010.37	6,024.79	6,019.60	6,017.99	6,012.49	6,017.52	6,011.02	0.083	9.72	0.013
DP11-4	Pipe - (21)	7.08	18.0	34.2	0.020	6,010.17	6,009.49	6,019.60	6,018.79	6,011.67	6,011.20	6,011.20	6,010.26	0.093	8.31	0.013
DP11-3	Pipe - (22)	11.72	24.0	79.9	0.020	6,008.99	6,007.39	6,018.79	6,015.17	6,010.74	6,009.17	6,010.22	6,008.77	0.014	9.40	0.013
DP11-2	Pipe - (22) (1)	19.03	24.0	69.4	0.020	6,007.19	6,005.80	6,015.17	6,012.67	6,009.56	6,008.38	6,008.76	6,007.81	0.016	10.62	0.013
DP12-2	Pipe - (24)	7.33	18.0	31.2	0.020	6,007.43	6,006.80	6,014.16	6,012.67	6,008.95	6,008.35	6,008.48	6,007.97	0.000	8.38	0.013
DP12-1	Pipe - (25)	2.73	18.0	9.1	0.020	6,006.98	6,006.80	6,012.72	6,012.67	6,008.03	6,008.02	6,007.95	6,007.97	0.000	6.41	0.013
DP01-1	Pipe - (26)	0.35	18.0	7.7	0.020	6,034.96	6,034.80	6,040.49	6,040.39	6,035.25	6,035.14	6,035.17	6,034.96	0.000	3.50	0.013
DP01-2	Pipe - (27)	0.88	18.0	29.7	0.020	6,035.40	6,034.80	6,040.48	6,040.39	6,035.87	6,035.38	6,035.75	6,035.05	0.000	4.61	0.013
DP03-2	Pipe - (35)	0.79	18.0	104.8	0.010	6,035.45	6,034.40	6,039.77	6,041.34	6,035.90	6,034.87	6,035.78	6,034.68	0.000	3.49	0.013
DP03-1	Pipe - (35) (1)	0.79	18.0	147.0	0.009	6,034.20	6,032.95	6,041.34	6,038.53	6,034.65	6,033.41	6,034.53	6,033.24	0.049	3.30	0.013
DP04-1	Pipe - (36)	4.29	18.0	29.8	0.020	6,030.02	6,029.42	6,035.38	6,035.28	6,031.13	6,030.73	6,030.81	6,030.00	0.000	7.27	0.013
DP10-1 DP10-2	Pipe - (39)	1.94 6.89	18.0	9.5 34.1	0.020 0.020	6,010.89 6,011.38	6,010.70 6,010.70	6,018.51 6,018.41	6,018.39 6,018.39	6,011.61 6,012.86	6,011.44	6,011.42	6,011.31	0.000	5.81 8.25	0.013 0.013
DP10-2 DP07-7	Pipe - (40) Pipe - (41)		18.0	67.3	0.020	6,032.61	6,030.93		6,018.39	6,033.63	6,012.39 6,032.46	6,012.40 6,033.31	6,011.46 6,031.35	0.000 0.000	8.58	0.013
DP07-7 DP07-6	Pipe - (41) Pipe - (42)	2.65 3.10	12.0 12.0	81.4	0.025	6,032.61	6,028.69	6,036.40 6,034.01	6,034.01	6,033.65	6,032.46	6,033.31	6,029.15	0.000	8.94	0.010
DP07-5	Pipe - (42)	3.76	12.0	56.7	0.025	6,028.49	6,027.07	6,033.17	6,031.39	6,029.77	6,028.84	6,029.31	6,029.15	0.055	9.39	0.010
DP07-4	Pipe - (44)	3.83	12.0	137.8	0.025	6,026.88	6,023.43	6,031.39	6,028.46	6,028.18	6,025.33	6,027.71	6,023.95	0.053	9.43	0.010
DP07-3	Pipe - (45)	4.72	12.0	102.8	0.025	6,023.23	6,020.66	6,028.46	6,025.14	6,024.76	6,022.76	6,024.13	6,021.25	0.033	9.90	0.010
DP07-2	Pipe - (46)	5.53	12.0	93.7	0.025	6,020.46	6,018.12	6,025.14	6,023.13	6,022.21	6,020.35	6,021.40	6,018.78	0.125	10.24	0.010
DP07-1	Pipe - (47)	6.12	18.0	98.1	0.020	6,017.62	6,015.66	6,023.13	6,021.28	6,018.99	6,017.32	6,018.58	6,016.33	0.027	8.00	0.013
DP08-2	Pipe - (48)	0.88	12.0	73.8	0.015	6,011.88	6,010.77	6,014.48	6,018.21	6,012.42	6,011.47	6,012.27	6,011.04	0.000	5.25	0.010
DP08-1	Pipe - (49)	1.59	18.0	61.1	0.015	6,010.27	6,009.36	6,018.21	6,021.28	6,010.92	6,010.09	6,010.75	6,009.71	0.008	4.95	0.013
DP17-1	Pipe - (50)	0.60	18.0	17.9	0.050	6.017.88	6.016.99	6.025.28	6.024.79	6.018.27	6.017.58	6.018.17	6.017.57	0.000	5.66	0.013
DP18-1	Pipe - (51)	0.60	18.0	17.9	0.050	6,021.53	6,020.64	6,027.57	6,026.59	6,021.92	6,021.17	6,021.82	6,021.16	0.000	5.66	0.013
DP19-2	Pipe - (52)	3.40	18.0	73.0	0.020	6,026.40	6,024.94	6,030.17	6,030.06	6,027.38	6,026.15	6,027.10	6,025.43	0.000	6.82	0.013
DP19-1	Pipe - (53)	4.27	18.0	17.8	0.035	6,024.55	6,023.92	6,030.06	6,028.73	6,025.65	6,025.36	6,025.34	6,024.45	0.040	8.89	0.013
DP20-1	Pipe - (54)	0.71	18.0	17.9	0.050	6,027.02	6,026.13	6,032.70	6,030.09	6,027.45	6,026.56	6,027.34	6,026.46	0.000	5.95	0.013
DP21-1	Pipe - (55)	0.71	18.0	17.9	0.050	6,028.12	6,027.23	6,035.10	6,033.01	6,028.55	6,027.96	6,028.44	6,027.41	0.000	5.95	0.013
DP11-11	Pipe - (56)	0.62	18.0	17.8	0.030	6,029.79	6,029.25	6,037.59	6,032.51	6,030.18	6,029.80	6,030.08	6,029.44	0.000	4.79	0.013
DP09-1	Pipe - (57)	9.51	18.0	222.1	0.005	6,009.14	6,008.04	6,013.69	6,018.91	6,011.88	6,010.06	6,011.43	6,009.61	0.232	5.38	0.013
DP13-5	Pipe - (59)	2.03	18.0	17.9	0.010	6,013.04	6,012.86	6,018.07	6,017.70	6,013.77	6,013.63	6,013.58	6,013.31	0.044	4.60	0.013
DP13-4	Pipe - (60)	2.38	18.0	103.3	0.010	6,012.66	6,011.63	6,017.70	6,019.57	6,013.46	6,012.47	6,013.25	6,012.11	0.008	4.81	0.013
DP13-3	Pipe - (61)	2.38	18.0	70.0	0.007	6,011.43	6,010.94	6,019.57	6,021.03	6,012.23	6,011.75	6,012.02	6,011.48	0.071	4.23	0.013
DP13-2	Pipe - (62)	3.35	18.0	22.3	0.007	6,010.74	6,010.59	6,021.03	6,021.14	6,011.71	6,011.56	6,011.44	6,011.32	0.153	4.64	0.013
DP13-1	Pipe - (63)	5.64	18.0	134.8	0.007	6,010.38	6,009.49	6,021.14	6,018.79	6,011.68	6,010.79	6,011.30	6,010.38	0.030	5.17	0.013
DP15-1	Pipe - (64)	2.29	18.0	117.5	0.025	6,013.52	6,010.58	6,018.44	6,021.14	6,014.30	6,011.42	6,014.09	6,011.31	0.000	6.60	0.013

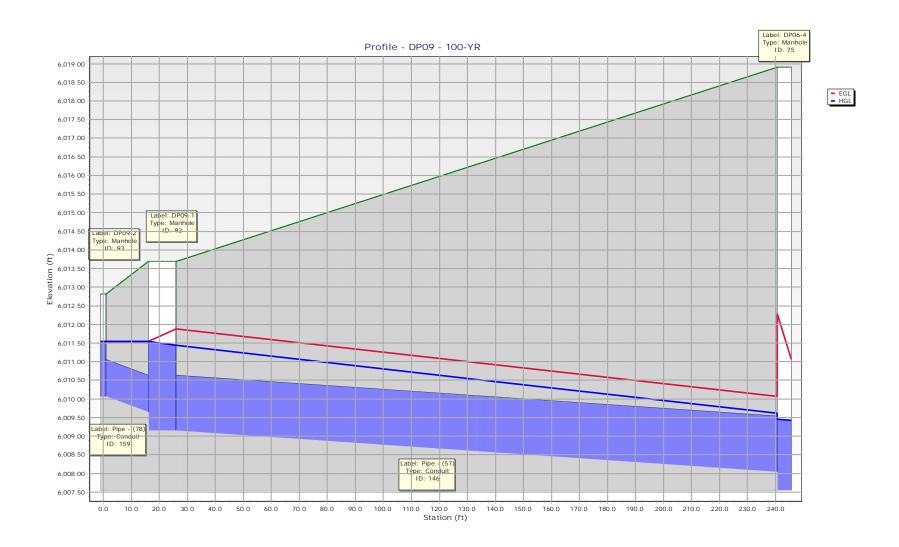

DP14-1	Pipe - (65)	0.97	18.0	121.3	0.027	6,014.28	6,010.94	6,019.40	6,021.03	6,014.77	6,011.53	6,014.64	6,011.48	0.000	5.30	0.013
DP16-1	Pipe - (66)	0.35	18.0	40.3	0.006	6,013.11	6,012.86	6,018.78	6,017.70	6,013.40	6,013.26	6,013.33	6,013.25	0.033	2.32	0.013
DP06-1	Pipe - (69)	34.80	36.0	30.8	0.020	5,989.34	5,988.72	6,000.13	6,000.13	5,992.18	5,992.10	5,991.60	5,991.72	0.001	12.36	0.013
DP05-2	Pipe - (72)	7.40	18.0	29.7	0.020	6,013.55	6,012.95	6,020.28	6,020.18	6,015.08	6,014.49	6,014.60	6,014.03	0.000	8.40	0.013
DP05-1	Pipe - (73)	4.00	18.0	9.0	0.020	6,013.13	6,012.95	6,020.36	6,020.18	6,014.20	6,014.16	6,013.90	6,014.02	0.000	7.13	0.013
DP22-1	Pipe - (74)	8.90	18.0	31.3	0.050	6,009.45	6,007.89	6,015.56	6,015.17	6,011.19	6,010.42	6,010.61	6,008.60	0.000	12.37	0.013
DP16-2	Pipe - (75)	0.09	12.0	24.2	0.010	6,013.85	6,013.61	6,016.47	6,018.78	6,014.02	6,013.79	6,013.98	6,013.71	0.000	2.31	0.010
DP13-6	Pipe - (76)	0.35	12.0	15.9	0.030	6,014.02	6,013.54	6,017.02	6,018.07	6,014.35	6,014.06	6,014.26	6,013.68	0.000	5.12	0.010
DP09-2	Pipe - (78)	0.18	12.0	21.0	0.020	6,010.06	6,009.64	6,012.81	6,013.69	6,011.54	6,011.54	6,011.54	6,011.54	0.000	0.23	0.010

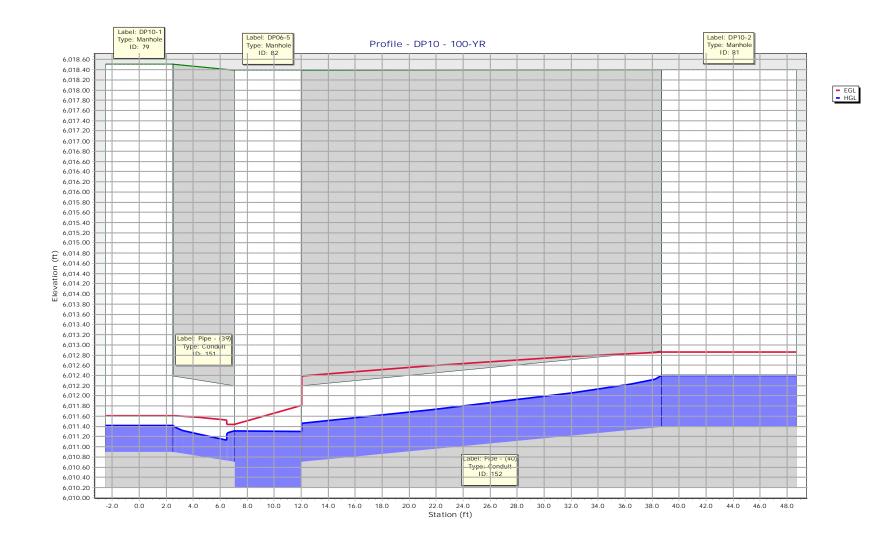

X:\1590000.all\1595010\StormCAD\1595010 StormCAD.stsw

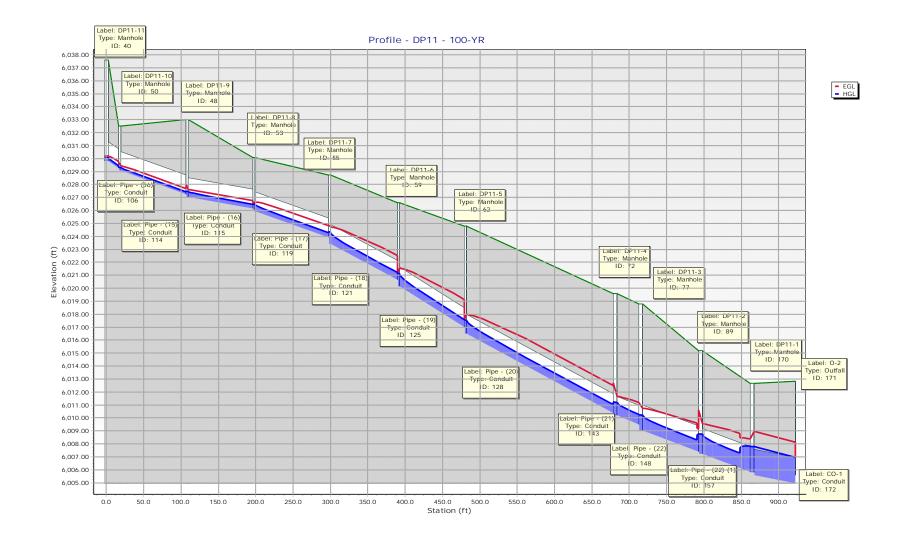


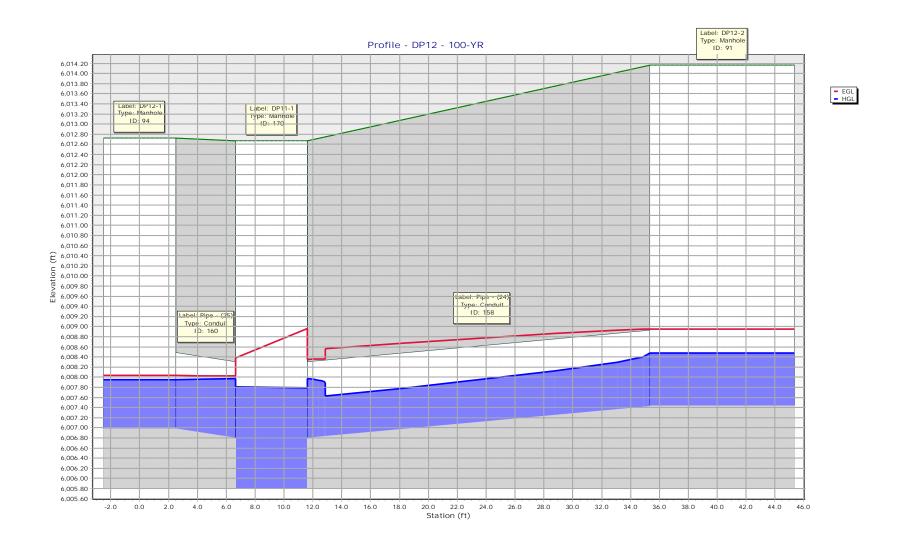


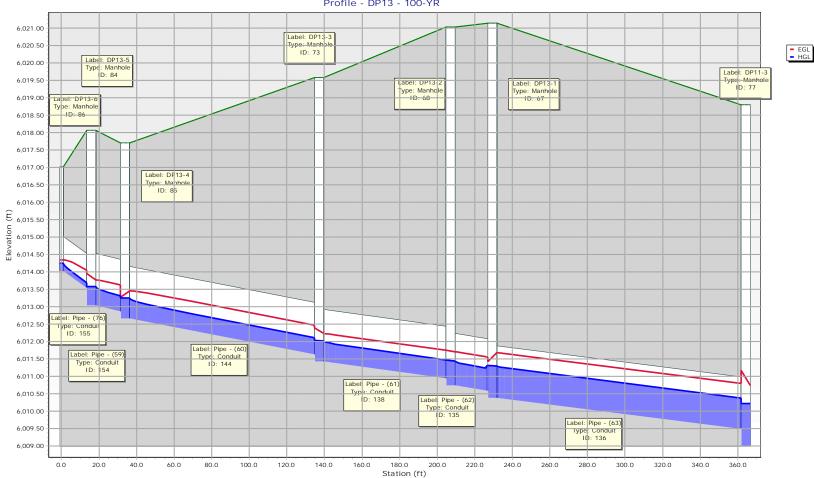


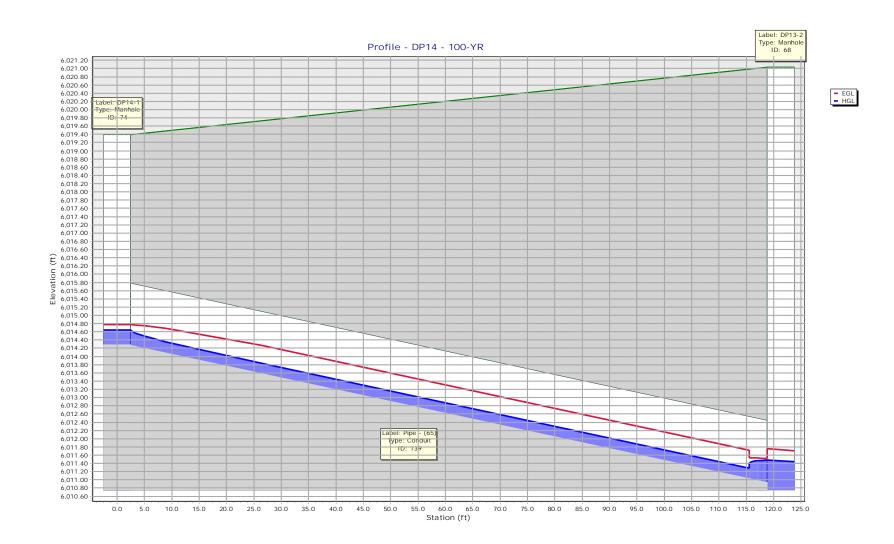


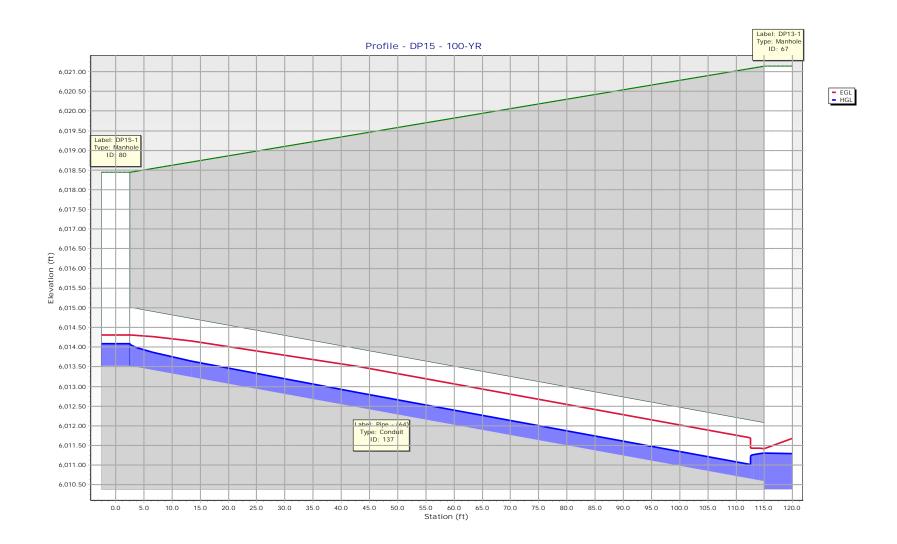


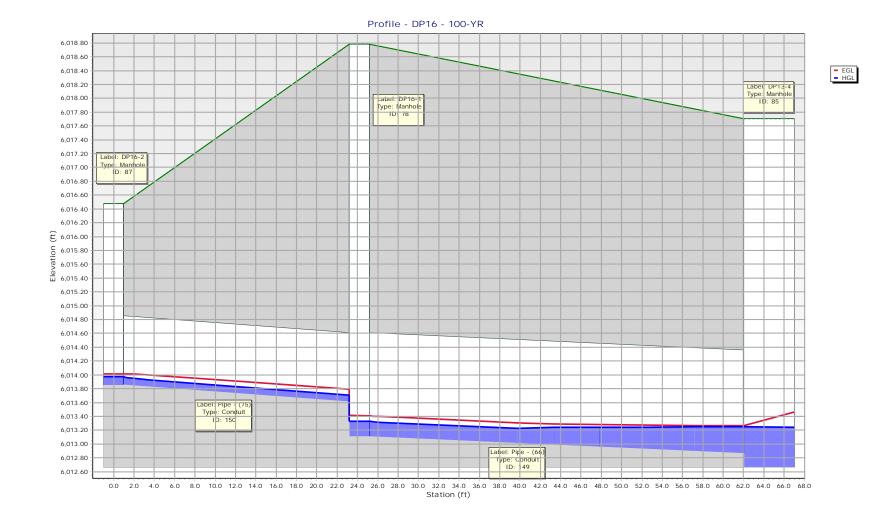


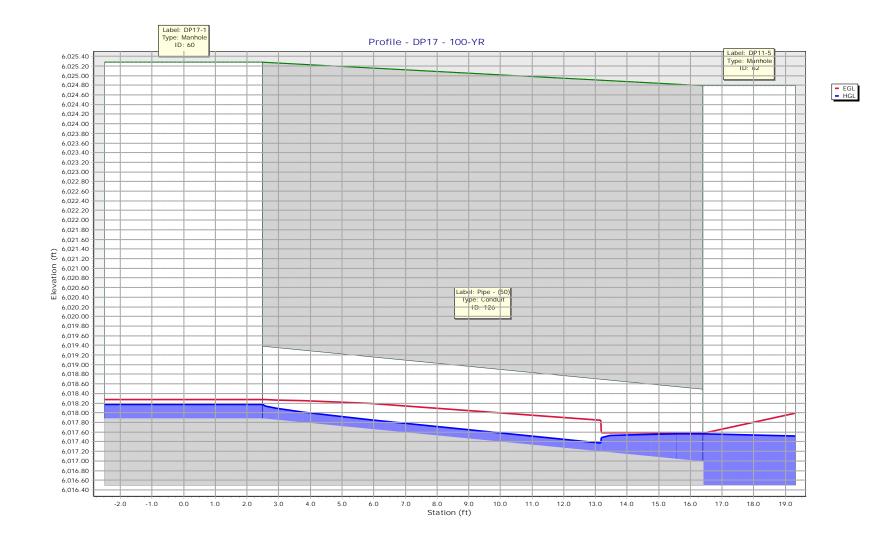


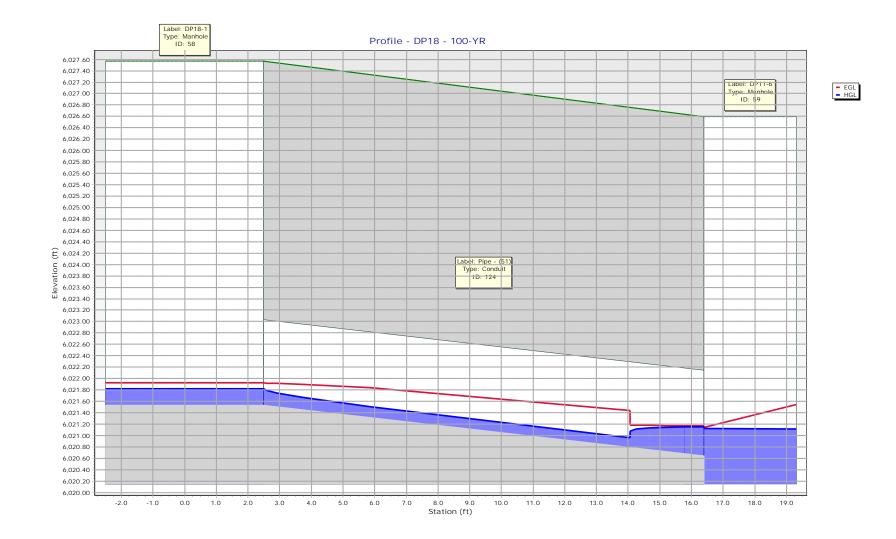


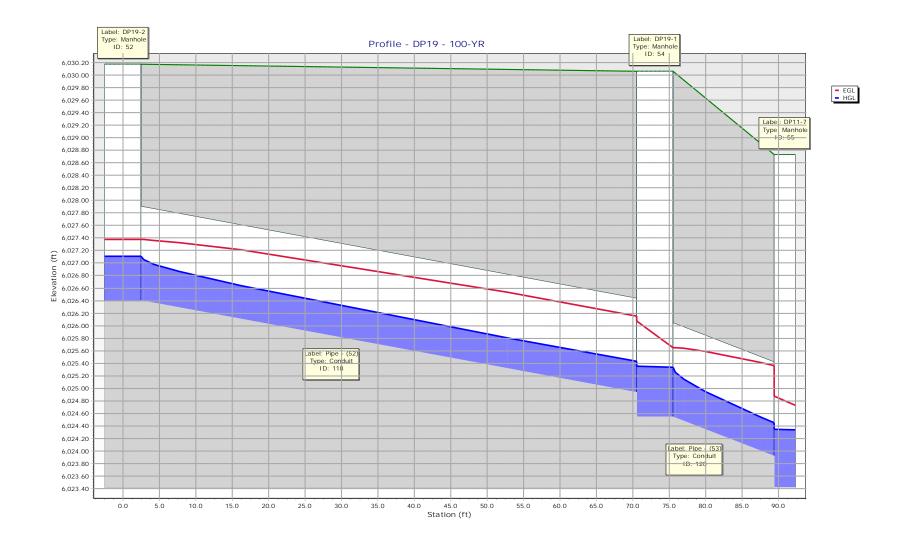


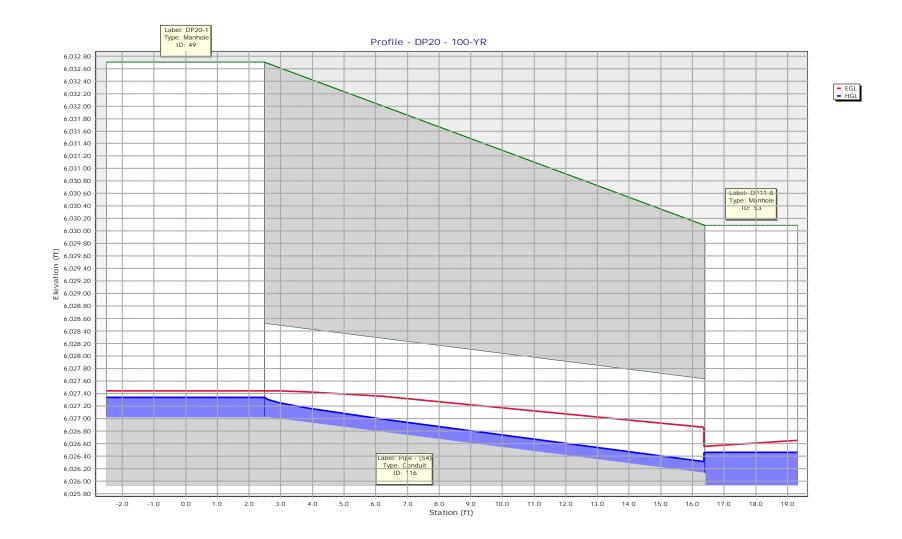


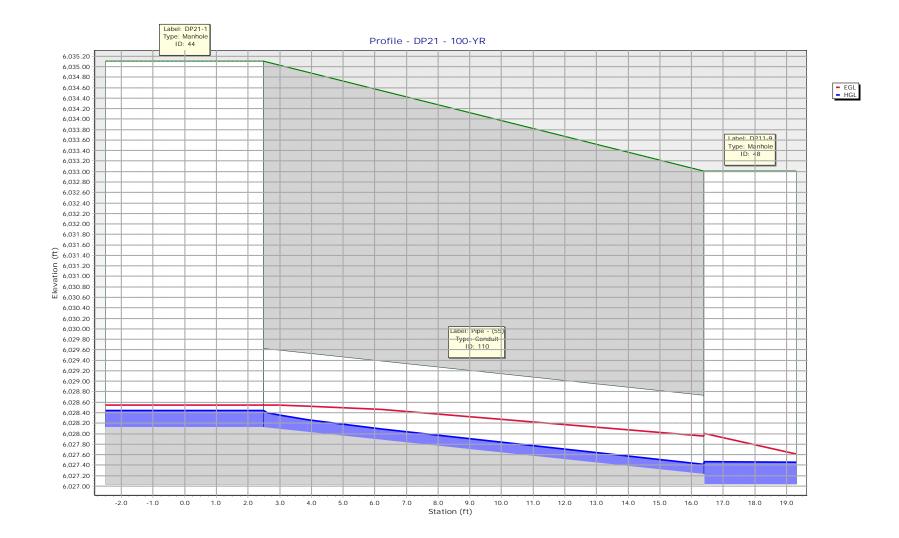


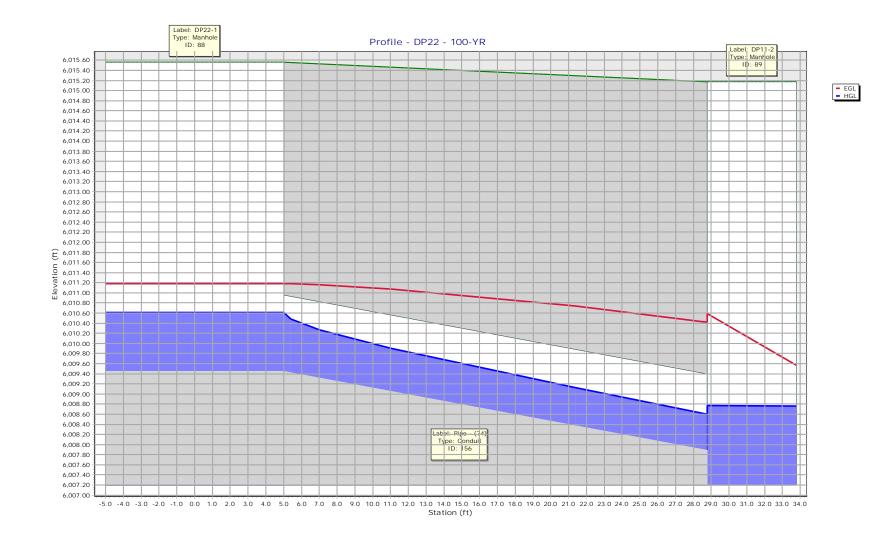



Profile - DP13 - 100-YR









INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP01	Inlet DP02	Inlet DP03
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	In Sump
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	0.20	0.35	0.40
Major Q _{Known} (cfs)	0.35	0.88	0.79

Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

One-Hour Precipitation, P ₁ (inches)	Design Storm Return Period, T _r (years)		
	One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.2	0.4	0.4
Major Total Design Peak Flow, Q (cfs)	0.4	0.9	0.8
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	N/A

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP04	Inlet DP05	Inlet DP07
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	1.94	4.12	3.42
Major Q _{Known} (cfs)	4.29	9.38	8.23

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Qb (cfs)	0.0	0.00	0.00

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	1.9	4.1	3.4
Major Total Design Peak Flow, Q (cfs)	4.3	9.4	8.2
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.00	0.79
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	1.94	4.24

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP14	Inlet DP15	Inlet DP16
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	0.99	0.84	3.07
Major Q _{Known} (cfs)	2.65	1.94	7.23

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	User-Defined	No Bypass Flow Received	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	0.79	0.0	0.0
Major Bypass Flow Received, Qb (cfs)	4.24	0.00	1.94

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	1.78	0.8	3.1
Major Total Design Peak Flow, Q (cfs)	6.89	1.9	9.2
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP19
Site Type (Urban or Rural)	URBAN
Inlet Application (Street or Area)	AREA
Hydraulic Condition	Swale
Inlet Type	User-Defined

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	0.25		
Major Q _{Known} (cfs)	4.18		

Bypass (Carry-Over) Flow from Upstream

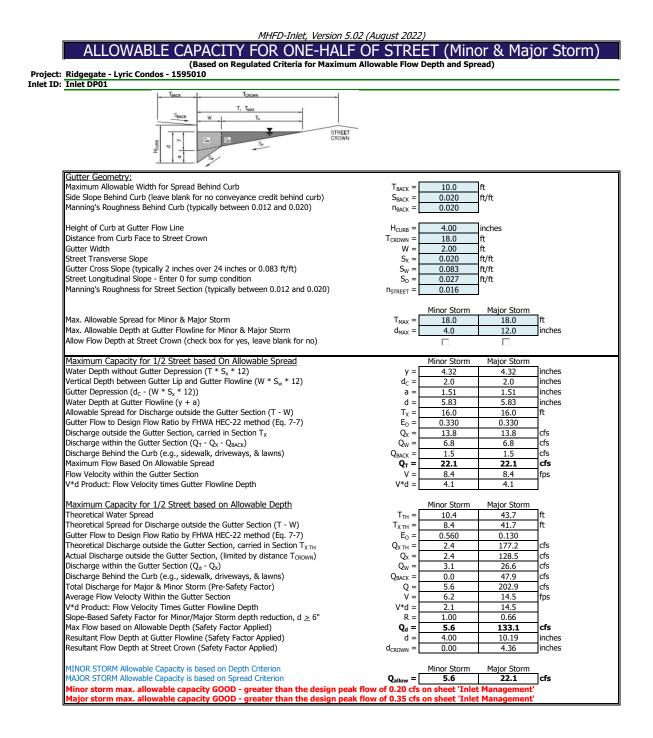
Receive Bypass Flow from:	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0
Major Bypass Flow Received, Q _b (cfs)	0.00

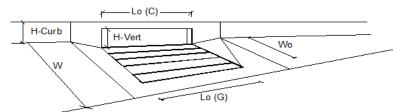
Watershed Characteristics

Subcatchment Area (acres)	
Percent Impervious	
NRCS Soil Type	

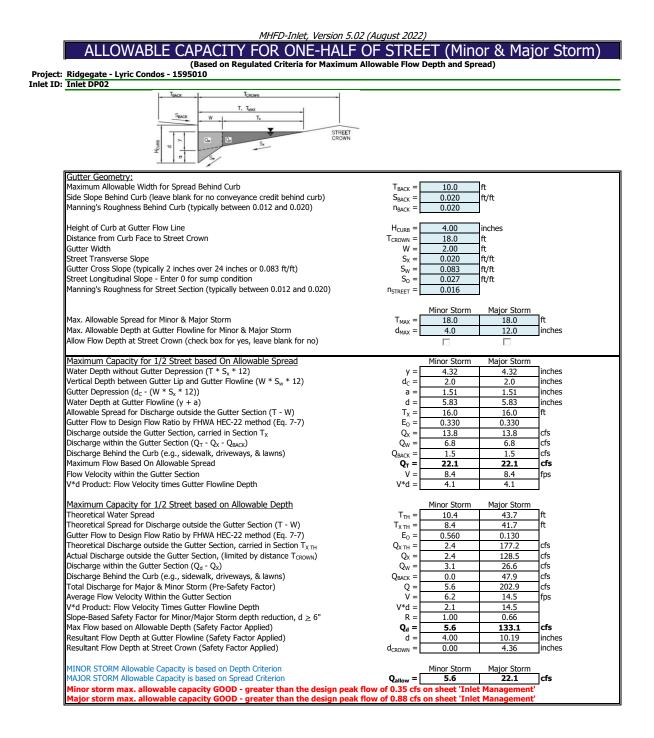
Watershed Profile

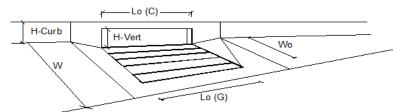
Overland Slope (ft/ft)	
Overland Length (ft)	
Channel Slope (ft/ft)	
Channel Length (ft)	

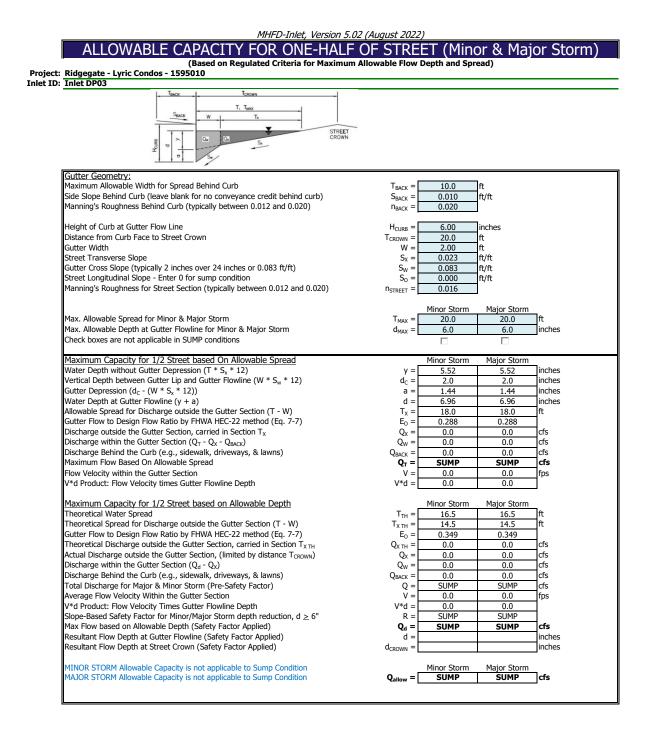

Minor Storm Rainfall Input

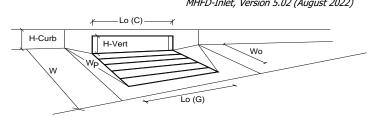

Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P ₁ (inches)	

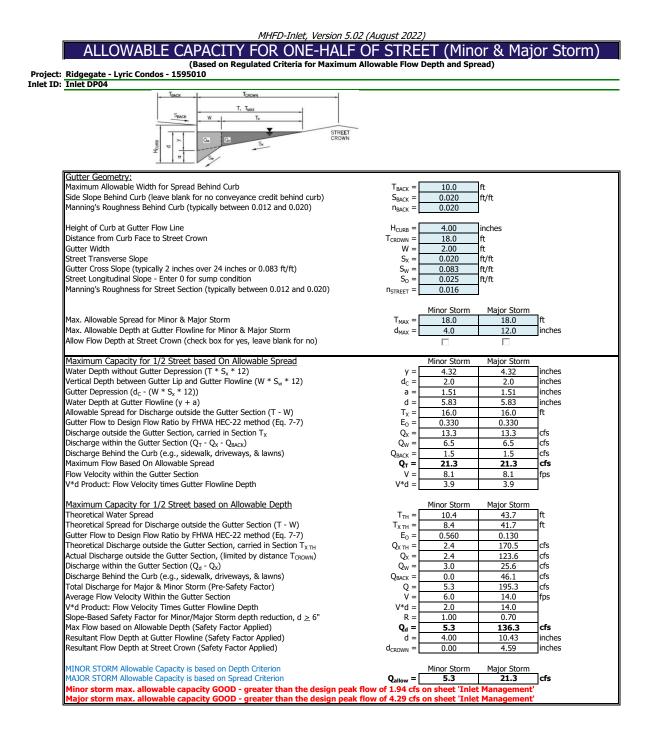
Major Storm Rainfall Input

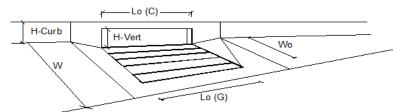

Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P_1 (inches)	

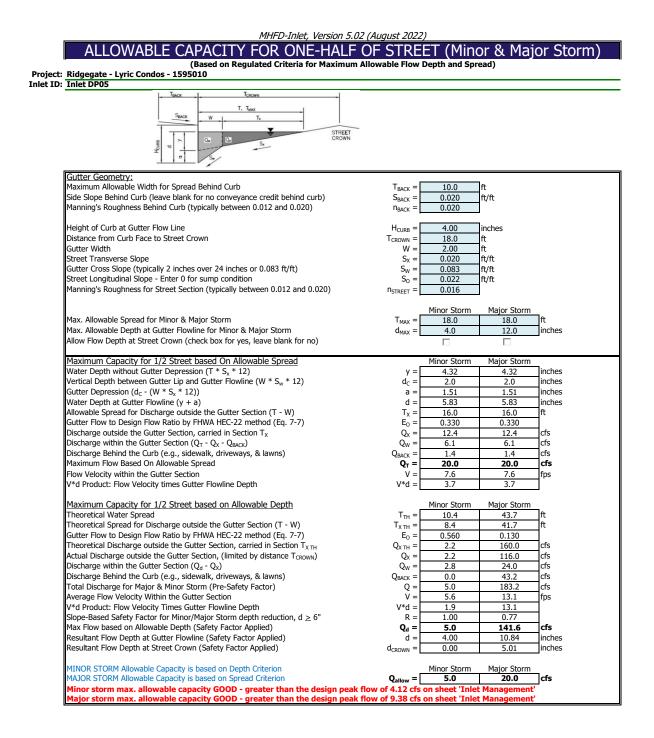

Minor Total Design Peak Flow, Q (cfs)	0.3
Major Total Design Peak Flow, Q (cfs)	4.2
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0

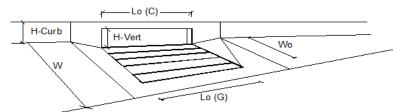


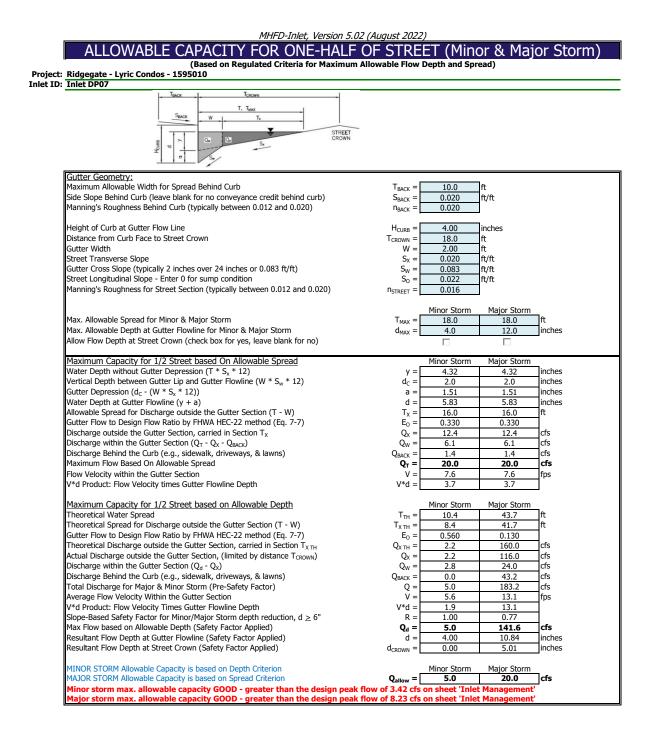

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Turne -		Curb Opening	
	Type =	5.0	5.0	inches
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} = No =	<u> </u>	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening)		5.00	5.00	ft
	$L_{o} =$			π ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	IL
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	_
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	o [MINOR	MAJOR	-6-
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_0 =$	0.2	0.4	cfs
Water Spread Width	Т =	1.4	1.7	ft
Water Depth at Flowline (outside of local depression)	d =	1.8	1.9	inches
Water Depth at Street Crown (or at T _{MAX})	$d_{CROWN} =$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	1.000	1.000	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.0	0.0	cfs
Discharge within the Gutter Section W	Q _w =	0.2	0.4	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.00	0.00	sq ft
Velocity within the Gutter Section W	$V_W =$	0.0	0.0	fps
Water Depth for Design Condition	$d_{IOCAL} =$	6.8	6.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L, =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	1
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$\hat{\mathbf{Q}_{a}} =$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	\tilde{Q}_{b} =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e	S _e =	0.291	0.291	ft/ft
Required Length L_{T} to Have 100% Interception	L _T =	1.60	2.13	ft
Under No-Clogging Condition	-1 1	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	1.60	2.13	ft
Interception Capacity	$Q_i =$	0.2	0.4	cfs
Under Clogging Condition	Qi -	MINOR	MAJOR	_
Clogging Coefficient	CurbCoeff =	1.00	1.00	٦
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	-
Effective (Unclogged) Length	Le =	1.60	2.13	ft
Actual Interception Capacity	-	0.2	0.4	cfs
Carry-Over Flow = $Q_{b/GRATE}$ - Q_a	$Q_a =$	0.2	0.4	cfs
Summary Summary	Q _b =	MINOR	MAJOR	103
	∩ – [[]	0.2		-fc
Total Inlet Interception Capacity	Q =		0.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o	C% =	100	100	%

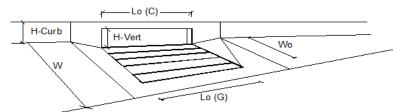


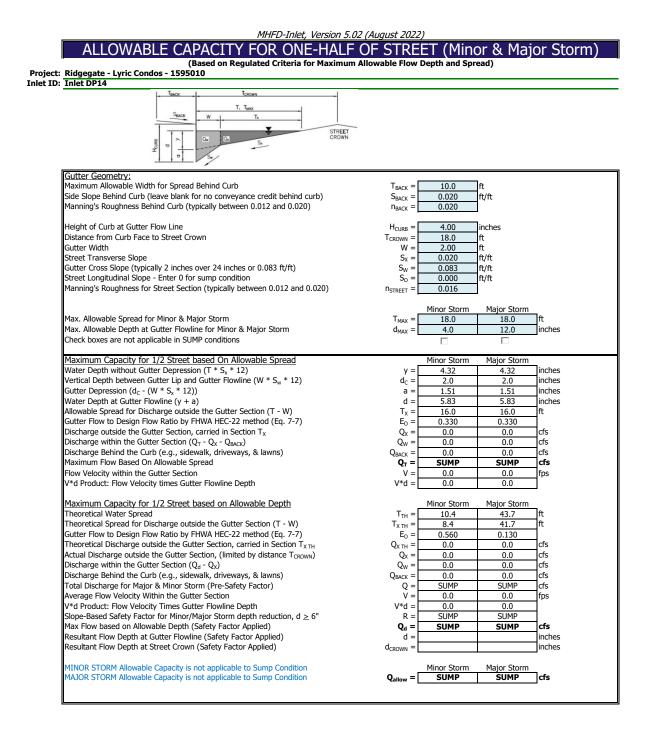

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a')		5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	1	1	linches
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$U_0 = W_0 = 0$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.3)	$C_{f}(G) = C_{f}(C) = C_{f}(C)$	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'	G(C) =	MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_0 =$	0.4	0.9	cfs
Water Spread Width	- ₀2 T =	1.7	3.4	ft
Water Depth at Flowline (outside of local depression)	d =	1.9	2.3	inches
Water Depth at Thomine (outside of local depression) Water Depth at Street Crown (or at T_{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$U_{CROWN} = E_0 = E_0$	1.000	0.0	linches
5		0.0	0.978	ofo
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =			cfs cfs
Discharge within the Gutter Section W	Q _w =	0.4	0.9	
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W =$	0.00	0.22	sq ft
Velocity within the Gutter Section W	V _W =	0.0	3.9	fps
Water Depth for Design Condition	d _{LOCAL} =	6.9	7.3	inches
Grate Analysis (Calculated)		MINOR	MAJOR	7.
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$V_o =$	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	-	MINOR	MAJOR	-
Equivalent Slope S _e	S _e =	0.291	0.285	ft/ft
Required Length L _T to Have 100% Interception	L _T =	2.13	3.44	ft
Under No-Clogging Condition	_	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	2.13	3.44	ft
Interception Capacity	$Q_i =$	0.4	0.9	cfs
Under Clogging Condition	-	MINOR	MAJOR	
Clogging Coefficient	CurbCoeff =	1.00	1.00	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	2.13	3.44	ft
Actual Interception Capacity	Q _a =	0.4	0.9	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	$\dot{\mathbf{Q}}_{\mathrm{b}} =$	0.0	0.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.4	0.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Capture Percentage = Q_a/Q_a	C% =	100	100	%

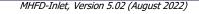


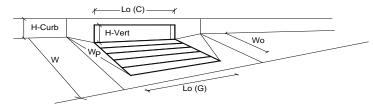

Design Information (Input)	r	MINOR	MAJOR	-
l ype of Inlet	Type =	<i>.</i> .	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information	-	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ſt
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	-
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
	-			=
	- 1	MINOR	MAJOR	٦.
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	0.40	0.79	cfs

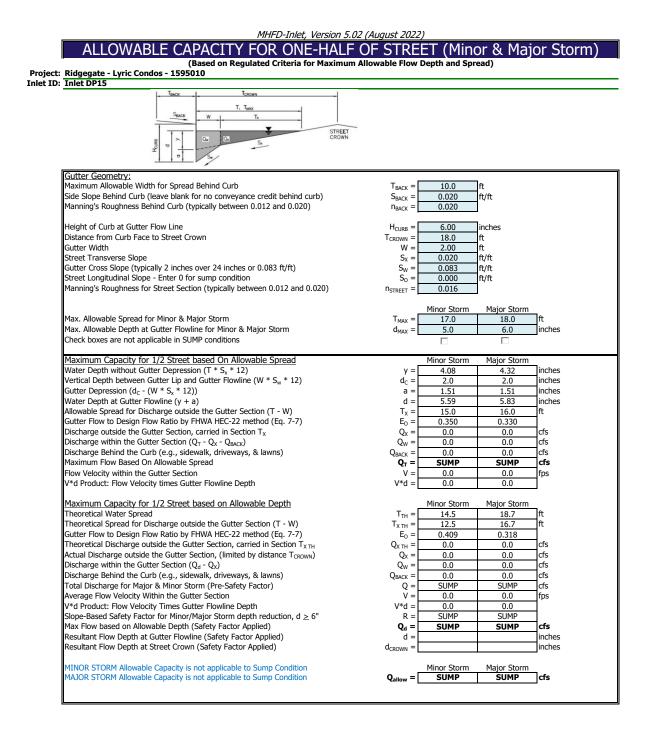


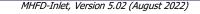

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Turpo –		Curb Opening	
	Type =	5.0	5.0	inches
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} = No =	1	5.0	linches
Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening)		10.00	4	ft
	L _o =	N/A	10.00	π ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =		N/A N/A	IL
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A		_
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	o	MINOR	MAJOR	-6-
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_0 =$	1.9	4.3	cfs
Water Spread Width	T =	6.2	9.4	ft
Water Depth at Flowline (outside of local depression)	d =	3.0	3.8	inches
Water Depth at Street Crown (or at T _{MAX})	$d_{CROWN} =$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.806	0.609	
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	0.4	1.7	cfs
Discharge within the Gutter Section W	Q _w =	1.6	2.6	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.33	0.46	sq ft
Velocity within the Gutter Section W	$V_W =$	4.7	5.7	fps
Water Depth for Design Condition	d _{LOCAL} =	8.0	8.8	inches
Grate Analysis (Calculated)	-	MINOR	MAJOR	_
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	•	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L. =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$\hat{\mathbf{Q}_{a}} =$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	$\vec{Q}_{b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	C 0	MINOR	MAJOR	
Equivalent Slope S_{e}	S _e =	0.239	0.185	ft/ft
Required Length L_{τ} to Have 100% Interception	L _T =	5.57	9.38	ft
Under No-Clogging Condition	-1	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	5.57	9.38	ft
Interception Capacity	$Q_i =$	1.9	4.3	cfs
Under Clogging Condition	Qi –	MINOR	MAJOR	
Clogging Coefficient	CurbCoeff =	1.25	1.25	٦
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length		5.57	9.38	ft
Actual Interception Capacity	-	1.9	9.38 4.3	cfs
Carry-Over Flow = $Q_{b/GRATE}$ - Q_a	$Q_a =$	0.0	4.3	cfs
Summary Summary	Q _b =	MINOR	MAJOR	US
	o – I	1.9	MAJOR 4.3	afo.
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o	C% =	100	100	%

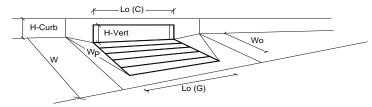


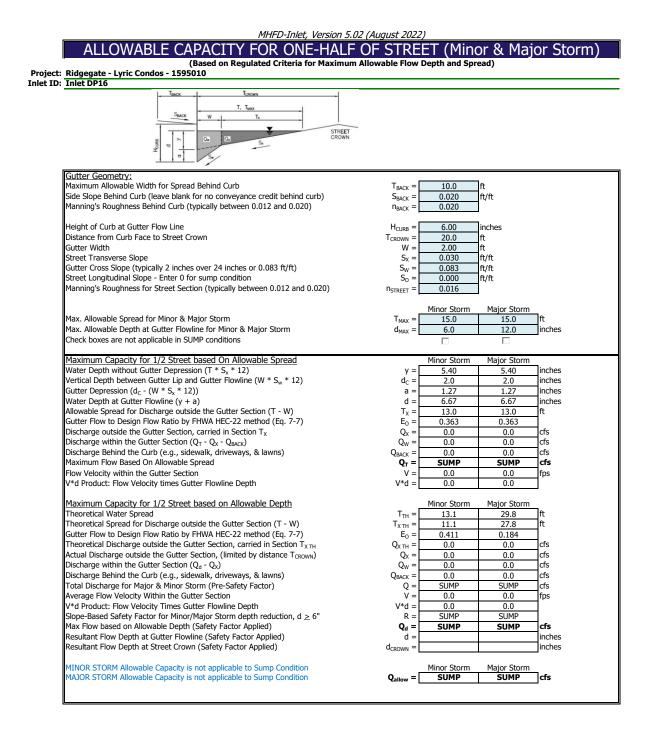

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')		5.0	5.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	1	1	linches
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)		N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$W_o = C_f(G) =$	N/A N/A	N/A	11
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.5)	$C_f(G) = C_f(C) =$	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'	G(C) =	MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	Q _o =	4.1	9.4	cfs
Water Spread Width	Q₀ = T =	9.5	13.5	ft
Water Depth at Flowline (outside of local depression)	d =	3.8	4.8	inches
Water Depth at Flowing (outside of local depression) Water Depth at Street Crown (or at T_{MAX})	-	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	d _{CROWN} =	0.604	0.439	linches
	E ₀ =		5.2	cfs
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	1.6 2.5	4.1	cfs
Discharge within the Gutter Section W	Q _w =			
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.1	cfs
Flow Area within the Gutter Section W	$A_W =$	0.46	0.63	sq ft
Velocity within the Gutter Section W	V _W =	5.4	6.5	fps
Water Depth for Design Condition	$d_{I,OCAL} =$	8.8	9.8	inches
Grate Analysis (Calculated)	. г	MINOR	MAJOR	7.0
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition	r	MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	$V_o =$	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} =$	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	_
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	r	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	r	MINOR	MAJOR	_
Equivalent Slope S _e	S _e =	0.184	0.139	ft/ft
Required Length L_T to Have 100% Interception	L _T =	9.15	15.72	ft
Under No-Clogging Condition	-	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	9.15	10.00	ft
Interception Capacity	$Q_i =$	4.1	7.7	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient	CurbCoeff =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	9.15	9.38	ft
Actual Interception Capacity	$Q_a =$	4.1	7.4	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.0	1.8	cfs
Summary	-	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.1	7.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	1.94	cfs
Capture Percentage = Q_a/Q_o	C% =	100	79	%

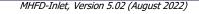


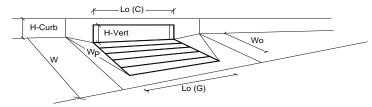

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Turno –		Curb Opening	
	Type =	5.0	5.0	inches
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} = No =	1	5.0	linches
Total Number of Units in the Inlet (Grate or Curb Opening) Length of a Single Unit Inlet (Grate or Curb Opening)		5.00	5.00	ft
	$L_0 =$			π ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_{o} =$	N/A	N/A	IL
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	-
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	- I	MINOR	MAJOR	٦,
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o =$	3.4	8.2	cfs
Water Spread Width	T =	8.7	12.8	ft .
Water Depth at Flowline (outside of local depression)	d =	3.6	4.6	inches
Water Depth at Street Crown (or at T _{MAX})	$d_{CROWN} =$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.647	0.461	-
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	1.2	4.4	cfs
Discharge within the Gutter Section W	Q _w =	2.2	3.8	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.1	cfs
Flow Area within the Gutter Section W	A _W =	0.43	0.60	sq ft
Velocity within the Gutter Section W	V _W =	5.1	6.3	fps
Water Depth for Design Condition	d _{LOCAL} =	8.6	9.6	inches
Grate Analysis (Calculated)	-	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	$\vec{Q}_{b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	₹B	MINOR	MAJOR	
Equivalent Slope S _e	S _e =	0.196	0.145	ft/ft
Required Length L_{T} to Have 100% Interception	υ _e –	8.09	14.47	ft
Under No-Clogging Condition	-r -	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	5.00	5.00	Πt
Interception Capacity	L = Q _i =	2.8	5.00 4.4	cfs
Under Clogging Condition	$Q_i =$	Z.8 MINOR	4.4 MAJOR	
	CurbCoeff =	1.00	1.00	7
Clogging Coefficient				-
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	
Effective (Unclogged) Length	L _e =	4.50	4.50	ft -e-
Actual Interception Capacity	$Q_a =$	2.6	4.0	cfs
Carry-Over Flow = $Q_{b(GRATF)}$ - Q_a	Q _b =	0.8	4.2	cfs
Summary	- 1	MINOR	MAJOR	٦.
Total Inlet Interception Capacity	Q =	2.6	4.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.79	4.24	cfs
Capture Percentage = Q_a/Q_o	C% =	77	48	%






Design Information (Input)		MINOR	MAJOR	1
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	5.00	5.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	incido
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	5.8	inches
Grate Information	· · · · · · · · · · · · · · · · ·	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	_
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	I
Grate Flow Analysis (Calculated)	Coef =	MINOR	MAJOR	
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Clog =	N/A N/A	N/A N/A	-
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	ciog =	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wi} = Q _{wa} =	N/A N/A	N/A N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	Qwa —	MINOR	MAJOR	0.5
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} =$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	~ coa	MINOR	MAJOR	0.0
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	2.6	8.2	cfs
Interception with Clogging	Q _{wa} =	2.5	7.7	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	0 F	MINOR	MAJOR	-6-
Interception without Clogging	Q _{oi} =	19.5	22.2 20.8	cfs
Interception with Clogging Curb Opening Capacity as Mixed Flow	Q _{oa} =	18.3 MINOR	20.8 MAJOR	cfs
Interception without Clogging	o - F	6.7	MAJOR 12.5	cfs
Interception without clogging	Q _{mi} = Q _{ma} =	6.3	12.5	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{ma} =$ $Q_{curb} =$	2.5	7.7	cfs
Resultant Street Conditions	ccaib	MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)		10.4	18.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
				-
Low Head Performance Reduction (Calculated)	-	MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.17	0.32	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.79	0.92	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOD	M4305	
	~ [_]	MINOR 2.5	MAJOR 7.7]-fa
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}} = \mathbf{Q}_{PEAK REQUIRED}$	2.5 1.8	6.9	cfs cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	✓ PEAK KEQUIRED =	1.0	0.9	613





Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	<u> </u>	1	linches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	5.8	inches
Grate Information	ronaling bepar =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_0(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical values 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{W}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{0}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	_	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	3.9	5.6	cfs
Interception with Clogging	Q _{wa} =	3.5	5.0	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	. г	MINOR	MAJOR	- -
Interception without Clogging	Q _{oi} =	8.9	9.6	cfs
Interception with Clogging	Q _{oa} =	8.1	8.7	cfs
Curb Opening Capacity as Mixed Flow	~ F	MINOR	MAJOR	ofo
Interception without Clogging	Q _{mi} =	5.5 4.9	6.8	cfs
Interception with Clogging	Q _{ma} = Q_{curb} =	4.9 3.5	6.1 5.0	cfs cfs
Resulting Curb Opening Capacity (assumes clogged condition)	•Curb –	MINOR	MAJOR	
Resultant Street Conditions	, r	-		foot
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above)	L = T =	5.00 14.5	5.00 18.0	feet ft
	· · · ·	0.0	0.0	
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	MAJOR N/A	ft
Depth for Curb Opening Weir Equation	d _{Grate} = d _{Curb} =	0.25	0.32	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.25 N/A	0.32 N/A	ii.
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Grate} = RF _{Curb} =	1.00	1.00	-
Combination Inlet Performance Reduction Factor for Long Inlets		1.00 N/A	1.00 N/A	-
Complication Theorem Contraince Reduction Factor for Long Theos	RF _{Combination} =	iv/A	IV/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	5.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REOUIRED} =$	0.8	1.9	cfs
and suparty to doop for millor and major storms (20 FCak)	ST LAK NEQUINED	0.0		

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	incineo
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.7	inches
Grate Information	· · · · · · · · · · · · · · · · · · ·	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)	F	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	- F	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	о Г	MINOR	MAJOR	
Interception without Clogging	$Q_{mi} =$	N/A	N/A	cfs
Interception with Clogging	Q _{ma} = Q_{Grate} =	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes clogged condition) Curb Opening Flow Analysis (Calculated)	V Grate –	MINOR	MAJOR	LIS
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	_
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	city =	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	8.8	MAJOR 11.6	cfs
Interception with Clogging	Q _{wi} = Q _{wa} =	8.3	10.9	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	Qwa –	MINOR	MAJOR	cis
Interception without Clogging	Q _{oi} =	19.5	20.5	cfs
Interception with Clogging	$Q_{oa} =$	18.3	19.2	cfs
Curb Opening Capacity as Mixed Flow	4 0a –	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	12.2	14.3	cfs
Interception with Clogging	Q _{ma} =	11.4	13.4	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	8.3	10.9	cfs
Resultant Street Conditions	courb	MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)		13.1	15.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	- CROWIN			
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.33	0.39	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	0.97	1
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
	compiliadol1	,		-
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	10.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	3.1	9.2	cfs
			•	

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

idgegate - Lyric Condos - 159 nlet DP19	5010					
1		3	2			
-	- T _M	×		This worksheet use		al
	- т			retardance method	to determine	
			4	Manning's n.		
	1	= /1	d			
	z, d	Zn		For more information		
	<u> </u>		<u> </u>	Section 7.2.3 of the	e USDCM.	
	∱ в					
nalysis of Trapezoidal Grass-Li		S Method				
RCS Vegetal Retardance (A, B, C,			A, B, C, D, or E =			
anning's n (Leave cell D16 blank	to manually enter an n	/alue)	n =	0.040		
hannel Invert Slope			$S_0 =$	0.0150	ft/ft	
ottom Width			B =	2.00	ft	
eft Side Slope			Z1 =	4.00	ft/ft	
ight Side Sloe			Z2 =	4.00	ft/ft	
Check one of t	he following soil types:		r	Choose One:		l I
Soil Type: Max. V	elocity (V _{MAX}) Max	(Froude No. (F _{MAX})		O Non-Cohe sive		
Non-Cohesive 5.	.0 fps	0.60		Cohesive		
Cohesive 7	.0 fps	0.80		C Paved		
	N/A	N/A		U I aveu		
			_	Minor Storm	Major Storm	
aximum Allowable Top Width of (Channel for Minor & Maj	or Storm	T _{MAX} =	11.00	12.00	ft
aximum Allowable Water Depth in			d _{MAX} =	1.00	1.00	ft
		-	100			_
laximum Channel Capacity Bas	ed On Allowable Top	Width		Minor Storm	Major Storm	
aximum Allowable Top Width	_		T _{MAX} =	11.00	12.00	ft
/ater Depth			d =	1.13	1.25	ft
ow Area			A =	7.31	8.75	sq ft
letted Perimeter			P =	11.28	12.31	ft
ydraulic Radius			R =	0.65	0.71	ft
anning's n			n =	0.040	0.040	- ¹
ow Velocity			V =	3.42	3.63	fps
elocity-Depth Product			v = VR =	2.22	2.58	ft^2/s
			VR = D =		0.73	
ydraulic Depth			-	0.66		ft
roude Number	Matan Dauth		Fr =	0.74	0.75	
aximum Flow Based on Allowable	water Depth		Q _T =	25.0	31.8	cfs
		Dauth		N: CI	M : C	
laximum Channel Capacity Bas	ed On Allowable Wate	er Deptn	. r	Minor Storm	Major Storm	_ _
aximum Allowable Water Depth			d _{MAX} =	1.00	1.00	ft
op Width			T =	10.00	10.00	ft
ow Area			A =	6.00	6.00	sq ft
letted Perimeter			P =	10.25	10.25	ft
ydraulic Radius			R =	0.59	0.59	ft
anning's n			n =	0.040	0.040	
ow Velocity			V =	3.19	3.19	fps
elocity-Depth Product			VR =	1.87	1.87	ft^2/s
ydraulic Depth			D =	0.60	0.60	ft
oude Number			Fr =	0.73	0.73	
aximum Flow Based On Allowable	e Water Depth		$Q_d =$	19.2	19.2	cfs
			-			-
llowable Channel Capacity Bas			-	Minor Storm	Major Storm	_
INOR STORM Allowable Capacity	is based on Depth Crite	rion	$Q_{allow} =$	19.2	19.2	cfs
JOR STORM Allowable Capacity	is based on Depth Crite	rion	d _{allow} =	1.00	1.00	ft
			-			-
ater Depth in Channel Based	On Design Peak Flow					
esign Peak Flow			$Q_o =$	0.3	4.2	cfs
ater Depth			d =	0.11	0.49	ft
p Width			T =	2.88	5.93	ft
ow Area			A =	0.27	1.95	sq ft
etted Perimeter			P =	2.91	6.05	ft
ydraulic Radius			R =	0.09	0.32	ft
anning's n			n =	0.040	0.040	
ow Velocity			V =	0.93	2.14	fps
elocity-Depth Product			v = VR =	0.09	0.69	ft^2/s
ydraulic Depth			D =	0.09	0.33	ft
<i>,</i> .			Fr =	0.54	0.66	-
roude Number						

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

Inlet DP19					
	1	12			
Inlet Design Information (In	out)				
Type of Inlet	User-Defined	Inlet Type =	User-De	fined	
			_		
Angle of Inclined Grate (must b	e <= 30 degrees)		θ =	0.00	degrees
Width of Grate			W =	2.00	ft
Length of Grate			L =	2.00	ft
Open Area Ratio			$A_{RATIO} =$	0.70	
Height of Inclined Grate	11/		H _B =	0.00	ft
Clogging Factor	///		C _f =	0.50	
Grate Discharge Coefficient	4	H	⊂ <u>a</u> –	N/A	
Orifice Coefficient	4		C _o =	0.64	
Weir Coefficient		701	C _w =	2.05	
	N ON	-			
	FLORECTIC				
	Ŷ		MINOR	MAJOR	_
Water Depth at Inlet (for depre	ssed inlets, 1 foot is added for depression)	d =	0.11	0.49	
Custo Courseito e e Misin					
Grate Capacity as a Weir			2.00	2.00	— .
Submerged Side Weir Length		X =	2.00	2.00	ft
Inclined Side Weir Flow		Q _{ws} =	0.3	2.5	cfs
Base Weir Flow		Q _{wb} =	0.4	3.5	cfs
Interception Without Cloggging		Q _{wi} =	0.9	8.5	cfs
			0.4	4.2	cfs
Interception With Clogging		Q _{wa} =			
		Qwa =	•		
Grate Capacity as an Orifice			4.8	10.1	ofs
Grate Capacity as an Orifice Interception Without Clogging		Q _{oi} =	4.8	10.1	cfs
Grate Capacity as an Orifice			4.8 2.4	10.1 5.0	cfs cfs
Grate Capacity as an Orifice Interception Without Clogging	' (assumes clogged condition)	Q _{oi} =			
Grate Capacity as an Orifice Interception Without Clogging Interception With Clogging	' (assumes clogged condition)	$Q_{oi} =$ $Q_{oa} =$	2.4	5.0	cfs

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP101	Inlet DP103	Inlet DP104
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	STREET	STREET
Hydraulic Condition	Swale	In Sump	In Sump
Inlet Type	User-Defined	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	3.4	0.3	0.3
Major Q _{Known} (cfs)	8.7	0.6	0.7

Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass flows to be linked.

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	3.4	0.3	0.3
Major Total Design Peak Flow, Q (cfs)	8.7	0.6	0.7
Minor Flow Bypassed Downstream, Q _b (cfs)	1.42	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	5.34	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP105	Inlet DP106	Inlet DP107
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

Use	r-Defined Design Flows			
Minc	or Q _{Known} (cfs)	0.3	0.4	0.3
Majo	or Q _{Known} (cfs)	0.7	0.9	0.6

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Qb (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

One-Hour Precipitation, P. (inches)	Design Storm Return Period, T _r (years)		
	One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.3	0.4	0.3
Major Total Design Peak Flow, Q (cfs)	0.7	0.9	0.6
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP108	Inlet DP109	Inlet DP110
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	AREA	AREA
Hydraulic Condition	In Sump	Swale	Swale
Inlet Type	CDOT Type R Curb Opening	CDOT Type C	CDOT Type C

USER-DEFINED INPUT

User-Defined Design Flows				
Minor Q _{Known} (cfs)	0.3	0.0	0.0	
Major Q _{Known} (cfs)	0.6	0.1	0.2	

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Qb (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		
-		

Minor Total Design Peak Flow, Q (cfs)	0.3	0.0	0.0
Major Total Design Peak Flow, Q (cfs)	0.6	0.1	0.2
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	0.0	0.0

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP111	Inlet DP112	Inlet DP113
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	AREA	AREA
Hydraulic Condition	Swale	Swale	Swale
Inlet Type	CDOT Type C	CDOT Type C	CDOT Type C

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	0.0	0.0	0.0
Major Q _{Known} (cfs)	0.1	0.2	0.1

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Qb (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P_1 (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.0	0.0	0.0
Major Total Design Peak Flow, Q (cfs)	0.1	0.2	0.1
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP114	Inlet DP116	Inlet DP117
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	STREET	STREET
Hydraulic Condition	Swale	In Sump	In Sump
Inlet Type	CDOT Type C	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Define	ed Design Flows			
Minor Q _{Known}	(cfs)	0.0	0.8	0.5
Major Q _{Known}	(cfs)	0.2	1.7	1.0

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Qb (cfs)	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.0	0.8	0.5
Major Total Design Peak Flow, Q (cfs)	0.2	1.7	1.0
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP118	Inlet DP120	Inlet DP119
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	0.9	0.20	1.0
Major Q _{Known} (cfs)	2.3	0.44	2.7

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	User-Defined	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.59	0.0
Major Bypass Flow Received, Qb (cfs)	0.0	6.89	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	0.9	0.79	1.0
Major Total Design Peak Flow, Q (cfs)	2.3	7.33	2.7
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A

MHFD-Inlet, Version 5.02 (August 2022)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet DP102
Site Type (Urban or Rural)	URBAN
Inlet Application (Street or Area)	STREET
Hydraulic Condition	On Grade
Inlet Type	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows	_
Minor Q _{Known} (cfs)	4.32
Major Q _{Known} (cfs)	10.40

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	1.42
Major Bypass Flow Received, Q _b (cfs)	5.34

Watershed Characteristics

Subcatchment Area (acres)	
Percent Impervious	
NRCS Soil Type	

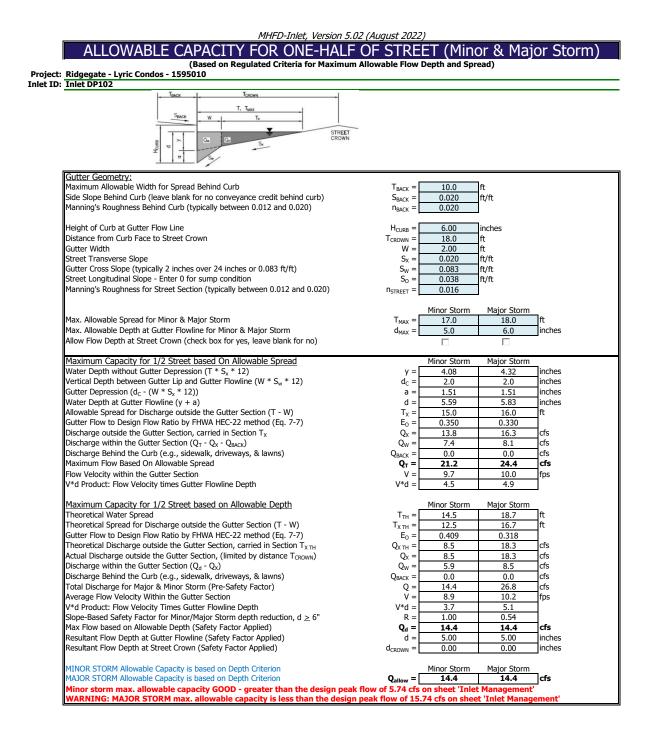
Watershed Profile

Overland Slope (ft/ft)	
Overland Length (ft)	
Channel Slope (ft/ft)	
Channel Length (ft)	

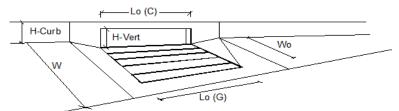
Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P_1 (inches)	

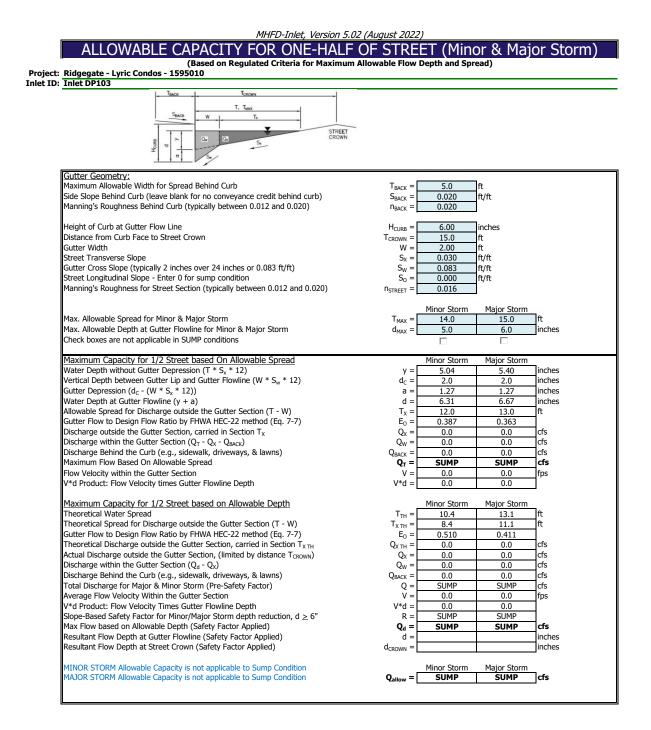
Major Storm Rainfall Input

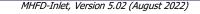

Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P_1 (inches)	

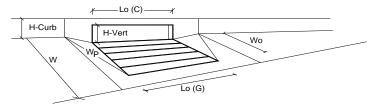
CALCULATED OUTPUT

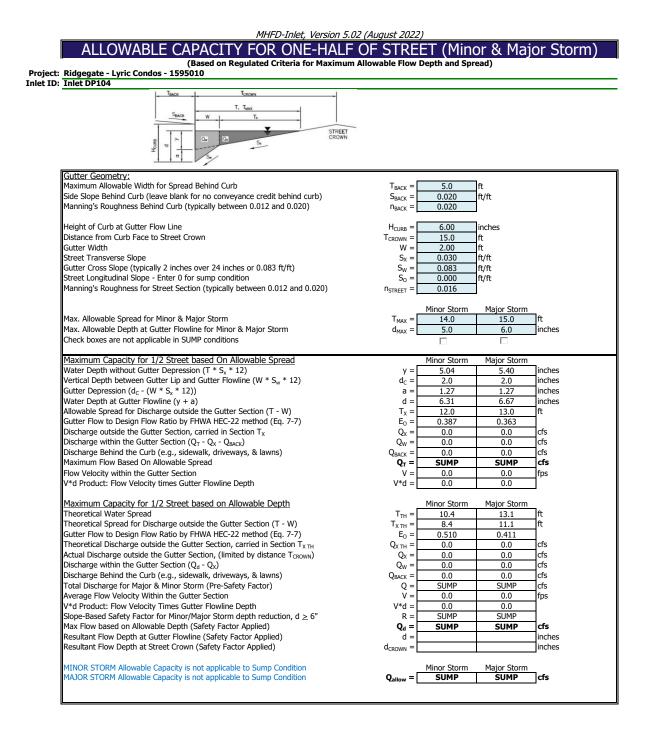

Minor Total Design Peak Flow, Q (cfs)	5.74
Major Total Design Peak Flow, Q (cfs)	15.74
Minor Flow Bypassed Downstream, Q _b (cfs)	0.59
Major Flow Bypassed Downstream, Q _b (cfs)	6.89

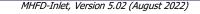
inlet DP101	os - 1595010					
	1	-	-			_
			-	This worksheet use		al
		т — –		retardance method	to determine	
	+	▽ /	1 I	Manning's n.		
	1	= // 1	d MAX	For more informatio		
	Z, d	ZR		For more information Section 7.2.3 of the		
				Section 7.2.3 of the		
	- -ī-	В —				
Analysis of Trapezoidal	Grass-Lined Channel Using	SCS Method				
IRCS Vegetal Retardance			A, B, C, D, or E =			
	L6 blank to manually enter an	n value)	n =	0.013		
Channel Invert Slope	· · · · , · · · ·	,	S _O =	0.0270	ft/ft	
Bottom Width			B =	0.00	ft	
eft Side Slope			Z1 =	33.00	ft/ft	
Right Side Sloe			Z2 =	33.00	ft/ft	
	one of the following soil type	es:	-	Choose One:		1
Soil Type:		Max Froude No. (F _{MAX})		Non-Cohe sive		
Non-Cohesive	5.0 fps	0.60		C Cohesive		
Cohesive	7.0 fps	0.80		C Paved		
Paved	N/A	N/A		Olaved		
			-	Minor Storm	Major Storm	
1aximum Allowable Top V	Vidth of Channel for Minor &	Major Storm	T _{MAX} =	19.00	20.00	ft
aximum Allowable Water	Depth in Channel for Minor	& Major Storm	d _{MAX} =	0.50	0.70	ft
						-
	city Based On Allowable T	op Width		Minor Storm	Major Storm	_
Aaximum Allowable Top V	Vidth		T _{MAX} =	19.00	20.00	ft
Vater Depth			d =	0.29	0.30	ft
low Area			A =	2.73	3.03	sq ft
Vetted Perimeter			P =	19.01	20.01	ft
lydraulic Radius			R =	0.14	0.15	ft
1anning's n			n =	0.013	0.013	
low Velocity			V =	5.17	5.35	fps
elocity-Depth Product			VR =	0.74	0.81	ft^2/s
lydraulic Depth			D =	0.14	0.15	ft
roude Number			Fr =	2.40	2.42	
laximum Flow Based on A	Allowable Water Depth		$Q_T =$	14.1	16.2	cfs
	city Based On Allowable W	<u>ater Depth</u>		Minor Storm	Major Storm	-
aximum Allowable Water	Depth		d _{MAX} =	0.50	0.70	ft
Top Width			T =	33.00	46.20	ft
low Area			A =	8.25	16.17	sq ft
Vetted Perimeter			P =	33.02	46.22	ft
lydraulic Radius			R =	0.25	0.35	ft
fanning's n			n =	0.013	0.013	
low Velocity			V =	7.47	9.35	fps
/elocity-Depth Product			VR =	1.87	3.27	ft^2/s
lydraulic Depth			D =	0.25	0.35	ft
roude Number			Fr =	2.63	2.79	
laximum Flow Based On	Allowable water Depth		$\mathbf{Q}_{d} =$	61.6	151.2	cfs
Mowable Channel Case	city Bacad On Channel Ca	motry		Minor Charm	Major Charm	
	city Based On Channel Geo Capacity is based on Top Wid		∩ _ [[]	Minor Storm 14.1	Major Storm 16.2	ofe
	Capacity is based on Top Wid Capacity is based on Top Wid		Q _{allow} =	0.29	0.30	cfs ft
AJOR STORM Allowable	capacity is based off top wid	un chienon	d _{allow} =	0.29	0.30	_π
Nator Donth in Channel	Based On Design Peak Flo	NA/				
Design Peak Flow	Daseu Un Design redk Fil	///	o _†	3.4	8.7	cfs
Vater Depth			Q ₀ =			ft
			d =	0.17	0.24	
Top Width Flow Area			T = A =	11.16 0.94	15.86 1.90	ft sq ft
Vetted Perimeter			A = P =	11.16	1.90	ft
lydraulic Radius			P = R =	0.08	0.12	ft ft
			÷	0.013	0.12	- ^{II}
1anning's n Flow Velocity			n = V =	3.63	4.58	fps
low velocity /elocity-Depth Product			v = VR =	0.31	0.55	ft^2/s
lydraulic Depth			VR = D =	0.08	0.55	ft
, ,			D = Fr =	2.20	2.33	- ⁿ
roude Number						

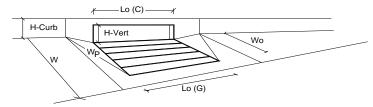

Inlet DP101					
	-l	3			-
Inlet Design Information (In	<u> </u>				
Type of Inlet	User-Defined 💌	Inlet Type =	User-Def	ined	
Angle of Inclined Grate (must b	e <= 30 degrees)		θ =	0.00	degrees
Width of Grate	\sim		W =	1.92	ft
Length of Grate			L =	6.66	ft
Open Area Ratio			A _{RATIO} =	0.70	
Height of Inclined Grate			$H_B =$	0.00	ft
Clogging Factor	X		C _f =	0.50	
Grate Discharge Coefficient		Hb	C _d =	N/A	
Orifice Coefficient	~ ~ ~		C ₀ =	0.64	
Weir Coefficient	1111	> e j	C _w =	2.05	
	Flow		MINOR	MAJOR	
Water Depth at Inlet (for depre	ssed inlets, 1 foot is added for depression)	d =	0.17	0.24	
	,,				
Grate Capacity as a Weir					
Submerged Side Weir Length		X =	6.66	6.66	ft
Inclined Side Weir Flow		Q _{ws} =	1.7	2.8	cfs
Base Weir Flow		Q _{wb} =	0.7	1.2	cfs
Interception Without Cloggging		Q _{wi} =	4.0	6.8	cfs
Interception With Clogging		Q _{wa} =	2.0	3.4	cfs
interception with clogging					
Grate Capacity as an Orifice					
		O _{ni} =	18.9	22.5	cfs
Grate Capacity as an Orifice		$Q_{oi} =$ $Q_{oa} =$	18.9 9.5	22.5 11.3	cfs cfs
Grate Capacity as an Orifice Interception Without Clogging		Q _{ol} =			
Grate Capacity as an Orifice Interception Without Clogging Interception With Clogging	/ (assumes clogged condition)				
Grate Capacity as an Orifice Interception Without Clogging	/ (assumes clogged condition)	Q _{oa} =	9.5	11.3	cfs

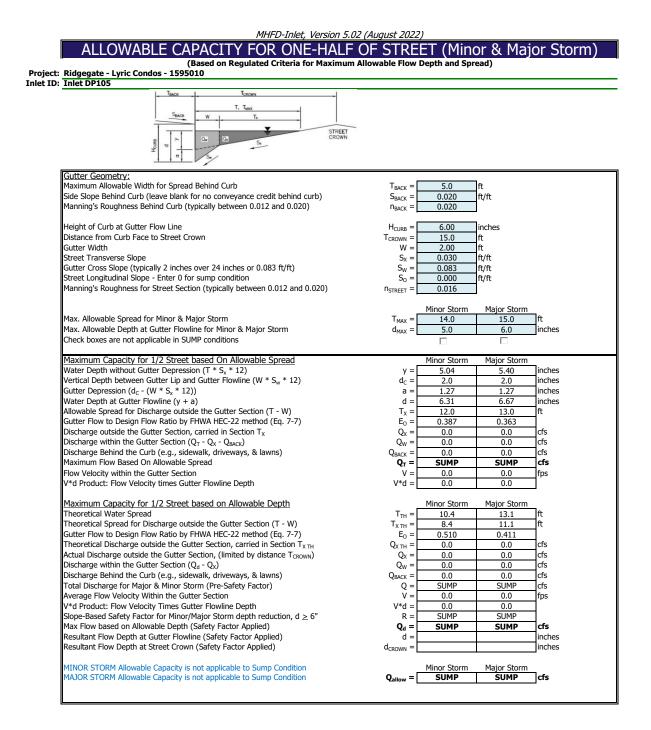


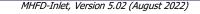

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

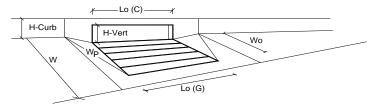

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	linenes
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(G) = C_{f}(C) = C_{f}(C)$	0.10	0.10	-
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM	с , (с) =	MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_0 =$	5.7	15.7	cfs
Water Spread Width	τ=	9.7	15.1	ft
Water Depth at Flowline (outside of local depression)	d =	3.8	5.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$E_0 =$	0.591	0.395	linenes
Discharge outside the Gutter Section W, carried in Section T_x	$Q_x =$	2.3	9.5	cfs
Discharge within the Gutter Section W	$Q_x = Q_w =$	3.4	6.2	cfs
Discharge Behind the Curte Face	$Q_W = Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$Q_{BACK} = A_W = $	0.0	0.69	sq ft
Velocity within the Gutter Section W		7.1	9.0	fps
	V _W =	6.8	9.0	inches
Water Depth for Design Condition Grate Analysis (Calculated)	$d_{LOCAL} =$	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L =	N/A	MAJOR N/A	Τŧ
Ratio of Grate Flow to Design Flow		N/A N/A		- "
	$E_{o-GRATE} =$	MINOR	N/A MAJOR	
Under No-Clogging Condition	V. =	N/A	MAJOR N/A	
Minimum Velocity Where Grate Splash-Over Begins	-			fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-
Interception Rate of Side Flow	R _x =	N/A	N/A	-6-
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	7
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	$L_e =$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f =$	N/A	N/A	-
Interception Rate of Side Flow	$R_x =$	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	$Q_{\rm b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)	- T	MINOR	MAJOR	70.00
Equivalent Slope S _e	S _e =	0.131	0.094	ft/ft
Required Length L_T to Have 100% Interception	$L_T =$	13.08	25.47	ft
Under No-Clogging Condition	. г	MINOR	MAJOR	7.
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	$Q_i =$	5.3	9.3	cfs
Under Clogging Condition	о но <i>т</i> . Г	MINOR	MAJOR	7
Clogging Coefficient	CurbCoeff =	1.25	1.25	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	4.
Effective (Unclogged) Length	$L_e =$	9.38	9.38	ft
Actual Interception Capacity	$Q_a =$	5.1	8.9	cfs
Carry-Over Flow = $Q_{h(GRATE)}$ - Q_a	Q _b =	0.6	6.9	cfs
Summary	-	MINOR	MAJOR	٦.
Total Inlet Interception Capacity	Q =	5.15	8.85	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.59	6.89	cfs
Capture Percentage = Q_a/Q_o	C% =	90	56	%

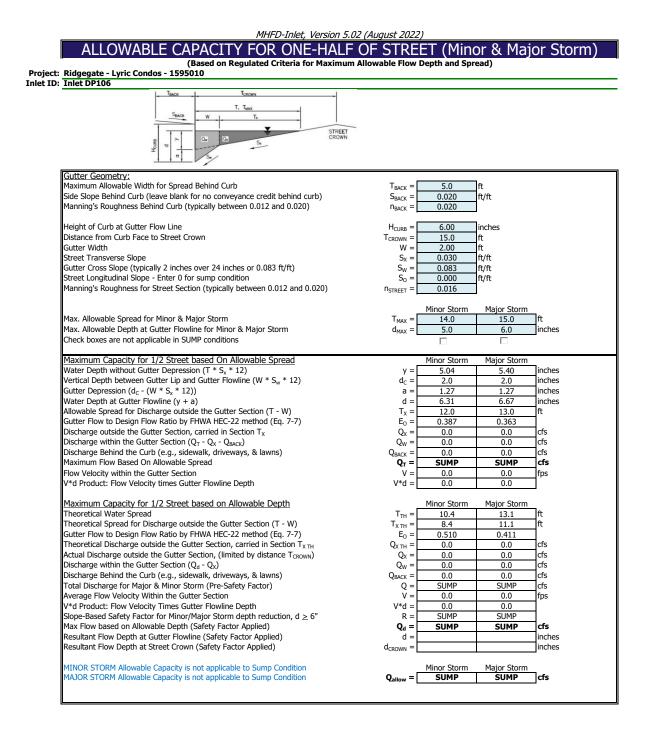


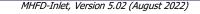


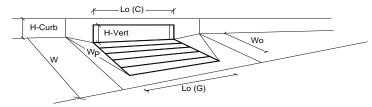

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	incrico
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.0	inches
Grate Information	ronding Deput =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_0 =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	-
Curb Opening Information	-0 (-)	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{0}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	- .
Interception without Clogging	Q _{wi} =	3.9	6.0	cfs
Interception with Clogging	Q _{wa} =	3.5	5.4	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	- .
Interception without Clogging	Q _{oi} =	8.9	9.8	cfs
Interception with Clogging	Q _{oa} =	8.1	8.8	cfs
Curb Opening Capacity as Mixed Flow	o 1	MINOR	MAJOR	- <i>f</i> -
Interception without Clogging	Q _{mi} =	5.5 4.9	7.1	cfs
Interception with Clogging	Q _{ma} = Q _{Curb} =	4.9 3.5	6.4 5.4	cfs cfs
Resulting Curb Opening Capacity (assumes clogged condition)	•Curb –	MINOR	-	cis
Resultant Street Conditions	. 1	-	MAJOR	
Total Inlet Length	L = T =	5.00	5.00	feet ft
Resultant Street Flow Spread (based on street geometry from above)		10.4	13.1 0.0	π inches
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d - [N/A	MAJOR N/A	ſŧ
Depth for Curb Opening Weir Equation	d _{Grate} = d _{Curb} =	0.25	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$a_{Curb} = RF_{Grate} = RF_{Grate}$	0.25 N/A	0.33 N/A	- ''
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Grate} = RF_{Curb} = $	1.00	1.00	-
Combination Inlet Performance Reduction Factor for Long Inlets		1.00 N/A	1.00 N/A	-
Combination The Ferrormance Reduction Factor for Long Thets	RF _{Combination} =	IN/A	IN/A	_
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	MAJOR 5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{\text{PEAK REQUIRED}} =$	0.3	0.6	cfs
ince capacity 15 GOOD for Philor and Plajor Storms (>Q Peak)	< FEAN NEQUINED	0.5	0.0	10.0

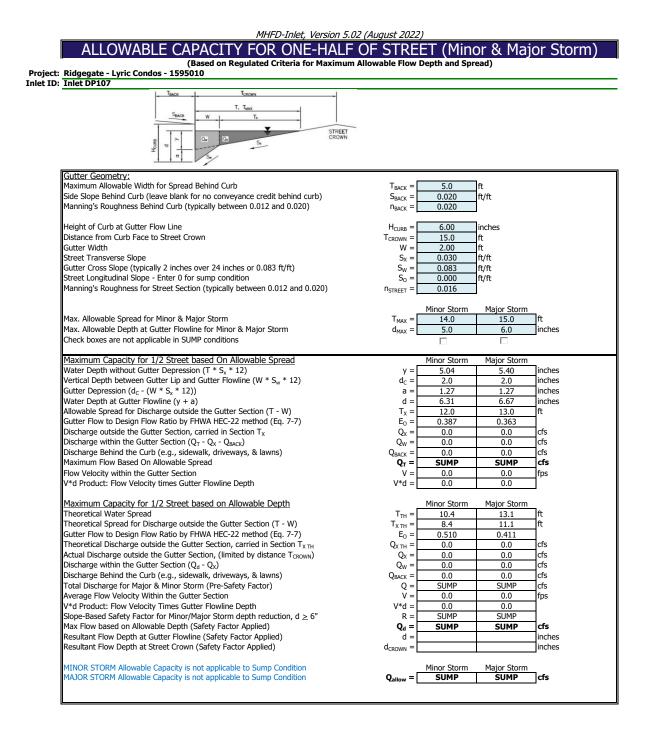


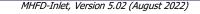


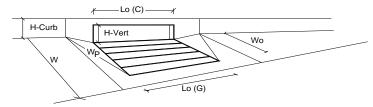

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	<u> </u>	1	linches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.0	inches
Grate Information	ronding bepar =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_0 =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{0}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	- -
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	. г	MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	$Q_{ma} =$	N/A	N/A	cfs cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A MINOR	N/A MAJOR	cis
Curb Opening Flow Analysis (Calculated)	а с Г	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Coef =	1.00 0.10	1.00 0.10	-
	Clog =			
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without Clogging	o _Γ	MINOR 3.9	MAJOR 6.0	cfs
Interception with Clogging	Q _{wi} =	3.5	5.4	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	Q _{wa} =	MINOR	MAJOR	us
Interception without Clogging	Q _{oi} =	8.9	9.8	cfs
Interception with Clogging	$Q_{oa} =$	8.1	8.8	cfs
Curb Opening Capacity as Mixed Flow	4 0a –	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	5.5	7.1	cfs
Interception with Clogging	$Q_{ma} =$	4.9	6.4	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	3.5	5.4	cfs
Resultant Street Conditions	Cours	MINOR	MAJOR	
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	10.4	13.1	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	CROWN	-		-
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00]
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A]
	· · · · ·			-
	-	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	0.3	0.7	cfs

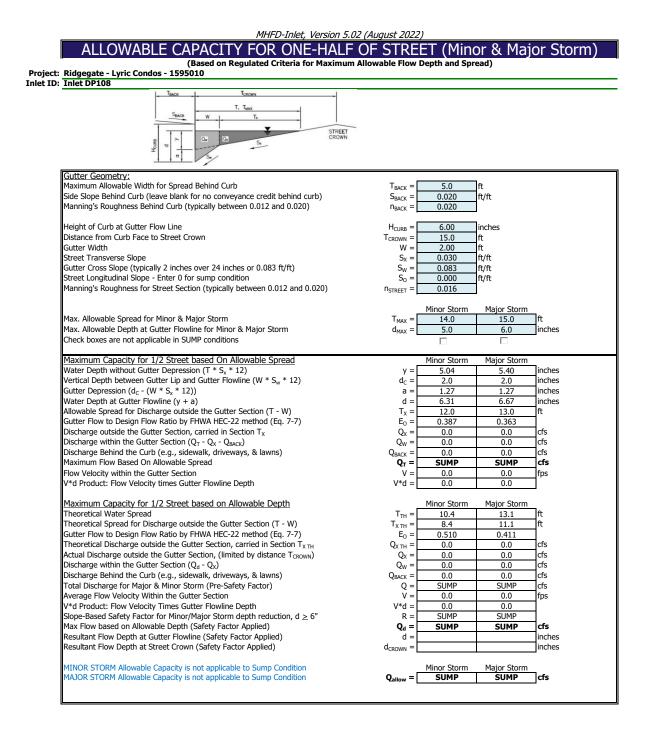


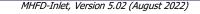


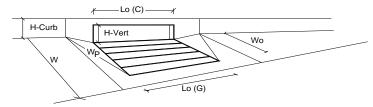

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	- Incrico
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.0	inches
Grate Information	ronding Deput =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_0 =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	-
Curb Opening Information	-0(-)	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{0}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	- .
Interception without Clogging	Q _{wi} =	3.9	6.0	cfs
Interception with Clogging	Q _{wa} =	3.5	5.4	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	٦.
Interception without Clogging	Q _{oi} =	8.9	9.8	cfs
Interception with Clogging	Q _{oa} =	8.1	8.8	cfs
Curb Opening Capacity as Mixed Flow	o 1	MINOR	MAJOR	7-6-
Interception without Clogging	Q _{mi} =	5.5 4.9	7.1	cfs
Interception with Clogging	Q _{ma} = Q _{Curb} =	4.9 3.5	6.4 5.4	cfs cfs
Resulting Curb Opening Capacity (assumes clogged condition)	•Curb –	MINOR	-	us
Resultant Street Conditions	. 1	-	MAJOR	
Total Inlet Length	L = T =	5.00	5.00	feet ft
Resultant Street Flow Spread (based on street geometry from above)		10.4	13.1 0.0	π inches
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	MAJOR N/A	Τft
Depth for Curb Opening Weir Equation	$d_{Grate} = d_{Curb} = d_{Curb}$	0.25	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$G_{Curb} = RF_{Grate} = $	0.25 N/A	0.33 N/A	-1"
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Grate} = RF_{Curb} = $	1.00	1.00	-
Combination Inlet Performance Reduction Factor for Long Inlets		N/A	N/A	-
Combination fract renormance reduction ractor for Long friets	$RF_{Combination} =$	N/A	IN/A	_
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{\text{PEAK REQUIRED}} =$	0.3	0.7	cfs
since suparity to GOOD for Finior and Flajor Storing (2Q PCak)	STERK REQUIRED	0.0		1






$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Design Information (Input)		MINOR	MAJOR	
Lical Depression (additional to continuous gutter depression 'a' from above) $\Delta_{max} = 1$ 3.00 3.00 3.00 $nches$ Whate Depth at Flowline (uxide of local depression) Ponding Depth = 5.0 6.00 inches State Information Leg(h) of a Unit Grate NAOR NAOR NAOR NAOR Open Area Ratio for a Grate (typical value 0.50 - 0.70) C. (i) = NIA NIA NIA Caping Factor for a Single Grade (typical value 0.50 - 0.70) C. (i) = NIA NIA NIA Caping Pactor formation La (C) = NIA NIA NIA NIA Land Depression Factor Nin Inches Hama 6.00 0.00 inches Height of Vertical Curb Opening Inches Hama 6.00 0.00 inches Angle of Throat (see USDK Figure ST-5) Theta 6.00 0.00 inches State Ustor Figure ST-5) Theta 6.00 0.00 inches State Grade (typical value 0.60 0.00 inches 0.00 inches Caping Carlific Coefficient (typical value 0.60 0.00 inches 0.00 inches State Gra		Turno -			
Number of Unit Linkes (Grate or Curb Opening) No 1 1 Grate Information Engrht of a Unit Grate MIXOR MIXOR MIXOR Cypen Area Rato for a Grate (typical value 0.15-0.50) A		· · · -			inches
Nate: Depth at Flowline (outside of local depression) Ponding Depth = S.0 6.0 Inches Carab. Information Le (G) N/A N/A N/A For Covering Depths Vidth of a Unit Grate Le (G) N/A N/A N/A For Covering Depths Open Area Ratio for a Single Grate (typical value 0.50 - 0.20) C, (G) N/A N/A For Covering Depth Carb Orice Coefficient (typical value 0.50 - 0.20) C, (G) N/A N/A For Covering Depth Carb Orice Coefficient (typical value 0.50 - 0.30) C, (G) N/A N/A N/A Carb Orice Coefficient (typical value 0.50 - 0.30) C, (G) N/A N/A N/A Leight of Unit Oribersing In Enches H _{encret} 6.00 6.00 inches Height of Vertical Curb Opening Unit Oribical value 0.12 C) C) 3.00 degrees Lob Dopening Vertical Vertica				1	Inches
Grate Information (and to a Unit Grate With of a Unit Grate With of a Unit Grate Quer Area Rato for a Grate (typical value 0.15-0.00) MINOR NAOR N/A Councida Deprins (G) Cogging Factor for a Single Grate (typical value 0.50 - 0.70) C (G) N/A N/A N/A Crate Werk Coefficient (typical value 0.50 - 0.70) C (G) N/A N/A N/A Grate Orifice Coefficient (typical value 0.50 - 0.70) C (G) N/A N/A N/A Length of a Unit Curb Opening Innches H N/A N/A N/A N/A Angle of Throat Gue Unit Curb Opening Innches H H G.60 6.00 Inches Height of Varitice Cuefficient (typical value 0.50) C (C) G.60 6.00 Inches Curb Opening Minor Coefficient (typical value 0.50) C (C) G.60 6.00 Inches Curb Opening Minor Coefficient (typical value 0.50) C (C) G.60 6.00 Inches Curb Opening Minor Coefficient (typical value 0.60 - 0.70) C (C) G.60 6.00 Inches Cogging Factor for Multiple Units Cogef a N/A N/A N/A N/A <td></td> <td>-</td> <td></td> <td><u> </u></td> <td>inches</td>		-		<u> </u>	inches
Length of a Unit Grate With of a Unit Grate Open Area Ratio for a Grate (typical values 0.5 0.50) Carle Dever Coefficient (typical values 0.5 0.50) Grate Weir Coefficient (typical values 0.5 0.50) Carle Opening Information Length of a Unit Corb Opening Height of Unit Orib Carbon Height of Unit Origin (Height Origin Value 0.10) Carb Opening Write Carbon Carbon Carbon Carbon Carbon Height of Unit Origin (Height Origin Value 0.10) Carbon Carbon Carbon Carbon Carbon Carbon Carbon Height Origin (Height Origin Value 0.10) Carbon Carbon Carbon Carbon Carbon Carbon Carbon Height Origin (Height Origin Value 0.10) Carbon Carbon Carbon Carbon Height Origin (Height Origin Value 0.10) Carbon Carbon Carbon Carbon Hintercepton without Clogging Herecepton withou		Fonding Deput -			
Width of a Unit Grate W/A N/A N/A N/A N/A Cogging Factor for a Single Grate (typical value 0.15 - 0.70) C, (G) N/A N/A N/A Crate Wer Coefficient (typical value 0.60 - 0.80) C, (G) N/A N/A N/A Grate Orifice Coefficient (typical value 0.60 - 0.80) C, (G) N/A N/A N/A Length of a Unit Curb Opening In Inches H _{eff} 6.00 6.00 inches Height of Victica Curb Opening (typical value 0.10) C, (C) 0.010 0.10 <td></td> <td>L. (G) =</td> <td></td> <td></td> <td></td>		L. (G) =			
Open Area Ratio for a Graft (typical value 5.15-0.90) A_{max}^{max} NA N/A N/A Grade Tor for a Single Graft (typical value 2.15-3.60) C_{i} (G) = NA N/A N/A Grade Orife Coefficient (typical value 0.60 - 0.80) C_{i} (G) = NA N/A N/A Curb Opening Information Luch Opening Information H_{emax} 6.00 6.00 inches Height of Uto Orifice Throat In Inches H_{max} 6.00 6.00 inches Angle of Throat (see USDCM Figure ST-5) Theta = 6.30 6.00 inches Add With Coefficient (typical value 2.3-7) C_{ir} (C) = 0.360 0.300 epresso Curb Opening With Coefficient (typical value 0.50 - 0.70) C (C) = 0.360 0.07 0.67 Curb Opening With Coefficient (typical value 0.50 - 0.70) C (C) = 0.67 0.67 0.67 Curb Opening With Coefficient (typical value 0.50 - 0.70) C (C) = 0.67 0.67 0.67 Curb Opening Coefficient (typical value 0.50 - 0.70) C (C) = 0.67 0.67 0.67 Curb Opening Coefficient (typical value 0.50 - 0.70)					
Clogping Factor for a Single Crite (typical value 0.50 - 0.70) Grate Wir Coefficient (typical value 0.215 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) C, G(S) = NRA N/AN/A N/ALength of a Unit Curb Opening Height of Vertical Curb Opening (in Inches Height of Curb Coefficient (typical value 0.55 - 0.70) Side Width for Depression Pan (typical) whe putter width of 2 feet) Curb Opening (free USDK) Flugue S1 - 5) Theta = $\frac{6.00}{6.00}$ Curb Opening (typical value 0.10) Curb Opening (typical va					leet
$ \begin{array}{llllllllllllllllllllllllllllllllllll$,		
Grate Orifice Coefficient (vpicel value 0.60 - 0.60) C, (G) = N/A N/A Length of a Unit Curb Opening In Inches H, (C) = 5.00 5.00 inches Height of Vertical Curb Opening In Inches H, (C) = 6.00 6.00 inches Angle of Throat in Inches H, (C) = 6.00 6.00 inches Side Width for Depression Pan (vpical vibe 0.10) C, (C) = 6.00 6.00 inches Curb Opening Orie Coefficient (vpical value 0.10) C, (C) = 3.60 3.60 c.07 Curb Opening Orie Coefficient (vpical value 0.10) C, (C) = 3.60 3.60 c.07 Carb Opening Orifee Coefficient (vpical value 0.10) C, (C) = 3.60 3.60 c.07 Carb Opening Orifice Coefficient (vpical value 0.10) C, (C) = 3.60 3.60 c.07 Carb Opening Orifice Coefficient (vpical value 0.10) C, (C) = 3.60 3.60 c.07 Carb Opening Orifice Coefficient (vpical value 0.10) Coefficient (vpical value 0.10					
$ \begin{array}{c} Curb Depening Information \\ Length of a lunk Curb Depening In Inches \\ Height of Curb Opening In Inches \\ Height of Curb Opening In Inches \\ Height of Curb Opening (Npical hus gutter width of 2 feet) \\ Angle of Throat (see USDCM Figure ST-5) \\ Stade Width for Depenison Pan (Npical hus gutter width of 2 feet) \\ Chey Depension Pan (Npical hus gutter width of 2 feet) \\ Curb Depening Orfice Coefficient (Npical hus gutter width of 2 feet) \\ Curb Depening Write Coefficient (Npical hus gutter width of 2 feet) \\ Curb Depening Write Coefficient (Npical hus gutter width of 2 feet) \\ Curb Depening Write Coefficient (Npical hus gutter width of 2 feet) \\ Curb Depening Write Coefficient (Npical hus gutter width of 2 feet) \\ Cogging Coefficient for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Cogging Factor for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Cogging Grite Capacity as a Weir (Dased on MHED - CSU 2010 Study) \\ Interception without Cogging \\ Grate Capacity as a Multific (Dased on MHED - CSU 2010 Study) \\ Interception without Cogging \\ Grate Capacity as Mice How \\ Interception without Cogging \\ Grate Capacity as Mice How \\ Interception without Cogging \\ Curb Copening Pow Analysis (Calculated) \\ Cogging Coefficient for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Cord = NIA NIA \\ Cris \\ Interception without Cogging \\ Curb Copening Pow Analysis (Calculated) \\ Curb Copening Capacity as Mixed Flow \\$					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		0,007			1
Height of Vertical Curb Opening in InchesIf $W_{exp} = 6.00$ 6.00inchesAngle of Throat (see USCM Figure ST-5)Theta =63.006.00inchesSide With for Opening (vpical value 0.10)C, (C) =0.100.100.10Curb Opening Weir Certificient (vpical value 0.20)C, (C) =0.500.00inchesCurb Opening Weir Certificient (vpical value 0.20)C, (C) =0.500.00inchesCurb Opening Weir Certificient (vpical value 0.60 - 0.70)C, (C) =0.500.700.70Crafte Elow Analysis (Calculated)Coef =N/AN/AN/ACogging Certificient for Multiple UnitsCoef =N/AN/AN/ACrafte Capacity as a Weir (based on MHED - CSU 2010 Study)MINORMAOORMAORInterception without CoggingQ _w =N/AN/AdfsInterception without CoggingQ _w =N/AN/AdfsInterception with Cogging <td></td> <td>$L_{c}(C) =$</td> <td></td> <td></td> <td>feet</td>		$L_{c}(C) =$			feet
Height of Curb Orfice Throat in Inches Angle of Throat (see USDCH Function 1 (see USDCH Function 2 feet) Clogging Factor for a Single Curp Str.5) Side Width for Depression Pan (typically the gutter width of 2 feet) Curb Opening (brite Coefficient (typical value 2.3.3.7) Curb Opening (brite Coefficient (typical value 2.3.3.7) Curb Copening Orfice Coefficient (typical value 2.3.3.7) Curb Opening (brite Coefficient (typical value 2.3.3.7) Curb Opening (brite Coefficient (typical value 2.3.3.7) Curb Opening (brite Coefficient (typical value 2.3.3.7) Curb Opening Orfice Coefficient (typical value 2.3.3.7) Curb Opening Orfice Coefficient (typical value 2.3.3.7) Curb Opening Orfice Coefficient (typical value 2.3.3.7) Crace Flow Analysis (Calculated) Cogging Coefficient for Multiple Units Crace Capacity as a Weir (based on MHED - CSU 2010 Study) Interception with Clogging Grate Capacity as an Orfice (based on MHED - CSU 2010 Study) Interception with Clogging Grate Capacity as Mude Flow Interception with Clogging Curb Opening Elow Analysis (Calculated) Curb Opening Elow Analysis (Calculated) Curb Capacity as an Orfice (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as Mude Flow Interception with Clogging Curb Capacity as Mude Hends Curb Opening Check Capacity (assumes choced condition) Curb Capacity as an Orfice (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orfice (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orfice (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orfice (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orfice (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orfice (based on MHED - CSU 2010 Study) Interception with					
Angle of Throat (see USDCM Figure ST-5)Trieta = (63.40) 63.40					
Side Width for Depression Pan (typically the gutter width of 2 feet) (Doging Tactor for a Single Curb Opening (typical value 2.3-3.7) Curb Opening Orife coefficient (typical value 2.3-3.7) Crafte Elow Analysis (Calculated) Cogging Tactor Multiple Units Crafte Capacity as a Weir (Dased on MHED - CSU 2010 Study) Interception with OL Cogging Interception with OL Cogging Interception with Cogging Crafte Capacity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Clogging Crafte Capacity as Mixed Flow Interception with Clogging Curb Opening Per Analysis (Calculated) Curb Opening Per Analysis (Calculated) Curb Opening Per Analysis (Calculated) Curb Capacity as an Orifice (Dased on MHED - CSU 2010 Study) Interception without Clogging Curb Capacity as Mixed Flow Interception without Clogging Curb Capacity as Mixed Flow Interception without Clogging Curb Capacity as an Orifice (Caused on MHED - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (Dased on MHED - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (Dased on MHED - CSU 2010 Study) Interception without Clogging Interception withou					degrees
Clogging Factor for a Single Curb Opening (typical value 0.10)C (C) =0.100.10Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)C (C) =3.603.60Carb Depring Orifice Coefficient (typical value 0.60 - 0.70)C (C) =3.603.60Grate Flow Analysis (Calculated)MINORMAORClogging Coefficient for Multiple UnitsCoefficient for Multiple UnitsCoefficient for Multiple UnitsN/AClogging Grate Capacity as a Weir (Desed on MHED - CSU 2010 Study)NINORMAORInterception without CloggingQ _m =N/AN/AGrate Capacity as a Norfice (based on MHED - CSU 2010 Study)MINORMAORInterception without CloggingQ _m =N/AN/AGrate Capacity as an Orifice (based on MHED - CSU 2010 Study)MINORMAORInterception without CloggingQ _m =N/AN/AInterception without CloggingQ _m =N/AN/ACurb Opening Flow Analysis (Calculated)MINORMAORCurb Opening Capacity as an Urif (Dased on MHED - CSU 2010 Study)MINORMAORInterception without CloggingQ _m =S.55.4dfsCurb Opening Capacity as Mixed FlowMINORMAOR <td></td> <td>W. =</td> <td>2.00</td> <td>2.00</td> <td>feet</td>		W. =	2.00	2.00	feet
$ \begin{array}{c} Curb Opening Weir Coefficient (typical value 2.3-3.7) \\ Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) \\ \hline Grate Flow Analysis (Calculated) \\ \hline Clogging Coefficient for Multiple Units \\ Clogging Coefficient for Multiple Units \\ Grate Capacity as a Weir (based on MHFD - CSU 2010 Study) \\ Interception with Ougging \\ \hline Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study) \\ Interception with Clogging \\ Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study) \\ Interception with Clogging \\ \hline Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study) \\ Interception with Clogging \\ \hline Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study) \\ Interception with Clogging \\ \hline Grate Capacity as Mixed Flow \\ Interception with Clogging \\ \hline Grate Capacity (assumes cloqged condition) \\ \hline Grate Capacity (assumes cloqged condition) \\ \hline Curb Opening Elow Analysis (Calculated) \\ \hline Curb Opening Capacity as a Orifice (based on MHFD - CSU 2010 Study) \\ Interception with Clogging \\ \hline Grate Capacity (assumes cloqged condition) \\ \hline Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study) \\ Interception with Clogging \\ \hline Curb Opening Capacity as an Orifice (based on MHFD - CSU 2010 Study) \\ Interception with Clogging \\ \hline Curb Opening Capacity as an Orifice (based on MHFD - CSU 2010 Study) \\ Interception with Clogging \\ \hline Curb Opening Capacity as Mixed Flow \\ \hline Curb Opening Capacity as Mixed Flow \\ \hline Curb Opening Capacity as Mixed Flow \\ \hline Interception with Clogging \\ \hline Int$					
Curb Opening Orthec Coefficient (vpicel value 0.60 - 0.70)C_0 (C) =0.67Grate Flow Analysis (Calculated)Cooping Coefficient for Multiple UnitsCoef =N/AN/AClogging Factor for Multiple UnitsCoef =N/AN/AN/AClogging Grate Capacity as a Weir (Dased on MHED - CSU 2010 Study)MINORMAJORMAJORInterception without CloggingQ _{eff} =N/AN/AAGrate Capacity as a Weir (Dased on MHED - CSU 2010 Study)MINORMAJORMAJORInterception with CloggingQ _{eff} =N/AN/AdfsInterception without CloggingQ _{eff} =N/AN/AdfsInterception with CloggingQ _{eff} =N/AN/AdfsCurb Opening Elow Analysis (Calculated)Coef =N/AN/AdfsCurb Opening Capacity as a Weir (Dased on MHED - CSU 2010 Study)MINORMAJORMINORInterception without CloggingQ _{eff} =3.55.4dfsInterception without CloggingQ _{eff} =3.55.4dfsInterception without CloggingQ _{eff} =8.99.8dfsInterception without Clogging </td <td></td> <td>$C_{w}(C) =$</td> <td>3.60</td> <td>3.60</td> <td></td>		$C_{w}(C) =$	3.60	3.60	
Grate Elow Analysis (Calculated) MINOR MAOR Clogging Coefficient for Multiple Units Coef = N/A N/A Grate Capacity as a Weir (based on MHED - CSU 2010 Study) MINOR MAOR Interception without Clogging Qwi = N/A N/A Interception with Clogging Qwi = N/A N/A Interception with Clogging Qwi = N/A N/A Interception with Clogging Qwi = N/A N/A Curb Opening How Analysis (Calculated) Coef = N/A N/A Curb Opening How Analysis (Calculated) Coef = 1.00 1.00 Curb Capacity as a Weir (based on MHED - CSU 2010 Study) MINOR MAOR Interception with Clogging Qwi = 3.5 5.4 Curb Capacity as Alveir (based on MHED - CSU 2010 Study) MINOR MAOR Interception without Clogging Qwi = 3.5 5.4 Curb Capacity		$C_{o}(C) =$			1
Clogging Coefficient for Multiple Units Coefficient for Multiple Units N/A N/A Clogging Factor for Multiple Units Clogging Qw = N/A N/A Interception without Clogging Qw = N/A N/A N/A Grate Capacity as a Urifice (based on MHED - CSU 2010 Study) N/A N/A N/A N/A Interception without Clogging Qw = N/A N/A N/A K/A Interception without Clogging Qu = N/A N/A N/A K/A Grate Capacity as Mixed Flow MINOR MAOR MA N/A K/A N/A Interception with Clogging Qm = N/A N/A N/A K/A K/A Glogging Cactr for Multiple Units Coefficient for Multiple			MINOR	MAJOR	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Coef =	N/A	N/A	
Interception without Clogging V_{AA} V_{AA} V_{AA} V_{AA} C_{SA} Interception with Clogging Q_{wi} W_{AA} V_{AA} V_{AA} C_{SA} Interception with Clogging Q_{wi} W_{AA} V_{AA} V_{AA} C_{SA} Interception with Clogging Q_{wi} W_{AA} V_{AA} V_{AA} V_{AA} C_{SA} Resulting Grate Capacity (assumes clogged condition) Q_{wi} W_{AA} V_{AA}		Clog =	N/A	N/A	
Interception with Clogging $Q_{va} = \frac{N/A}{N/A}$ N/A N/A rfs Grate Capacity as an Orifice (based on MHED - CSU 2010 Study) $Q_{va} = \frac{N/A}{N/A}$ N/A N/A rfs Interception without Clogging $Q_{va} = \frac{N/A}{N/A}$ N/A N/A N/A rfs Grate Capacity as Mixed Flow MINOR MAJOR MA N/A N/A N/A rfs Interception without Clogging $Q_{ma} = \frac{N/A}{N/A}$ N/A N/A N/A rfs Grate Capacity as Mixed Flow MINOR MAJOR rfs rfs Interception without Clogging $Q_{ma} = \frac{N/A}{N/A}$ N/A rfs Grate Capacity as an Orifice (Dased condition) Constant MINOR MAJOR Curb Dening Flow Analysis (Calculated) Constant MINOR MAJOR Curb Dening Capacity as a Weir (Dased on MHED - CSU 2010 Study) MINOR MAJOR rfs Interception without Clogging $Q_{va} = \frac{3.9}{3.5}$ 5.4 rfs Curb Dening Capacity as Mixed Flow MINOR MAJOR rfs Interception without Clogging Q_{v	Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-
Interception with Clogging $Q_{vo} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ cfs Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study) $Q_{vo} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ cfs Interception without Clogging $Q_{vo} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ cfs Grate Capacity as Mixed Flow MINOR MAINA cfs Interception without Clogging $Q_{vo} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ cfs Resulting Grate Capacity (assumes clogged condition) Qent = \frac{N/A}{N/A} \frac{N/A}{N/A} cfs Grate Capacity (assumes clogged condition) Qent = \frac{N/A}{N/A} \frac{N/A}{N/A} cfs Curb Opening Flow Analysis (Calculated) MINOR MAOR Clogging Cactor for Multiple Units Coef = 1.00 1.00 Clogging Factor for Multiple Units Coef = 3.5 5.4 Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) MINOR MAOR Interception without Clogging Qoi = 5.5 7.1 cfs Curb Capacity as Mixed Flow MINOR MAOR cfs Interception without Clogging Qoi = 5.5 5.7.1 cfs Interception without Clogging Qoi = 5.5 7.1 cfs Interception without Clogging Qoi =		Q _{wi} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHED - CSU 2010 Study) MINOR MAJOR Interception with Clogging $Q_{cl} =$ N/A N/A Rfs Curb Opening Flow Analysis (Calculated) MINOR MAJOR Cost Cost N/A N/A Rfs Clogging Coefficient for Multiple Units Coef 1.00 1.00 0.10 <td>Interception with Clogging</td> <td></td> <td>N/A</td> <td>N/A</td> <td>cfs</td>	Interception with Clogging		N/A	N/A	cfs
Interception with Clogging $Q_{col} = \frac{N/A}{N/A}$ N/A Cfs Resulting Grate Capacity (assumes cloqeed condition) $Q_{crave} = \frac{N/A}{N/A}$ N/A	Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	
Grate Capacity as Mixed Flow MINOR MAJOR Interception with Clogging $Q_{mi} =$ N/A N/A N/A Interception with Clogging $Q_{ma} =$ N/A N/A N/A Curb Opening How Analysis (Calculated) $Q_{max} =$ N/A N/A K/A Clogging Cefficient for Multiple Units Coef 10.00 10.00 Clogging Gettor for Multiple Units Coef 10.00 10.00 Curb Opening How Analysis (Calculated) MINOR MAJOR Clogging Factor for Multiple Units Coef 1.00 1.00 Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MAJOR Interception with Clogging Q _{wi} 3.5 5.4 cfs Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Q _{oa} 8.1 8.8 cfs Interception with Clogging Q _{ca} 8.1 8.8 cfs Curb Opening Capacity as an Orifice (based on MHFD - CSU 2010 Study) Q _{oa} 8.1 8.8 cfs Interception with Clogging Q _{ca} 8.5 7.1 cfs Resulting Curb Opening Capacity (assumes clogg	Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception without Clogging $Q_{mi} =$ N/A N/A cfs Interception with Clogging $Q_{ma} =$ N/A N/A cfs Curb Opening Flow Analysis (Calculated) Qerate N/A N/A cfs Curb Opening Flow Analysis (Calculated) Code 1.00 1.00 Cfs Clogging Coefficient for Multiple Units Code 1.00 1.00 Cfs Curb Capacity as Weir (based on MHFD - CSU 2010 Study) MINOR MAJOR MAOR Interception with Clogging Qwi = 3.9 6.0 cfs Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) WinNOR MAJOR MAOR Interception with Clogging Qwi = 8.9 9.8 cfs Interception with Clogging Qwi = 8.9 9.8 cfs Interception with Clogging Qwi = 8.1 8.8 cfs	Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Interception with Clogging Q_{ma} N/A N/A N/A Cfs Resulting Grate Capacity (assumes clogged condition) $Q_{crate} =$ N/A N/A N/A Cfs Curb Opening Flow Analysis (Calculated)Coord $MINOR$ $MAJOR$ Cfs Clogging Coefficient for Multiple Units $Coord =$ 1.00 1.00 0.10 0.10 Clogging Factor for Multiple Units $Coord =$ 0.10 0.10 0.10 0.10 Curb Capacity as as Weir (based on MHFD - CSU 2010 Study) $Wil R MAJOR$ $MINOR$ $MJOR$ Interception without Clogging $Q_{wil} =$ 3.9 6.0 cfs Curb Capacity as an Orfice (based on MHFD - CSU 2010 Study) $Wil R MAJOR$ $MINOR$ $MJOR$ Interception without Clogging $Q_{wil} =$ 8.9 9.8 cfs Curb Capacity as an Orfice (based flow $Wil R MAJOR$ $Wil R MAJOR$ Cfs Interception without Clogging $Q_{wil} =$ 8.9 9.8 cfs Interception without Clogging $Q_{wil} =$ 5.5 7.1 cfs Interception with Clogging $Q_{wil} =$ 5.5 7.1 cfs Resultant Street Conditions $Win OR$	Grate Capacity as Mixed Flow	_	MINOR	MAJOR	
Resulting Grate Capacity assumes cloqued condition) Q_{Grate N/A N/A cfs Curb Opening Flow Analysis (Calculated) MINOR MAIOR MAIOR Clogging Coefficient for Multiple Units Clog 0.00 1.00 Curb Capacity as Weir (based on MHFD - CSU 2010 Study) MINOR MAIOR Interception without Clogging Q _{ovi} 3.9 6.0 cfs Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MAIOR MAIOR Interception with Clogging Q _{ovi} 3.5 5.4 cfs Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MAIOR MAIOR Interception without Clogging Q _{ovi} 8.9 9.8 cfs Curb Opening Capacity as Mixed Flow MINOR MAIOR MAIOR Interception with Clogging Q _{ovi} 5.5 7.1 cfs Interception with Clogging Q _{ovi} 3.5 5.4 cfs Resultant Street Conditions MINOR MAIOR cfs Resultant Street Flow Spread (based on street geometry from above) T 10.4 13.1 ft	Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Curb Opening How Analysis (Calculated) MINOR MAJOR Clogging Coefficient for Multiple Units Coef = 1.00 1.00 Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Cine Capacity as a Weir (based on MHFD - CSU 2010 Study) MINOR MAJOR Interception with Clogging Qwi = 3.9 6.0 cfs Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Qwi = 3.9 9.8 cfs Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Qvi = 8.9 9.8 cfs Interception with Clogging Qoi = 8.9 9.8 cfs Interception with Clogging Qoi = 8.1 8.8 cfs Interception with Clogging Qoi = 5.5 7.1 cfs Interception with Clogging Qmi = 5.5 7.1 cfs Resultant Street Conditions Qmi = 5.5 5.4 cfs Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Street Flow Spread (based on street geometry from above) T = 0.0 0.0 inches Low Head Performanc	Interception with Clogging	Q _{ma} =			
Clogging Coefficient for Multiple UnitsCoef =1.001.00Clogging Factor for Multiple UnitsClog = 0.10 0.10 Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)MINORMAJORInterception with CloggingQwi = 3.9 6.0 Chrosping Capacity as an Orifice (based on MHFD - CSU 2010 Study)MINORMAJORInterception with CloggingQwi = 3.5 5.4 Interception with CloggingQoi = 8.1 8.8 Curb Opening Capacity as Mixed FlowMINORMAJORInterception with CloggingQoi = 5.5 7.1 Interception with CloggingQui = 5.5 7.1 Interception with Clogging Q_{ma} $=$ 5.5 Interception with Clogging Q_{ma} $=$ 5.5 Resultant Street Conditions T T T Resultant Street Flow Spread (based on street geometry from above) T T 0.0 Resultant Flow Depening Capacity (Calculated)		Q _{Grate} =			cfs
Clogging Factor for Multiple UnitsClog = 0.10 0.10 Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)MINORMAJORInterception without CloggingQwi = 3.9 6.0 Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)Qwi = 3.9 6.0 Interception without CloggingQoi = 8.9 9.8 cfs Curb Capacity as Mixed FlowQoi = 8.9 9.8 cfs Interception with CloggingQoi = 8.1 8.8 cfs Interception with CloggingQoi = 8.5 7.1 cfs Interception with CloggingQoi = 8.5 7.1 cfs Interception with CloggingQoi = 8.5 5.4 cfs Interception with CloggingQoi = 8.5 5.4 cfs Interception with CloggingQoi = 8.5 5.4 cfs Interception with Clogging $Qoi = 0.0$ 5.00 feetResultant Street Flow Spread (based on street geometry from above)T = 10.4 13.1 ft<		F			
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)Interception without Clogging $MiNOR$ MAJORInterception without Clogging $Q_{wi} =$ 3.9 6.0 cfsCurb Capacity as an Orifice (based on MHFD - CSU 2010 Study) $Q_{wa} =$ 3.5 5.4 cfsInterception without Clogging $Q_{oi} =$ 8.9 9.8 cfsInterception with Clogging $Q_{oi} =$ 8.9 9.8 cfsCurb Opening Capacity as Mixed FlowMINORMAJORInterception with Clogging $Q_{mi} =$ 5.5 7.1 cfsInterception with Clogging $Q_{mi} =$ 5.5 7.1 cfsResultant Street Conditions $Q_{ma} =$ 4.9 6.4 cfsResultant Street Flow Spread (based on street geometry from above) $T =$ 10.4 13.1 ftResultant Flow Depth at Street Crown $d_{cave} =$ N/A N/A N/A Low Head Performance Reduction (Calculated)MINORMAJORDepth for Grate Midwidth $d_{cave} =$ 0.25 0.333 ftGrated Inlet Performance Reduction Factor for Long Inlets $RF_{cave} =$ N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{corth} =$ 1.00 1.00 N/A <					
Interception without Clogging $Q_{wi} =$ 3.9 6.0 cfs Interception with Clogging $Q_{wa} =$ 3.5 5.4 cfs Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) $Q_{wa} =$ 3.5 5.4 cfs Interception with Clogging $Q_{oi} =$ 8.9 9.8 cfs Interception with Clogging $Q_{oi} =$ 8.1 8.8 cfs Interception with Clogging $Q_{mi} =$ 5.5 7.1 cfs Interception with Clogging $Q_{mi} =$ 4.9 6.4 cfs Interception with Clogging $Q_{mi} =$ 4.9 6.4 cfs Interception with Clogging $Q_{mi} =$ 4.9 6.4 cfs Resultant Street Conditions $Q_{crut} =$ 3.5 5.4 cfs Resultant Street Flow Spread (based on street geometry from above) $T =$ 10.4 13.1 ft Resultant Flow Depth at Street Crown $d_{crate} =$ N/A N/A N/A Low Head Performance Reduction (Calculated) $MINOR$ $MAIOR$ Depth for Grate Midwidth $d_{crate} =$ N/A N/A ft Depth for Curb Opening Weir Equation $RF_{Carub} =$ N/A N/A N/A Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Carub} =$ 1.00 1.00 1.00 Curb Opening Performance Reduction Factor for Long Inlets $RF_{Carub} =$ N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Carub} =$		Clog =			
Interception with Clogging $Q_{wa} =$ 3.5 5.4 cfs Curb Capacity as an Orifice (based on MHED - CSU 2010 Study) $Q_{oi} =$ 8.9 9.8 cfs Interception without Clogging $Q_{oi} =$ 8.9 9.8 cfs Curb Opening Capacity as Mixed Flow $Q_{oa} =$ 8.1 8.8 cfs Interception with Clogging $Q_{ma} =$ 4.9 6.4 cfs Interception with Clogging $Q_{ma} =$ 4.9 6.4 cfs Interception with Clogging $Q_{ma} =$ 4.9 6.4 cfs Resulting Curb Opening Capacity (assumes clogged condition) $\mathbf{C}_{curb} =$ 3.5 5.4 cfs Resultant Street ConditionsMINORMAJOR \mathbf{M} \mathbf{K} \mathbf{K} Resultant Street Flow Spread (based on street geometry from above) $T =$ 10.4 13.1 \mathbf{ft} Resultant Flow Depth at Street Crown $\mathbf{d}_{crown} =$ 0.0 0.0 inchesLow Head Performance Reduction (Calculated) \mathbf{M} \mathbf{M} \mathbf{N}/A \mathbf{ft} Depth for Grate Midwidth $\mathbf{d}_{crate} =$ \mathbf{N}/A \mathbf{N}/A \mathbf{ft} Grated Inlet Performance Reduction Factor for Long Inlets $\mathbf{RF}_{Carab} =$ \mathbf{N}/A \mathbf{N}/A \mathbf{N}/A Curb Opening Performance Reduction Factor for Long Inlets $\mathbf{RF}_{Corabination} =$ \mathbf{N}/A \mathbf{N}/A Curb Opening Capacity (assume score for Long Inlets $\mathbf{RF}_{Corabination} =$ \mathbf{N}/A \mathbf{N}/A					- -
Curb Capacity as an Orfice (based on MHFD - CSU 2010 Study) MINOR MAJOR Interception without Clogging Q_{oi} = 8.9 9.8 cfs Interception without Clogging Q_{oi} = 8.1 8.8 cfs Curb Opening Capacity as Mixed Flow minOR MAJOR MINOR MAJOR Interception with Clogging Q_{oi} = 8.1 8.8 cfs Interception with Clogging Q_{mi} = 5.5 7.1 cfs Interception with Clogging Q_{mi} = 5.5 7.1 cfs Resultant Street Conditions Guarb = 3.5 5.4 cfs Total Inlet Length L = 5.00 5.00 feet Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Flow Depth at Street Crown d _{Grown} = 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MINOR MJOR Depth for Curb Opening Weir Equation d _{Grate} = N/A N/A ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Carb} = <					
Interception without Clogging $Q_{oi} =$ 8.9 9.8 cfs Interception with Clogging $Q_{oa} =$ 8.1 8.8 cfs $Curb Opening Capacity as Mixed FlowMiNORMAJORInterception with CloggingQ_{mi} =5.57.1cfsInterception with CloggingQ_{ma} =4.96.4cfsResultant Street ConditionsQ_{curb} =3.55.4cfsTotal Inlet LengthL =5.005.00feetResultant Street Flow Spread (based on street geometry from above)T =10.413.1ftResultant Street Flow Depth at Street Crownd_{CROWN} =0.00.0inchesLow Head Performance Reduction (Calculated)MINORMAJORDepth for Grate Midwidthd_{crate} =N/AN/AftDepth for Curb Opening Weir Equationd_{Curb} =0.250.33ftGrated Inlet Performance Reduction Factor for Long InletsRF_{Curb} =1.001.00N/ACurb Opening Performance Reduction Factor for Long InletsRF_{Curb} =N/AN/AN/ACurb Opening Carbon Inlet Performance Reduction Factor for Long InletsRF_{Curb} =N/AN/AMINORMAJORN/AN/AN/A$		Q _{wa} =			cfs
Interception with Clogging $Q_{cos} =$ 8.1 8.8 cfs Curb Opening Capacity as Mixed Flow MINOR MAIOR Interception with Ologging $Q_{mi} =$ 5.5 7.1 cfs Interception with Ologging $Q_{mi} =$ 4.9 6.4 cfs Resultant Street Conditions $Q_{curb} =$ 3.5 5.4 cfs Resultant Street Conditions MINOR MAIOR Total Inlet Length L = 5.00 5.00 feet Resultant Flow Depth at Street Crown d _{CROWN} 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MAJOR mainterset Depth for Grate Midwidth d _{Grate} 0.25 0.33 ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} 1.00 1.00 1.00 Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} N/A N/A N/A Curb Opening Net Cord for Long Inlets RF _{Curb} N/A N/A N/		- F			٦.
Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging $Q_{mi} =$ 5.5 7.1 cfs Interception without Clogging $Q_{ma} =$ 4.9 6.4 cfs Resulting Curb Opening Capacity (assumes clogged condition) $\mathbf{C}_{curb} =$ 3.5 5.4 cfs Resultant Street Conditions MINOR MAJOR MAJOR fet Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Street Flow Depth at Street Crown $d_{CROWN} =$ 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MAJOR MAIOR Depth for Grate Midwidth $d_{crate} =$ N/A N/A ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Carat} = N/A N/A ft Curb Opening Performance Reduction Factor for Long Inlets RF _{Corabination} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Corabination} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Corabination} =					
Interception without Clogging $Q_{mi} =$ 5.5 7.1 cfs Interception with Clogging $Q_{ma} =$ 4.9 6.4 cfs Resulting Curb Opening Capacity (assumes clogged condition) $Q_{curb} =$ 3.5 5.4 cfs Resultant Street Conditions MINOR MADOR Total Inlet Length L = 5.00 5.00 feet Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Street Flow Spread (based on street geometry from above) T = 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MAIOR 0.0 inches Low Head Performance Reduction Factor for Long Inlets $R_{Grate} =$ N/A N/A ft Grated Inlet Performance Reduction Factor for Long Inlets $R_{Grate} =$ N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $R_{F_{combination}} =$ N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $R_{F_{combination}} =$ N/A N/A Curb Opening Performance Reduction Factor for Long Inlet		Q _{oa} =			cts
Interception with Clogging $Q_{ma}^{ma} =$ 4.9 6.4 cfs Resultant Street Conditions $\mathbf{Resultant Street Conditions}$ MINOR MAJOR Total Inlet Length L = 5.00 5.00 feet Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Street Flow Depth at Street Crown $d_{CROWN} =$ 0.0 0.0 inches Low Head Performance Reduction (Calculated) $MINOR$ MAJOR $MJOR$ $d_{CROWN} =$ Depth for Grate Midwidth $d_{Grate} =$ N/A N/A N/A n/A Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.25 0.33 ft Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} =$ N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} =$ 1.00 1.00 1.00 Curb Opening Cate Midwidth $RF_{Curb} =$ N/A N/A N/A N/A MINOR MAJOR $MINOR$ $MJOR$ $MINOR$ $MJOR$ $MINOR$ $MJOR$		~ F	-		ofe
Resulting Curb Opening Capacity (assumes clogged condition) $Q_{curb} =$ 3.5 5.4 cfs Resultant Street Conditions MINOR MAIOR Total Inlet Length L = 5.00 5.00 feet Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Flow Depth at Street Crown d _{CROWN} 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth d _{Grate} N/A N/A Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} 1.00 1.00 Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} N/A N/A Curb Opening Carbon Inlet Performance Reduction Factor for Long Inlets RF _{Curb} N/A N/A					
MINOR MAJOR Resultant Street Conditions MINOR MAJOR Total Inlet Length L = 5.00 fet Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Flow Depth at Street Crown d_{CROWN} 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth d_{crate} N/A N/A Depth for Curb Opening Weir Equation d_{crate} 0.25 0.33 ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Carate} N/A N/A K Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} N/A N/A K Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} N/A N/A K Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} N/A N/A K Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} N/A N/A K		$Q_{ma} =$			
Total Inlet Length L = 5.00 5.00 feet Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Street Flow Spread (based on street geometry from above) T = 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth d _{Grate} = N/A N/A ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} = N/A N/A MINOR MAJOR MAJOR MAJOR		Curb –			LI 3
Resultant Street Flow Spread (based on street geometry from above) T = 10.4 13.1 ft Resultant Flow Depth at Street Crown $d_{CROWN} =$ 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth $d_{crate} =$ N/A N/A ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Grate} N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} N/A N/A N/A MINOR MAJOR MAJOR MAJOR MAJOR MAJOR		, r			foot
Resultant Flow Depth at Street Crown $d_{CROWN} =$ 0.0 0.0 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth $d_{Grate} =$ N/A N/A ft Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.25 0.33 ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} = 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets RF _{Combination} = N/A N/A					
Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth $d_{crate} =$ N/A N/A Depth for Curb Opening Weir Equation $d_{curb} =$ 0.25 0.33 ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{carbe} = N/A N/A K Curb Opening Performance Reduction Factor for Long Inlets RF _{curb} = 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets RF _{combination} = N/A N/A		-			
Depth for Grate Midwidth $d_{Grate} =$ N/A N/A ft Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.25 0.33 ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} = 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets RF _{Combination} = N/A N/A		u _{CROWN} =	0.0	0.0	inclies
Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.25 0.33 ft Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} =$ N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} =$ 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} =$ N/A N/A		-			_
Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} = 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets RF _{combination} = N/A N/A			1	1	
Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} = 1.00$ 1.00 Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} = N/A$ N/A MINOR MAJOR					ft
Combination Inlet Performance Reduction Factor for Long Inlets RF _{Combination} = <u>N/A</u> <u>N/A</u> MINOR MAJOR			,	,	
MINOR MAJOR					4
	Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	_
			MINOR	MAIOR	
	Total Inlet Interception Capacity (assumes clogged condition)	o. = [cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>O Peak) Q PEAK REQUIRED = 0.4 0.9 cfs					





Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	Inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.0	inches
Grate Information	Fonding Depth =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{0}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	_	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	_
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	0 F	MINOR	MAJOR	7-6-
Interception without Clogging	Q _{wi} =	3.9	6.0	cfs
Interception with Clogging	Q _{wa} =	3.5 MINOR	5.4 MAJOR	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging	Q _{oi} =	8.9	MAJOR 9.8	cfs
Interception with Clogging		8.9	8.8	cfs
Curb Opening Capacity as Mixed Flow	Q _{oa} =	MINOR	MAJOR	CIS
Interception without Clogging	Q _{mi} =	5.5	7.1	cfs
Interception with Clogging	$Q_{mi} = Q_{ma} =$	4.9	6.4	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{ma} = Q_{curb} =$	3.5	5.4	cfs
Resultant Street Conditions	CCUID	MINOR	MAJOR	1.5
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	с – Т =	10.4	13.1	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	SCROWN -	0.0	0.0	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	1
······	Combination	,		-
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	5.4	cfs
	$Q_{PEAK REQUIRED} =$			cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	Inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.0	inches
Grate Information	Fonding Depth =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{0}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	_	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	_
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	0 F	MINOR	MAJOR	7-6-
Interception without Clogging	Q _{wi} =	3.9	6.0	cfs
Interception with Clogging	Q _{wa} =	3.5 MINOR	5.4 MAJOR	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging	Q _{oi} =	8.9	MAJOR 9.8	cfs
Interception with Clogging		8.9	8.8	cfs
Curb Opening Capacity as Mixed Flow	Q _{oa} =	MINOR	MAJOR	CIS
Interception without Clogging	Q _{mi} =	5.5	7.1	cfs
Interception with Clogging	$Q_{mi} = Q_{ma} =$	4.9	6.4	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{ma} = Q_{curb} = $	3.5	5.4	cfs
Resultant Street Conditions	Carb	MINOR	MAJOR	1.5
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	с – Т =	10.4	13.1	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	SCROWN -	0.0	0.0	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	1
······	Combination	,		-
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	5.4	cfs
	$Q_{PEAK REQUIRED} =$			cfs

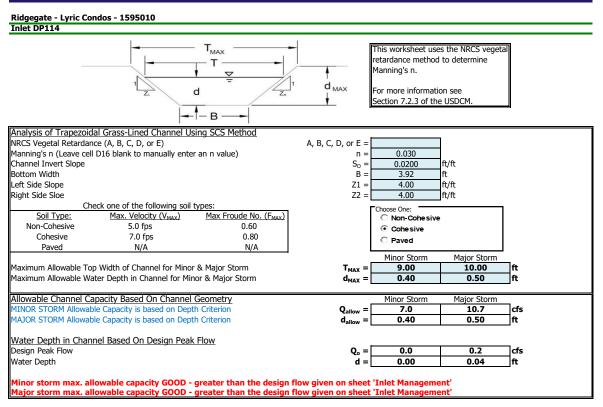
Inlet DP109						
	1		-			_
	- T	MAX		This worksheet use		al
		T		retardance method	to determine	
		∇	4	Manning's n.		
	1	= //1	d MAX			
	z, d	Zn		For more information		
			<u> </u>	Section 7.2.3 of the	e USDCM.	
	 †	в —				
· · · · · · · · · · · · · · · · · · ·		1				
	Grass-Lined Channel Using	SCS Method	•			
NRCS Vegetal Retardance (A, B, C, D, or E =			
	6 blank to manually enter an	n value)	n =	0.030		
Channel Invert Slope			$S_0 =$	0.0200	ft/ft	
Bottom Width			B =	3.92	ft	
eft Side Slope			Z1 =	4.00	ft/ft	
Right Side Sloe			Z2 =	4.00	ft/ft	
	one of the following soil type		Г	Choose One:		
Soil Type:		lax Froude No. (F _{MAX})		O Non-Cohesive		
Non-Cohesive	5.0 fps	0.60		Cohesive		
Cohesive	7.0 fps	0.80		O Paved		
Paved	N/A	N/A	L			
				Minor Storm	Major Storm	7.0
	idth of Channel for Minor & M		T _{MAX} =	9.00	10.00	ft
Maximum Allowable Water	Depth in Channel for Minor 8	Major Storm	d _{MAX} =	0.40	0.50	ft
Maurine Channel Cana		14/: -141-		Mi Ci	M · CI	
	city Based On Allowable To	<u>p widtn</u>	- T	Minor Storm	Major Storm	_ _
Maximum Allowable Top W	idth		T _{MAX} =	9.00	10.00	ft
Water Depth			d =	0.64	0.76	ft
Flow Area			A =	4.10	5.29	sq ft
Wetted Perimeter			P =	9.16	10.19	ft
Hydraulic Radius			R =	0.45	0.52	ft
Manning's n			n =	0.030	0.030	6
Flow Velocity			V =	4.11	4.54	fps
Velocity-Depth Product			VR = D =	1.84	2.36 0.53	ft^2/s ft
Hydraulic Depth Froude Number			D = Fr =	0.46	1.10	
Maximum Flow Based on A	llowable Water Depth			16.9	24.0	cfs
Maximum now Dased on A	nowable water Depth		Q _T =	10.5	24.0	CIS
Maximum Channel Cana	city Based On Allowable Wa	ator Donth		Minor Storm	Major Storm	
Maximum Allowable Water			d _{MAX} =	0.40	0.50	ft
Top Width	Depth		ч _{мах} — Т =	7.12	7.92	ft
Flow Area			A =	2.21	2.96	sq ft
Wetted Perimeter			P =	7.22	8.04	ft
Hydraulic Radius			Р – R =	0.31	0.37	ft
Manning's n			к = n =	0.030	0.030	- ^{II}
Flow Velocity			V =	3.19	3.61	fps
Velocity-Depth Product			v = VR =	0.98	1.33	ft^2/s
Hydraulic Depth			VR = D =	0.31	0.37	ft
Froude Number			D = Fr =	1.01	1.04	- ¹
Proude Number Maximum Flow Based On A	llowable Water Denth		$\mathbf{Q}_{d} =$	7.0	1.04 10.7	cfs
nakinum now based OIT P	momable mater Depth		•ed -	7.0	10.7	0.5
Allowable Channel Canad	city Based On Channel Geo	metrv		Minor Storm	Major Storm	
	Capacity is based on Depth Cr		Q _{allow} =	7.0	10.7	cfs
	Capacity is based on Depth Cr		$d_{allow} =$	0.40	0.50	ft
		centori	wallow -	0110	0.50	
Water Depth in Channel	Based On Design Peak Flo	N				
Design Peak Flow	u	<u></u>	Q _o =	0.0	0.1	cfs
Water Depth			• ₂₀ − d =	0.00	0.03	ft
Top Width			т =	3.93	4.14	ft
Flow Area			A =	0.01	0.11	sq ft
Netted Perimeter			P =	3.93	4.15	ft
Hydraulic Radius			R =	0.00	0.03	ft
Manning's n			n =	0.030	0.030	
Flow Velocity			V =	0.10	0.63	fps
Velocity-Depth Product			V = VR =	0.00	0.02	ft^2/s
Hydraulic Depth			D =	0.00	0.02	ft
Froude Number			5 = Fr =	0.42	0.68	-1.2

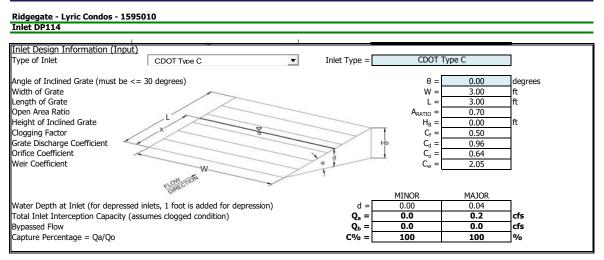
Inlet DP109				
		1		
Inlet Design Information (Inp	put)			
Type of Inlet	CDOT Type C	 Inlet Type = 	CDOT Type C	
Angle of Inclined Grate (must be	e <= 30 dearees)		$\theta = 0.00$	degrees
Width of Grate	5 • 55 403.005)		W = 3.00	
Length of Grate			L = 3.00	
Open Area Ratio			$A_{RATIO} = 0.70$	
Height of Inclined Grate			$H_{\rm B} = 0.00$	
Clogging Factor	X		$C_f = 0.50$	
Grate Discharge Coefficient	4	н	$C_{d} = 0.96$	
Orifice Coefficient	2		$C_0 = 0.64$	
Weir Coefficient			C _w = 2.05	
	10W TION			
	DIREC		MINOR MAJO	R
Water Depth at Inlet (for depres	sed inlets, 1 foot is added for depression)	d =	0.00 0.03	
Grate Capacity as a Weir				
Submerged Side Weir Length		X =	3.00 3.00	ft
Inclined Side Weir Flow		Q _{ws} =	0.0 0.0	cfs
Base Weir Flow		Q _{wb} =	0.0 0.1	cfs
Interception Without Cloggging		Q _{wi} =	0.0 0.2	cfs
Interception With Clogging		Q _{wa} =	0.0 0.1	cfs
Grate Capacity as an Orifice				
Interception Without Clogging		Q _{oi} =	1.3 5.4	cfs
Interception With Clogging		Q _{oa} =	0.7 2.7	cfs
Total Inlet Interception Capacity	(assumes clogged condition)	Q _a =	0.0 0.1	cfs
Bypassed Flow	($\mathbf{Q}_{b}^{a} =$	0.0 0.0	cfs

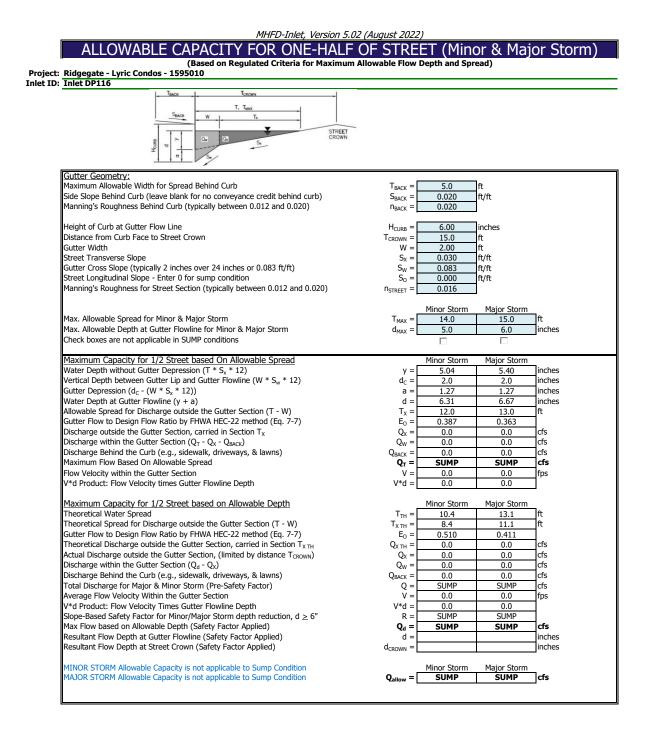
lidgegate - Lyric Condos - 1595010 nlet DP110				
	1			_
- T _{MAX}	-	This worksheet use		al
I T		retardance method	to determine	
	1	Manning's n.		
1		For more informati		
Z, d		For more informati Section 7.2.3 of the		
		Section 7.2.3 of the	e usdem.	
⊺- B				
nalysis of Trapezoidal Grass-Lined Channel Using SCS Method				
IRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D, or E =		1	
lanning's n (Leave cell D16 blank to manually enter an n value)	n =	0.030		
hannel Invert Slope	S ₀ =	0.0200	ft/ft	
ottom Width	-0 B =	3.92	ft	
eft Side Slope	Z1 =	4.00	ft/ft	
ight Side Sloe	Z2 =	4.00	ft/ft	
Check one of the following soil types:		Choose One:	1.4.1	
Soil Type: Max. Velocity (V _{MAX}) Max Froude No. (F _M)	(XA	Non-Cohe sive		
Non-Cohesive 5.0 fps 0.60		C Cohesive		
Cohesive 7.0 fps 0.80				
Paved N/A N/A		C Paved		
		Minor Storm	Major Storm	
laximum Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} =	9.00	10.00	ft
laximum Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	0.40	0.50	ft
laximum Channel Capacity Based On Allowable Top Width		Minor Storm	Major Storm	
laximum Allowable Top Width	T _{MAX} =	9.00	10.00	ft
Vater Depth	d =	0.64	0.76	ft
low Area	A =	4.10	5.29	sq ft
Vetted Perimeter	P =	9.16	10.19	ft
lydraulic Radius	R =	0.45	0.52	ft
, lanning's n	n =	0.030	0.030	
low Velocity	V =	4.11	4.54	fps
elocity-Depth Product	VR =	1.84	2.36	ft^2/s
lydraulic Depth	D =	0.46	0.53	ft
roude Number	Fr =	1.07	1.10	
laximum Flow Based on Allowable Water Depth	Q _T =	16.9	24.0	cfs
	-			
laximum Channel Capacity Based On Allowable Water Depth		Minor Storm	Major Storm	
laximum Allowable Water Depth	d _{MAX} =	0.40	0.50	ft
op Width	T =	7.12	7.92	ft
low Area	A =	2.21	2.96	sq ft
Vetted Perimeter	P =	7.22	8.04	ft
lydraulic Radius	R =	0.31	0.37	ft
lanning's n	n =	0.030	0.030	
low Velocity	V =	3.19	3.61	fps
elocity-Depth Product	VR =	0.98	1.33	ft^2/s
lydraulic Depth	D =	0.31	0.37	ft
roude Number	Fr =	1.01	1.04	
laximum Flow Based On Allowable Water Depth	Q _d =	7.0	10.7	cfs
llowable Channel Capacity Based On Channel Geometry		Minor Storm	Major Storm	
IINOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	7.0	10.7	cfs
IAJOR STORM Allowable Capacity is based on Depth Criterion	d _{allow} =	0.40	0.50	ft
Vater Depth in Channel Based On Design Peak Flow			•	
esign Peak Flow	$Q_o =$	0.0	0.2	cfs
Vater Depth	d =	0.00	0.04	ft
op Width	T =	3.93	4.27	ft
low Area	A =	0.01	0.18	sq ft
Vetted Perimeter	P =	3.93	4.28	ft
lydraulic Radius	R =	0.00	0.04	ft
lanning's n	n =	0.030	0.030	_
low Velocity	V =	0.10	0.84	fps
elocity-Depth Product	VR =	0.00	0.04	ft^2/s
				10
lydraulic Depth roude Number	D = Fr =	0.00 0.42	0.04 0.73	ft

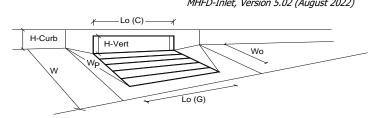
Ridgegate - Lyric Condos -	1595010				
Inlet DP110					
Inlet Design Information (In					
Type of Inlet	CDOT Type C	Inlet Type =	CDOT T	ine (
Type of The	CDOT Type C		60011	ipe e	
Angle of Inclined Grate (must b	oe <= 30 degrees)		θ =	0.00	degrees
Width of Grate			W =	3.00	ft
Length of Grate			L =	3.00	ft
Open Area Ratio			A _{RATIO} =	0.70	
Height of Inclined Grate			H _B =	0.00	ft
Clogging Factor	X		C _f =	0.50	
Grate Discharge Coefficient	4		• C _d =	0.96	
Orifice Coefficient		\mathbf{N}	C ₀ =	0.64	
Weir Coefficient	111	7.0 j	C _w =	2.05	
		-			
	FLORECTIL				
		. —	MINOR	MAJOR	
Water Depth at Inlet (for depre	essed inlets, 1 foot is added for depression)	d =	0.00	0.04	
Grate Capacity as a Weir					
Submerged Side Weir Length		X =	3.00	3.00	ft
Inclined Side Weir Flow		Q _{ws} =	0.0	0.1	cfs
Base Weir Flow		Q _{wb} =	0.0	0.1	cfs
Interception Without Cloggging]	Q _{wi} =	0.0	0.3	cfs
Interception With Clogging		Q _{wa} =	0.0	0.2	cfs
Grate Capacity as an Orifice			1.2	6.7	
Interception Without Clogging		$Q_{oi} =$	1.3 0.7	6.7 3.4	cfs cfs
Interception With Clogging		Q _{oa} =	0.7	3.4	cis
Total Inlet Interception Capacit	ty (assumes clogged condition)	Q _a =	0.0	0.2	cfs
Bypassed Flow		$Q_{\rm b} =$	0.0	0.0	cfs
Dypassed Flow					

lidgegate - Lyric Condos - 1595010 nlet DP111				
1				_
- T _{MAX}			es the NRCS vegeta	al
T			d to determine	
	Manr	iing's n.		
1	1 d _{MAX} For n			
Z, d		nore informat		
	Section	on 7.2.3 of th	ie USDCM.	
⊸1−в —►				
nalysis of Trapezoidal Grass-Lined Channel Using SCS Method			-	
IRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D, or E =		-	
lanning's n (Leave cell D16 blank to manually enter an n value)	n =	0.030	0.40	
hannel Invert Slope	S ₀ =	0.0200	ft/ft	
ottom Width	B =	3.92	ft	
eft Side Slope	Z1 =	4.00	ft/ft	
ight Side Sloe	Z2 =	4.00	ft/ft	
Check one of the following soil types:		se One:		
Soil Type: Max. Velocity (V _{MAX}) Max Froude No. (F _M	ax) (C	Non-Cohe sive	e	
Non-Cohesive 5.0 fps 0.60	0	Cohesive		
Cohesive 7.0 fps 0.80	0	Paved		
Paved N/A N/A			N : 0:	
		inor Storm	Major Storm	7.0
Iaximum Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} =	9.00	10.00	ft
laximum Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	0.40	0.50	ft
Iaximum Channel Capacity Based On Allowable Top Width		inor Storm	Major Storm	7.
Iaximum Allowable Top Width	T _{MAX} =	9.00	10.00	ft
Vater Depth	d =	0.64	0.76	ft
low Area	A =	4.10	5.29	sq ft
Vetted Perimeter	P =	9.16	10.19	ft
lydraulic Radius	R =	0.45	0.52	ft
lanning's n	n =	0.030	0.030	_
low Velocity	V =	4.11	4.54	fps
elocity-Depth Product	VR =	1.84	2.36	ft^2/s
lydraulic Depth	D =	0.46	0.53	ft
roude Number	Fr =	1.07	1.10	
laximum Flow Based on Allowable Water Depth	Q _T =	16.9	24.0	cfs
laximum Channel Capacity Based On Allowable Water Depth	-	inor Storm	Major Storm	-
laximum Allowable Water Depth	d _{MAX} =	0.40	0.50	ft
op Width	T =	7.12	7.92	ft
low Area	A =	2.21	2.96	sq ft
Vetted Perimeter	P =	7.22	8.04	ft
lydraulic Radius	R =	0.31	0.37	ft
lanning's n	n =	0.030	0.030	- L.
low Velocity	V =	3.19	3.61	fps
elocity-Depth Product	VR =	0.98	1.33	ft^2/s
lydraulic Depth	D =	0.31	0.37	ft
roude Number	Fr =	1.01	1.04	1.
laximum Flow Based On Allowable Water Depth	$\mathbf{Q}_{d} =$	7.0	10.7	cfs
Ilowable Channel Capacity Based On Channel Geometry		inor Storm	Major Storm	٦.
IINOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	7.0	10.7	cfs
IAJOR STORM Allowable Capacity is based on Depth Criterion	d _{allow} =	0.40	0.50	ft
Vater Depth in Channel Based On Design Peak Flow	, 			
esign Peak Flow	Q _o =	0.0	0.1	cfs
/ater Depth	d =	0.00	0.03	ft
op Width	Τ =	3.93	4.14	ft
low Area	A =	0.01	0.11	sq ft
Vetted Perimeter	P =	3.93	4.15	ft
	R =	0.00	0.03	ft
lydraulic Radius		0.030	0.030	
lanning's n	n =			
anning's n Iow Velocity	n = V =	0.10	0.63	fps
lanning's n Iow Velocity 'elocity-Depth Product	V = VR =	0.10 0.00	0.02	fps ft^2/s
anning's n Iow Velocity	V =	0.10		

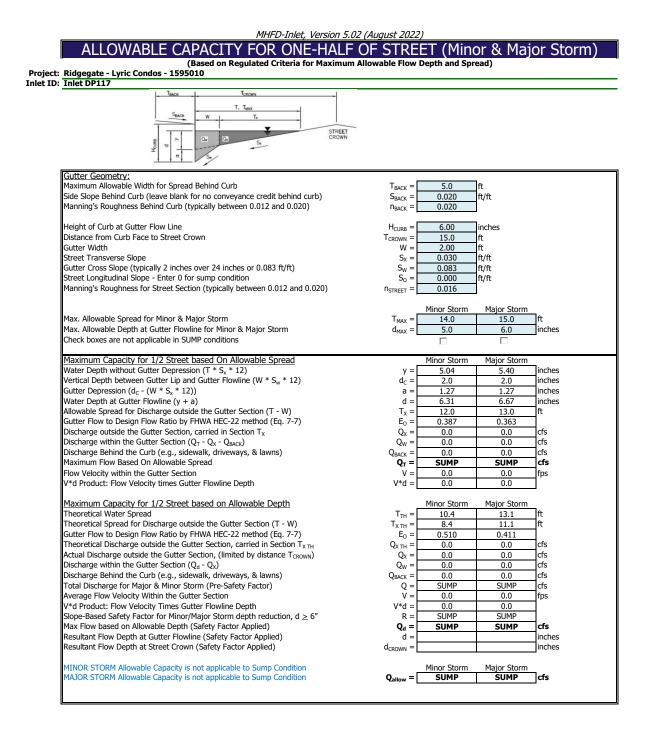

Ridgegate - Lyric Condos -	1595010				
Inlet DP111					
Inlet Design Information (In					
Type of Inlet	CDOT Type C	Inlet Type =	CDOT T	vpe C	
The of Inde				/	
Angle of Inclined Grate (must b	pe <= 30 degrees)		θ =	0.00	degrees
Width of Grate	\sim		W =	3.00	ft
Length of Grate			L =	3.00	ft
Open Area Ratio			$A_{RATIO} =$	0.70	
Height of Inclined Grate			$H_B =$	0.00	ft
Clogging Factor	X		C _f =	0.50	
Grate Discharge Coefficient	4		b C _d =	0.96	
Orifice Coefficient	4		C ₀ =	0.64	
Weir Coefficient	111) e j	C _w =	2.05	
		-			
	FLORECTIC				
	0.		MINOR	MAJOR	
Water Depth at Inlet (for depre	essed inlets, 1 foot is added for depression)	d =	0.00	0.03	
Grate Capacity as a Weir					_ _
Submerged Side Weir Length		X =	3.00	3.00	ft
Inclined Side Weir Flow		Q _{ws} =	0.0	0.0	cfs
Base Weir Flow		Q _{wb} =	0.0	0.1	cfs
Interception Without Cloggging)	Q _{wi} =	0.0	0.2	cfs
Interception With Clogging		Q _{wa} =	0.0	0.1	cfs
Grate Capacity as an Orifice					
Interception Without Clogging		Q _{oi} =	1.3	5.4	cfs
Interception With Clogging		$Q_{0a} =$	0.7	2.7	cfs
and clogging		2 03 –	0	2.7	
Total Inlet Interception Capacit	ty (assumes clogged condition)	Q _a =	0.0	0.1	cfs
		$Q_{\rm b} =$	0.0	0.0	cfs
Bypassed Flow		Q _b –	0.0	0.0	CIS

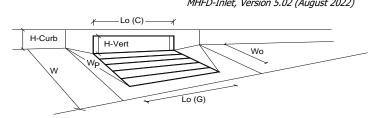

Ridgegate - Lyric Condo Inlet DP112						
	1		-			
	T	MAX		This worksheet use		al
		T		retardance method	to determine	
		∇	4	Manning's n.		
	1	= //1	d _{MAX}			
	Z, d	Zn		For more information		
			<u> </u>	Section 7.2.3 of the	e USDCM.	
		в —				-
	rass-Lined Channel Using	SCS Method			I	
NRCS Vegetal Retardance (A, B, C, D, or E =	0.020		
	blank to manually enter an	n value)	n =	0.030	ft/ft	
Channel Invert Slope Bottom Width			S ₀ = B =	0.0200	ft	
				3.92	-	
Left Side Slope			Z1 =	4.00	ft/ft	
Right Side Sloe			Z2 =	4.00	ft/ft	
	one of the following soil type		Г	Choose One:		
Soil Type:		lax Froude No. (F _{MAX})		O Non-Cohesive		
Non-Cohesive	5.0 fps	0.60		Cohesive		
Cohesive	7.0 fps	0.80		Paved		
Paved	N/A	N/A	L	Min en Ci	Maia Ci	l
	the of Channel C. M. C. M.	laian Channa		Minor Storm	Major Storm	_ _
	dth of Channel for Minor & M		T _{MAX} =	9.00	10.00	ft
faximum Allowable Water I	Depth in Channel for Minor &	Major Storm	d _{MAX} =	0.40	0.50	ft
		MC BI				
	ity Based On Allowable To	<u>p widtn</u>		Minor Storm	Major Storm	-
Maximum Allowable Top Wi	dth		$T_{MAX} =$	9.00	10.00	ft
Water Depth			d =	0.64	0.76	ft
Flow Area			A =	4.10	5.29	sq ft
Vetted Perimeter			P =	9.16	10.19	ft
lydraulic Radius			R =	0.45	0.52	ft
fanning's n			n =	0.030	0.030	
low Velocity			V =	4.11	4.54	fps
/elocity-Depth Product			VR =	1.84	2.36	ft^2/s
lydraulic Depth			D =	0.46	0.53	ft
roude Number			Fr =	1.07	1.10	
laximum Flow Based on Al	lowable Water Depth		$Q_T =$	16.9	24.0	cfs
	ity Based On Allowable Wa	ater Depth		Minor Storm	Major Storm	-
Maximum Allowable Water	Depth		d _{MAX} =	0.40	0.50	ft
Fop Width			T =	7.12	7.92	ft
low Area			A =	2.21	2.96	sq ft
Netted Perimeter			P =	7.22	8.04	ft
Hydraulic Radius			R =	0.31	0.37	ft
Manning's n			n =	0.030	0.030	
low Velocity			V =	3.19	3.61	fps
/elocity-Depth Product			VR =	0.98	1.33	ft^2/s
Hydraulic Depth			D =	0.31	0.37	ft
Froude Number			Fr =	1.01	1.04	
laximum Flow Based On A	lowable Water Depth		$Q_d =$	7.0	10.7	cfs
	ity Based On Channel Geo			Minor Storm	Major Storm	٦.
	apacity is based on Depth Cr		$Q_{allow} =$	7.0	10.7	cfs
IAJOR STORM Allowable C	apacity is based on Depth Cri	terion	d _{allow} =	0.40	0.50	ft
	Based On Design Peak Flo	N	_ F			- -
Design Peak Flow			Q ₀ =	0.0	0.2	cfs
Vater Depth			d =	0.00	0.05	ft
op Width			T =	3.93	4.36	ft
low Area			A =	0.01	0.23	sq ft
Vetted Perimeter			P =	3.93	4.37	ft
Hydraulic Radius			R =	0.00	0.05	ft
Manning's n			n =	0.030	0.030	_
-low Velocity			V =	0.10	0.98	fps
/elocity-Depth Product			VR =	0.00	0.05	ft^2/s
Hydraulic Depth			D =	0.00	0.05	ft
Froude Number			Fr =	0.42	0.75	

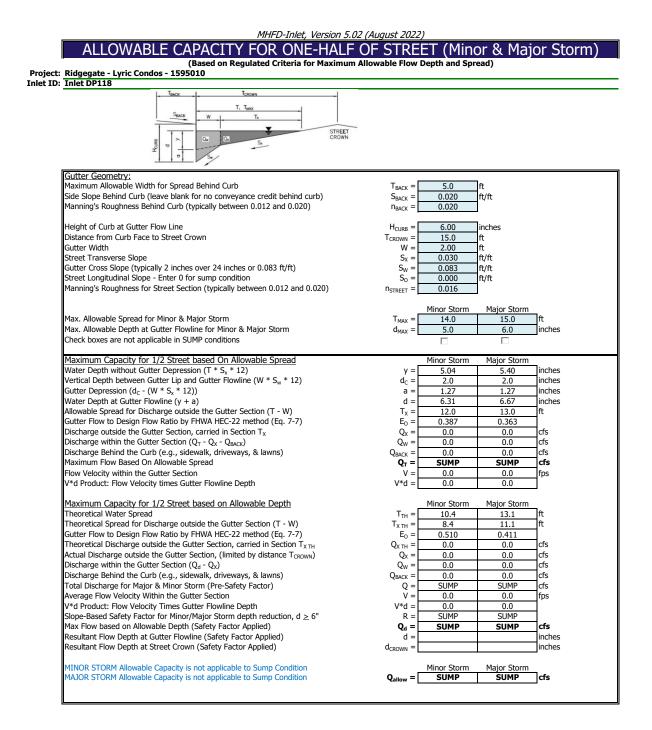

Ridgegate - Lyric Condos -	1595010				
inlet DP112					
Inlet Design Information (I					
Type of Inlet	CDOT Type C	Inlet Type =	CDOT T	vne C	
Type of Thee			60011	ype e	
Angle of Inclined Grate (must	be <= 30 degrees)		θ =	0.00	degrees
Width of Grate	\sim		W =	3.00	ft
Length of Grate			L =	3.00	ft
Open Area Ratio			$A_{RATIO} =$	0.70	
Height of Inclined Grate			$H_B =$	0.00	ft
Clogging Factor	X		C _f =	0.50	
Grate Discharge Coefficient	4		C _d =	0.96	
Drifice Coefficient			C ₀ =	0.64	
Weir Coefficient		7 0 j	C _w =	2.05	
		-			
	PLOW CTIO				
	0.		MINOR	MAJOR	
Water Depth at Inlet (for depr	essed inlets, 1 foot is added for depression)	d =	0.00	0.05	
Grate Capacity as a Weir					- 1-
Submerged Side Weir Length		X =	3.00	3.00	ft
Inclined Side Weir Flow		Q _{ws} =	0.0	0.1	cfs
Base Weir Flow		Q _{wb} =	0.0	0.2	cfs
Interception Without Clogggin	J	Q _{wi} =	0.0	0.5	cfs
Interception With Clogging		Q _{wa} =	0.0	0.2	cfs
Grate Capacity as an Orifice					
Interception Without Clogging		Q _{oi} =	1.3	7.6	cfs
Interception With Clogging		$Q_{oi} = $ $Q_{oa} = $	0.7	3.8	cfs
anciception with clogging		Q _{0a} –	0.7	5.0	
Tatal Islat Istanastics Course	ty (assumes clogged condition)	Q _a =	0.0	0.2	cfs
I otal Inlet Interception Cabaci					
Bypassed Flow		$Q_{\rm b} =$	0.0	0.0	cfs

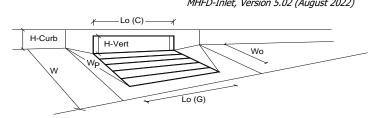

Inlet DP113	os - 1595010					
	1					_
	· ·			This worksheet use		al
		T		retardance method	to determine	
	+	▽ /	1	Manning's n.		
	1	= // 1	d MAX	F		
	z, d	ZR		For more information		
				Section 7.2.3 of the	e USDCM.	
	- 1 -	в —				
Analysis of Transraidal (Crace Lined Channel Using	CCC Mothod				
	Grass-Lined Channel Using	SCS Method			1	
NRCS Vegetal Retardance	(A, B, C, D, OFE) .6 blank to manually enter ar		A, B, C, D, or E =	0.020		
Channel Invert Slope	o Dialik to manually enter al	i ii value)	n =	0.030	ft/ft	
Bottom Width			S ₀ = B =		ft	
eft Side Slope			-	3.92	ft/ft	
			Z1 =	4.00		
Right Side Sloe			Z2 =	4.00	ft/ft	
	one of the following soil typ		Г	Choose One:		
Soil Type:		Max Froude No. (F _{MAX})		Non-Cohe sive		
Non-Cohesive	5.0 fps	0.60		Cohesive		
Cohesive	7.0 fps	0.80		Paved		
Paved	N/A	N/A	L	Minor Chame	Major Charm	
4	lidth of Channel for Minor 0	Maian Channa		Minor Storm	Major Storm	a
	/idth of Channel for Minor &		T _{MAX} =	9.00	10.00	ft
naximum Allowable Water	Depth in Channel for Minor	x major storm	d _{MAX} =	0.40	0.50	ft
Anvinum Channel C	city Pacad On Allowet-1- T	op Width		Minor Chame	Major Charm	
	city Based On Allowable T	op width	T	Minor Storm	Major Storm	_ _
Maximum Allowable Top W	naun		$T_{MAX} =$	9.00	10.00	ft
Water Depth			d =	0.64	0.76	ft
Flow Area			A =	4.10	5.29	sq ft
Wetted Perimeter			P =	9.16	10.19	ft
Hydraulic Radius			R =	0.45	0.52	ft
Manning's n			n =	0.030	0.030	6
Flow Velocity			V =	4.11	4.54	fps
/elocity-Depth Product			VR =	1.84	2.36	ft^2/s
Hydraulic Depth			D =	0.46	0.53	ft
Froude Number	llaurahla Watan Danth		Fr =	1.07	1.10	
Maximum Flow Based on A	liowable water Depth		Q _T =	16.9	24.0	cfs
And in the Channel Cana		latan Danth		N. C.		
	city Based On Allowable V	later Depth		Minor Storm	Major Storm	a
Maximum Allowable Water	Depth		$d_{MAX} =$	0.40	0.50	ft
Fop Width			T =	7.12	7.92	ft
Flow Area			A =	2.21	2.96	sq ft
Wetted Perimeter			P =	7.22	8.04	ft
Hydraulic Radius			R =	0.31	0.37	ft
Manning's n			n =	0.030	0.030	6
Flow Velocity			V =	3.19	3.61	fps
/elocity-Depth Product			VR =	0.98	1.33	ft^2/s
lydraulic Depth			D =	0.31	0.37	ft
roude Number			Fr =	1.01	1.04	
Maximum Flow Based On A	Allowable water Depth		$\mathbf{Q}_{d} =$	7.0	10.7	cfs
	-it. Brand On Channel Co			N. C.		
	city Based On Channel Ge		o _[Minor Storm	Major Storm	
	Capacity is based on Depth C		$Q_{allow} =$	7.0	10.7	cfs
AJUK STORM Allowable (Capacity is based on Depth C	riterion	d _{allow} =	0.40	0.50	ft
Natar Dopth in Chairs -1	Paced On Design Dest: El					
	Based On Design Peak Fl	JVV	~ [†]	0.0	0.1	
Design Peak Flow			$Q_0 =$	0.0	0.1	cfs
Vater Depth			d =	0.00	0.03	ft
op Width			Τ=	3.93	4.14	ft
Flow Area			A =	0.01	0.11	sq ft
Netted Perimeter			P =	3.93	4.15	ft
lydraulic Radius			R =	0.00	0.03	ft
fanning's n			n =	0.030	0.030	-
Flow Velocity			V =	0.10	0.63	fps
/elocity-Depth Product			VR =	0.00	0.02	ft^2/s
Hydraulic Depth			D =	0.00	0.03	ft
Froude Number			Fr =	0.42	0.68	

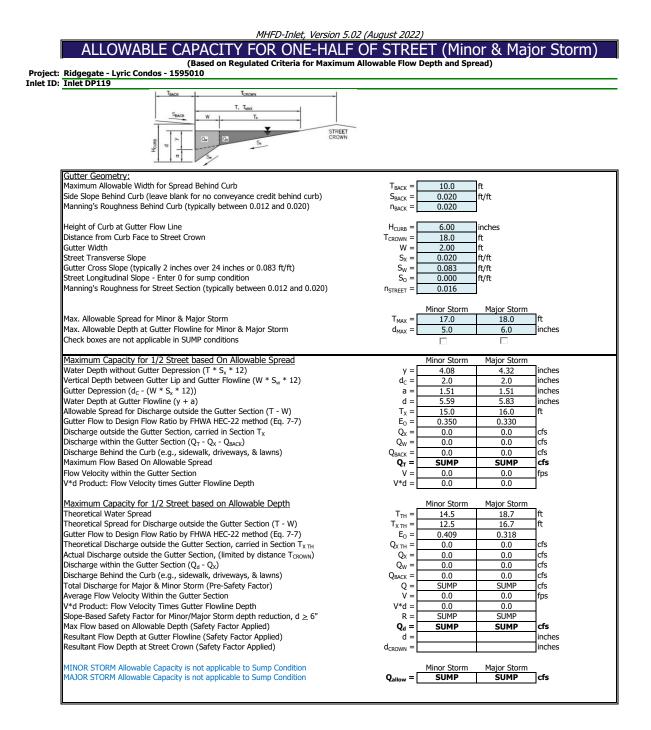
Ridgegate - Lyric Condos -	1292010				
inlet DP113					
Inlet Design Information (Ir		1			
Type of Inlet	CDOT Type C	Inlet Type =	CDOT T	/ne C	
type of inter	CDOT Type C		60011	ipe e	
Angle of Inclined Grate (must	be <= 30 degrees)		θ =	0.00	degrees
Width of Grate			W =	3.00	ft
ength of Grate			L =	3.00	ft
Open Area Ratio			A _{RATIO} =	0.70	
Height of Inclined Grate			$H_B =$	0.00	ft
Clogging Factor	X		C _f =	0.50	
Grate Discharge Coefficient	4	H	C _d =	0.96	
Drifice Coefficient			C _o =	0.64	
Neir Coefficient	1MI	> ej	C _w =	2.05	
	FLOW				
	0.		MINOR	MAJOR	
Nater Depth at Inlet (for depr	essed inlets, 1 foot is added for depression)	d =	0.00	0.03	
Grate Capacity as a Weir					-]_
Submerged Side Weir Length		X =	3.00	3.00	ft
Inclined Side Weir Flow		Q _{ws} =	0.0	0.0	cfs
Base Weir Flow		Q _{wb} =	0.0	0.1	cfs
Interception Without Clogggin	J	Q _{wi} =	0.0	0.2	cfs
Interception With Clogging		Q _{wa} =	0.0	0.1	cfs
Grate Capacity as an Orifice					
Interception Without Clogging	•	Q _{oi} =	1.3	5.4	cfs
Interception With Clogging		$Q_{oi} = Q_{oa} =$	0.7	2.7	cfs
ance ception with clogging		×0a -	0.7	2.7	0.5
	ty (assumes clogged condition)	Q _a =	0.0	0.1	cfs
Fotal Inlet Interception Capaci					
Total Inlet Interception Capaci Bypassed Flow	(ussumes elogged condition)	$Q_{\rm b} =$	0.0	0.0	cfs



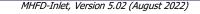


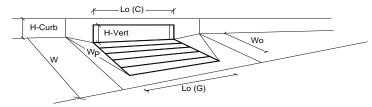



Design Information (Input)	r	MINOR	MAJOR	-
lype of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.0	inches
Grate Information	-	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_{w} (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
······································	combination	,	7.1	-
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	0.8	1.7	cfs

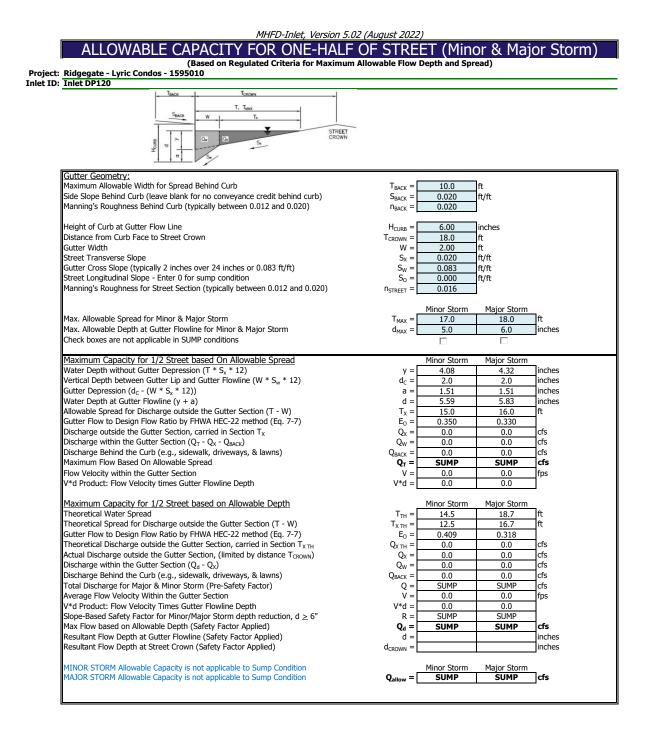


Design Information (Input)	r	MINOR	MAJOR	
lype of Inlet	Type =	7.1	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.0	inches
Grate Information	-	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
	E			
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	5.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	0.5	1.0	cfs

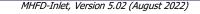


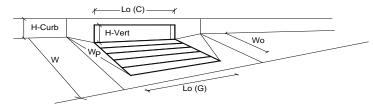


Design Information (Insuch)		MINOR		
Design Information (Input) Type of Inlet	Turne –	MINOR	MAJOR Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	Type =	3.00	3.00	inches
	a _{local} = No =		5.00	incries
Number of Unit Inlets (Grate or Curb Opening)		1		
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	6.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	_
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	_
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information	· (a) [MINOR	MAJOR	٦
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.33	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOD	MAJOR	
Total Jalat Intercention Connects (accument alogged condition)	o _1	MINOR 3.5	MAJOR 5.4	cfs
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	0.9	5.4 2.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	0.9	2.3	us



INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

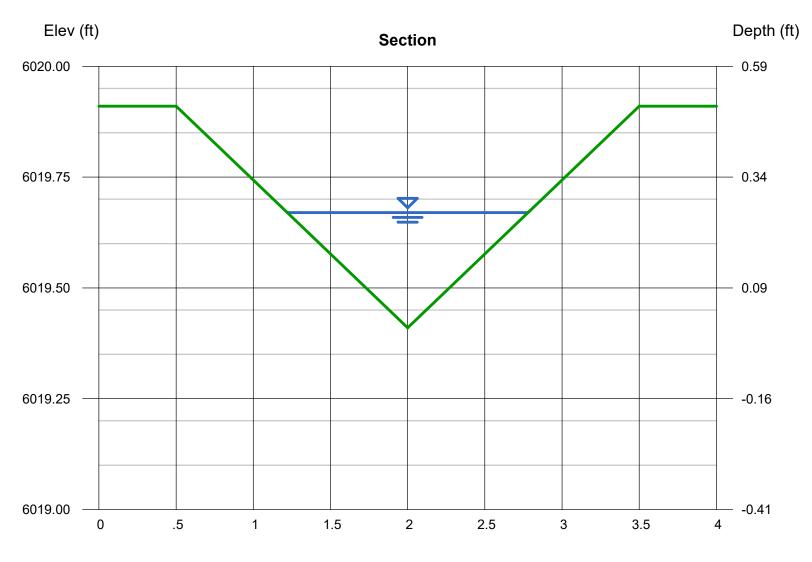




Decian Information (Innut)		MINOD	MAJOD	
Design Information (Input) Type of Inlet	Type =	MINOR	MAJOR Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	· · · ·	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	a _{local} = No =	1	3.00	linches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	5.8	inches
Grate Information	Fonding Depth -	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	а Г	MINOR	MAJOR	- .
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	o – F	MINOR	MAJOR	ofo
Interception without Clogging Interception with Clogging	$Q_{mi} =$	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{ma} = Q_{Grate} =	N/A N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	CGrate -	MINOR	MAJOR	C13
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	٦
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	clog –	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	3.9	5.6	cfs
Interception with Clogging	Q _{wa} =	3.5	5.0	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-Ewa	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	8.9	9.6	cfs
Interception with Clogging	Q _{oa} =	8.1	8.7	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	5.5	6.8	cfs
Interception with Clogging	Q _{ma} =	4.9	6.1	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	3.5	5.0	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	14.5	18.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	٦_ ا
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.32	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	4
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	-
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlat Intercontion Canacity (accumes elegand condition)	o _ □	MINOR 3.5	MAJOR 5.0	cfe
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$\mathbf{Q}_{\mathbf{a}} = \mathbf{Q}_{PEAK REQUIRED}$	<u>3.5</u> 1.0	2.7	cfs cfs
The Capacity 15 GOOD for Minor and Major Storms (>Q Peak)	✓ PEAK REQUIRED =	1.0	2.7	0.5

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

Decign Information (Input)		MINOR	MAJOR	
Design Information (Input) Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	<u> </u>	1	Inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	5.8	inches
Grate Information	Fonding Deput -	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information	0,00	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W ₀ =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	F	MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	5.3	8.2	cfs
Interception with Clogging	Q _{wa} =	5.0	7.7	cfs
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	٦.
Interception without Clogging	Q _{oi} =	17.9	19.2	cfs
Interception with Clogging	Q _{oa} =	16.8	18.0	cfs
Curb Opening Capacity as Mixed Flow	~ -	MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	9.1	11.7	cfs
Interception with Clogging	$Q_{ma} =$	8.5 5.0	10.9	cfs cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =		7.7	us
Resultant Street Conditions	. н	MINOR	MAJOR	6+
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	14.5	18.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Reduction (Calculated)	-	MINOR	MAJOR	-
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.32	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.87	0.92	4
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	N/A	N/A	L
		MINOR	MAJOR	
1	- - -			
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.0	7.7	cfs


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

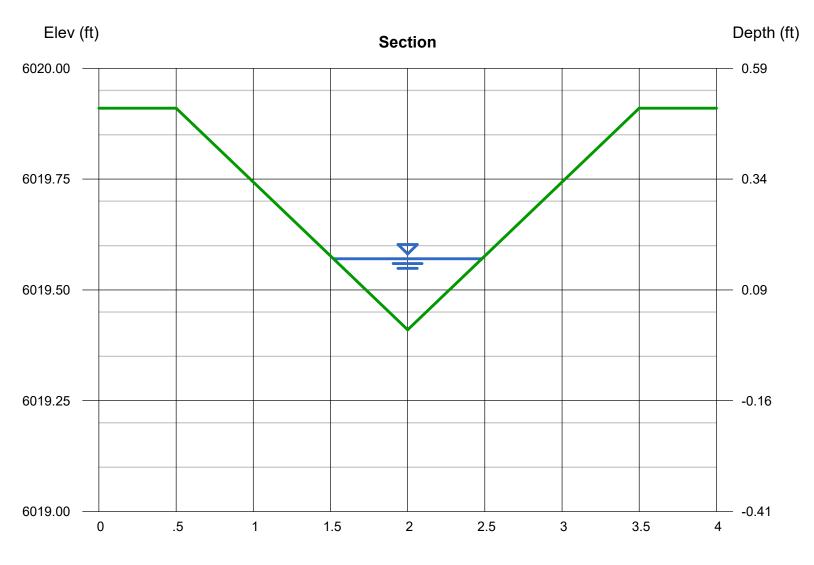
Thursday, Dec 29 2022

Drainage Swale A-A

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 0.26
Total Depth (ft)	= 0.50	Q (cfs)	= 0.350
		Area (sqft)	= 0.20
Invert Elev (ft)	= 6019.41	Velocity (ft/s)	= 1.73
Slope (%)	= 2.20	Wetted Perim (ft)	= 1.64
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.25
		Top Width (ft)	= 1.56
Calculations		EGL (ft)	= 0.31
Compute by:	Known Q		
Known Q (cfs)	= 0.35		

Reach (ft)

Channel Report


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 29 2022

Drainage Swale B-B

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 0.16
Total Depth (ft)	= 0.50	Q (cfs)	= 0.180
		Area (sqft)	= 0.08
Invert Elev (ft)	= 6019.41	Velocity (ft/s)	= 2.34
Slope (%)	= 8.00	Wetted Perim (ft)	= 1.01
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.19
		Top Width (ft)	= 0.96
Calculations		EGL (ft)	= 0.25
Compute by:	Known Q		
Known Q (cfs)	= 0.18		

Reach (ft)

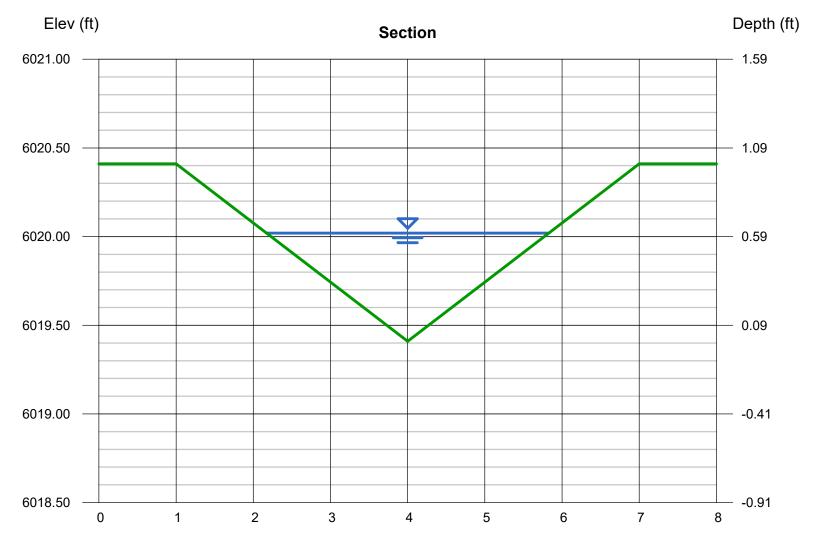
Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 29 2022

= 0.61 = 4.180 = 1.12 = 3.74

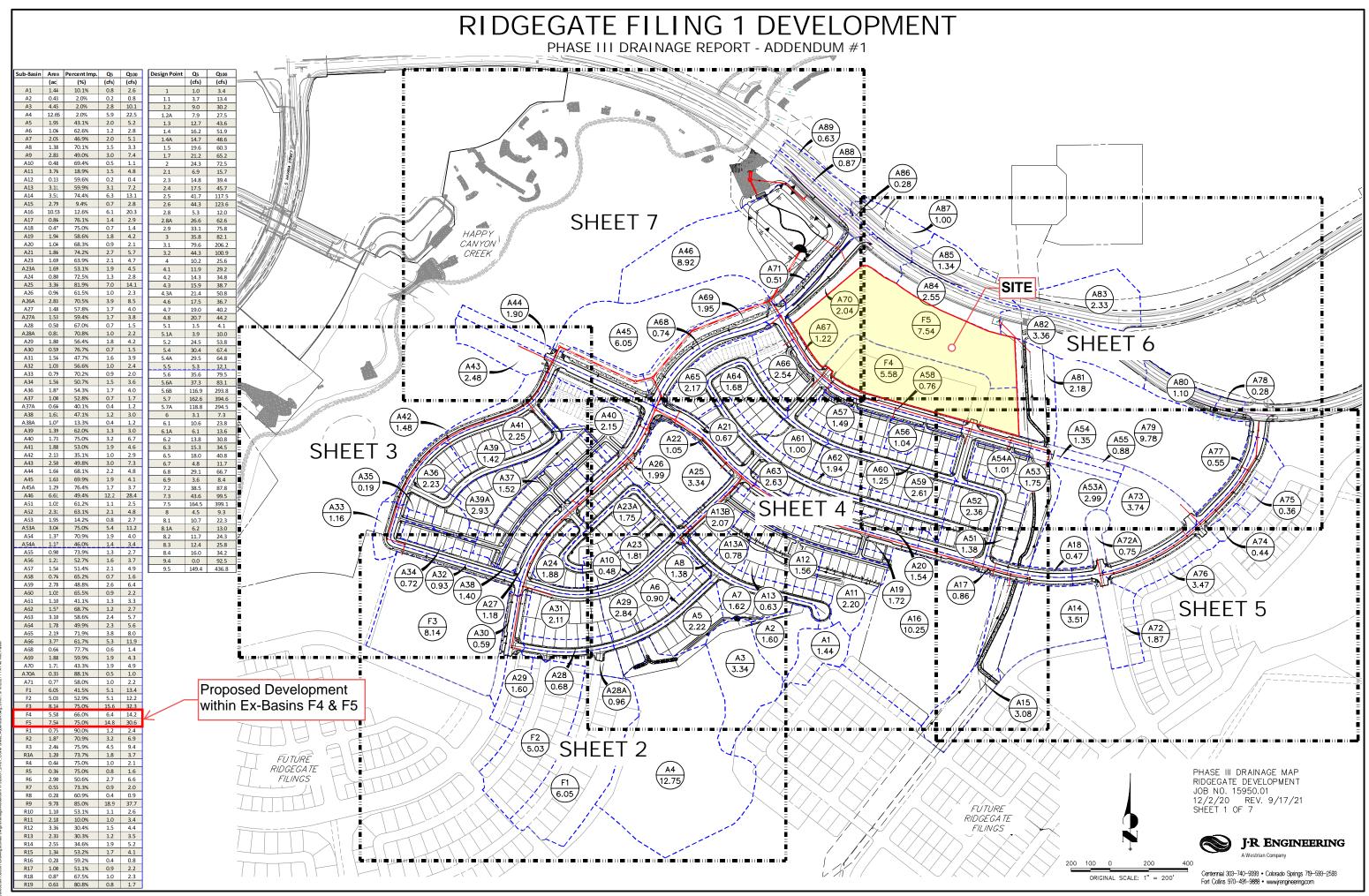
= 3.86

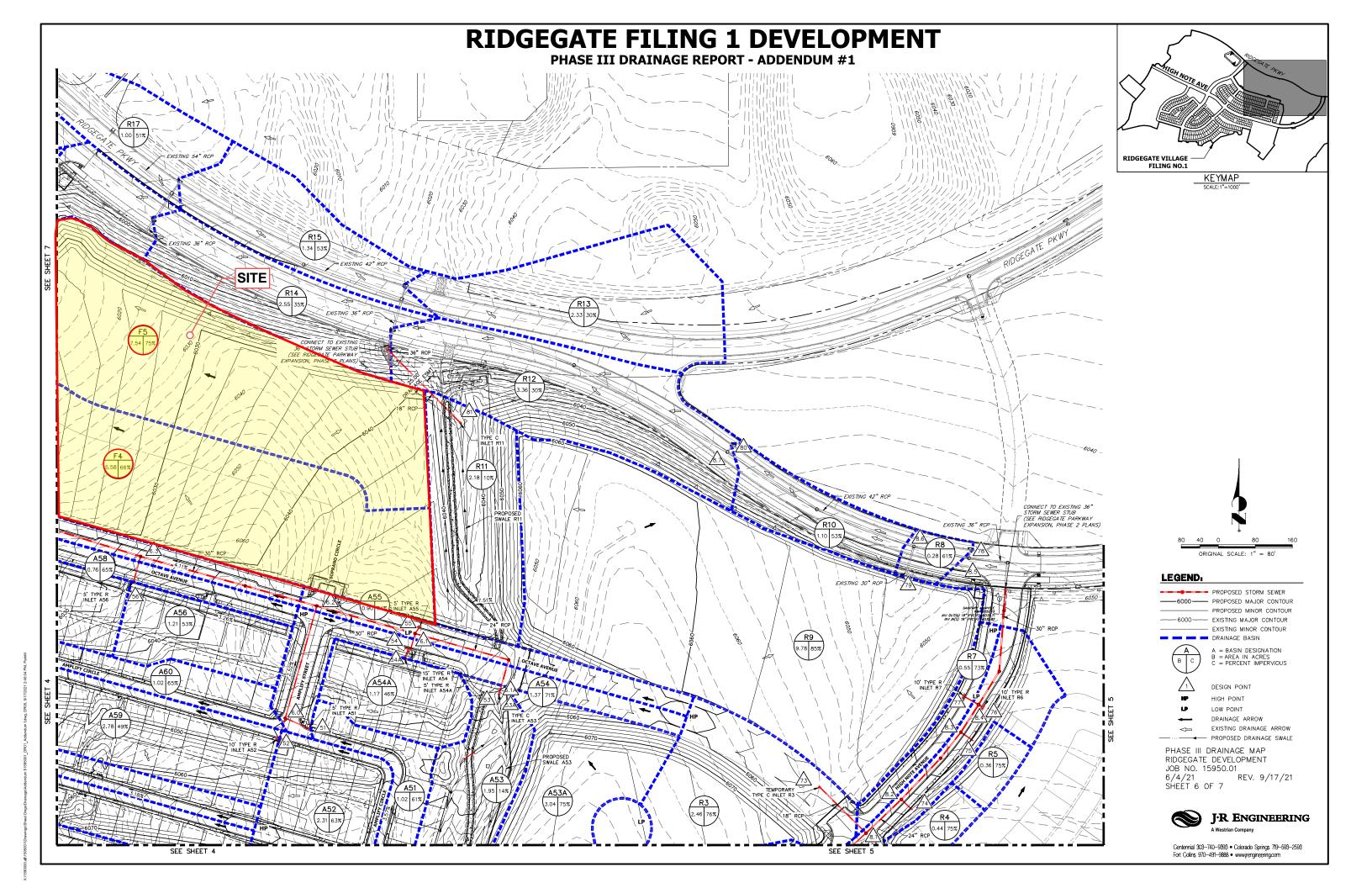

= 0.66

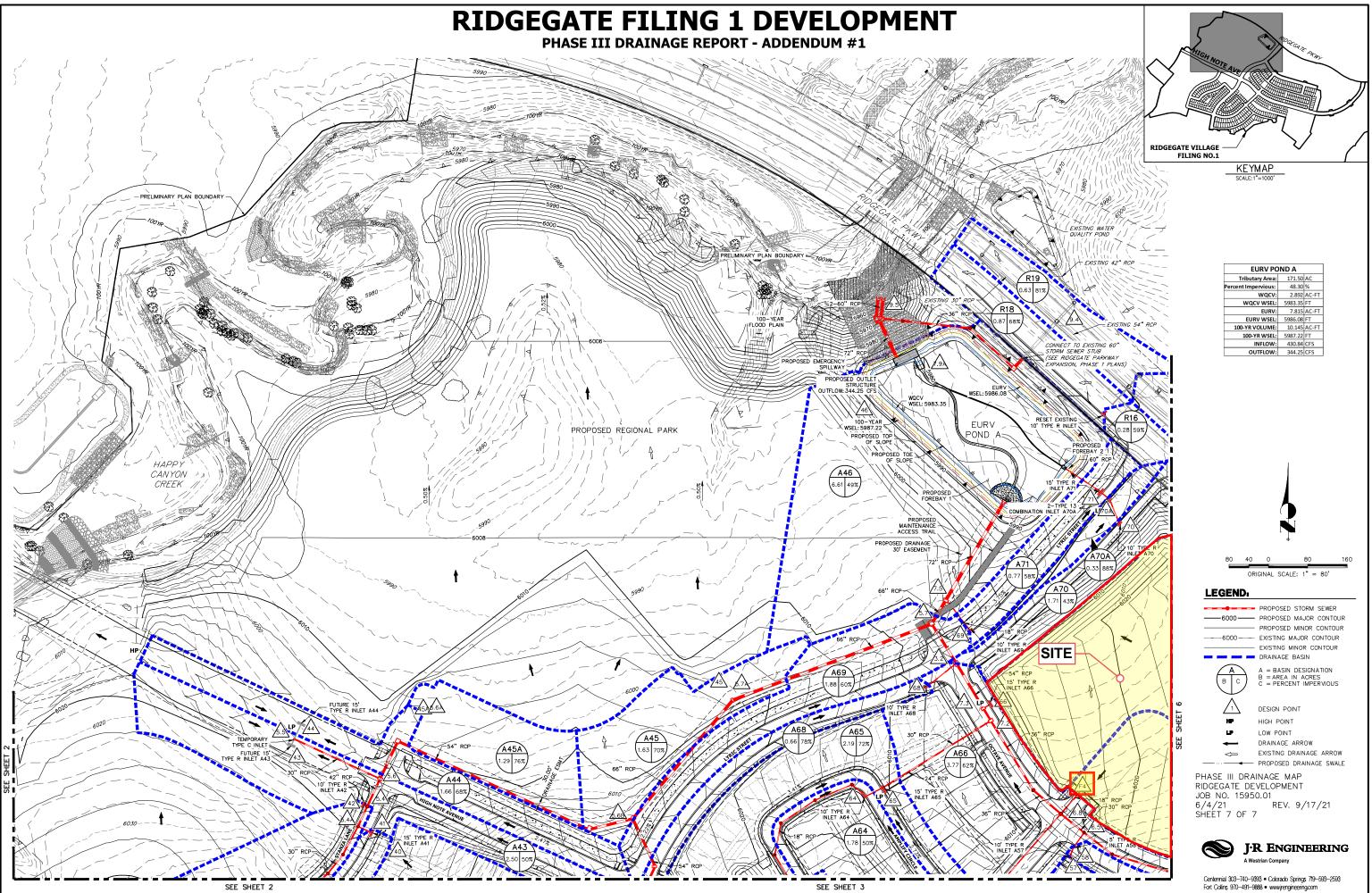
= 3.66 = 0.83

Drainage Swale C-C

Triangular

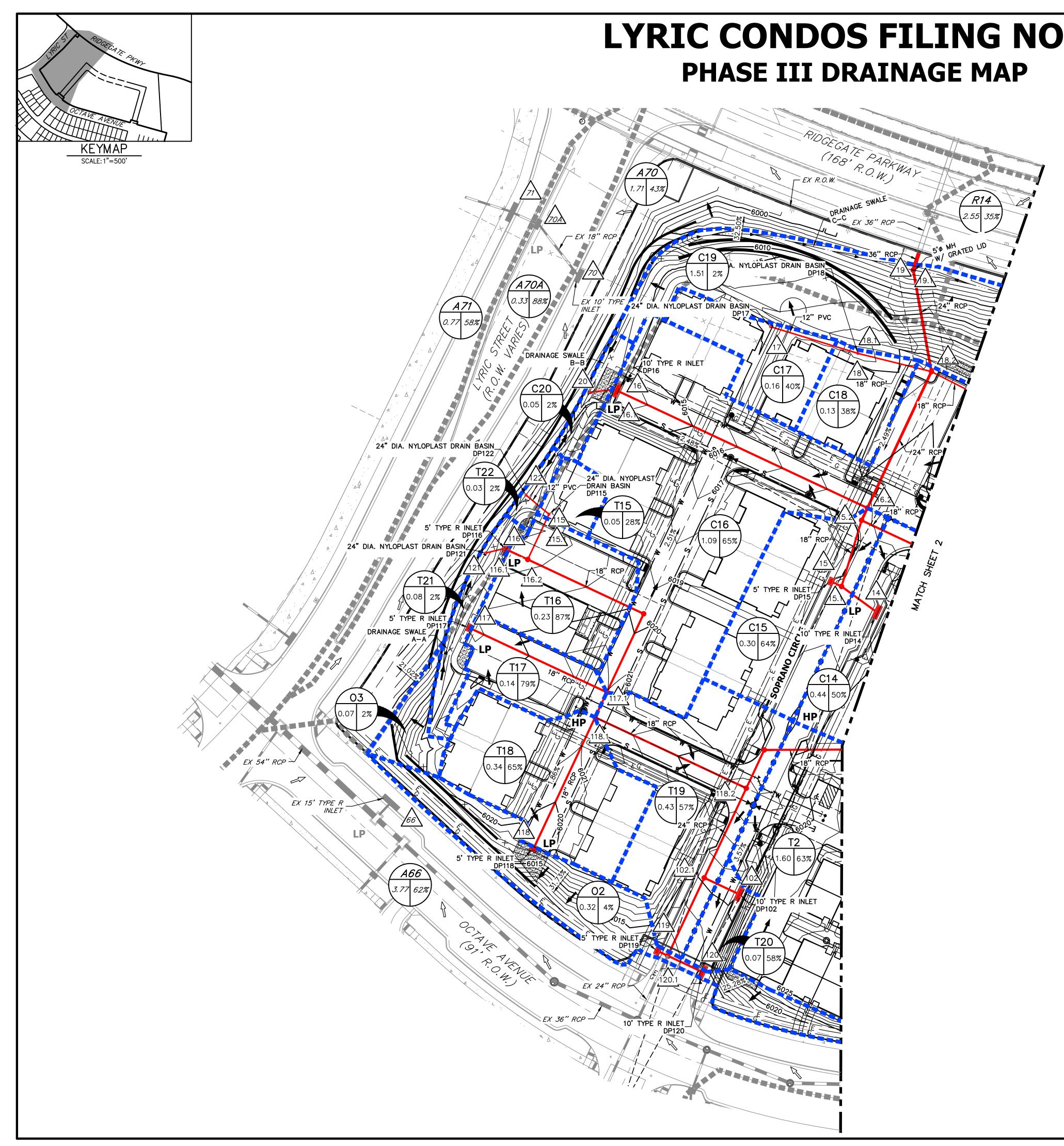

Triangular		Highlighted
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)
Total Depth (ft)	= 1.00	Q (cfs)
		Area (sqft)
Invert Elev (ft)	= 6019.41	Velocity (ft/s)
Slope (%)	= 3.00	Wetted Perim (ft)
N-Value	= 0.030	Crit Depth, Yc (ft)
		Top Width (ft)
Calculations		EGL (ft)
Compute by:	Known Q	
Known Q (cfs)	= 4.18	




Reach (ft)

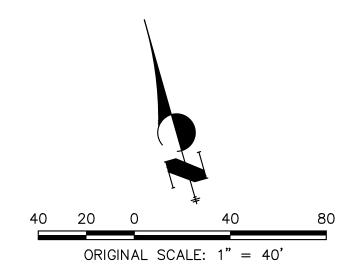
ATTACHMENT D

REFERENCED MATERIAL



ATTACHMENT E

DRAINAGE MAPS



Design Point
1
2
2.1 3
3.1
4
5
7 7.1
14
15 15.1
15.1
20 16
16.1
16.2
6 8
8.1
9 9.1
10
10.1 11
11.1
12 12.1
13
13.1 17
18
18.1
<u>18.2</u> 19
19.1
103 109
109.1
104 110
110.1
105
111 111.1
101
106
106.1
112
112.1
107 113
113.1
108
114
114.1 122
122
115.1
121
116 116.1
116.2
117
117.1 118
118.1
118.2 102
102.1
119 120
120.1

	SIGN PC				
Basin		t Flow	Cumulative Flow		
01	Q5	Q100	Q5	Q100	
C1 C2	0.20	0.35			
			0.54	1.23	
C3	0.40	0.79			
			0.94	2.03	
C4	1.94	4.29	2.82	 6.19	
 C5	4.12	9.38		0.19	
C7	3.42	8.23			
			8.70	15.90	
C14	1.78	6.89			
C15	0.84	1.94			
			2.80 10.97	7.96 23.86	
C20	0.00	0.18			
C16	3.07	9.17			
			3.07	9.51	
			13.47	31.58	
C6	0.41	2.65			
C8	0.10	0.53	0.50	3.10	
 C9	0.15	0.79		3.10	
			0.62	3.76	
C10	0.00	0.09			
			0.62	3.83	
C11	0.30	1.06		4 70	
 C12	0.25	0.97	0.87	4.72	
			1.08	5.53	
C13	0.15	0.71			
			1.20	6.12	
C17	0.30	0.88			
C18	0.25	0.71			
			0.54	1.59 38.81	
C19	0.25	4.18			
			12.18	34.80	
T 3	0.25	0.62			
Т9	0.00	0.07			
 T 4			0.20	0.58	
T4 T10	0.30	0.71 0.15			
			0.45	1.31	
T5	0.30	0.71			
T11	0.00	0.07			
			0.69	1.96	
T1	3.42	8.73			
Т6	0.35	0.88			
			2.34	4.27	
T12	0.00	0.22			
			2.62	5.70	
T7	0.25		2.02	5.70	
T13	0.25	0.60			
	0.00	0.07			
 то	0.25		2.87	6.35	
T8 T14	0.25	0.60			
T14	0.00	0.15			
 T22			3.11	7.08	
T22	0.00	0.09			
T15	0.05	0.26			
			0.05	0.35	
T21 T16	0.00	0.35			
	0.84	1.68	0.84	2.03	
			0.89	2.38	
T17	0.50	0.97			
			1.39	3.35	
T18	0.94	2.29			
			2.33	5.64	
 T2	5.74	 15.74	5.03	11.72	
	5.74		9.30	19.03	
T19	1.04	2.73			
T20	0.79	-			

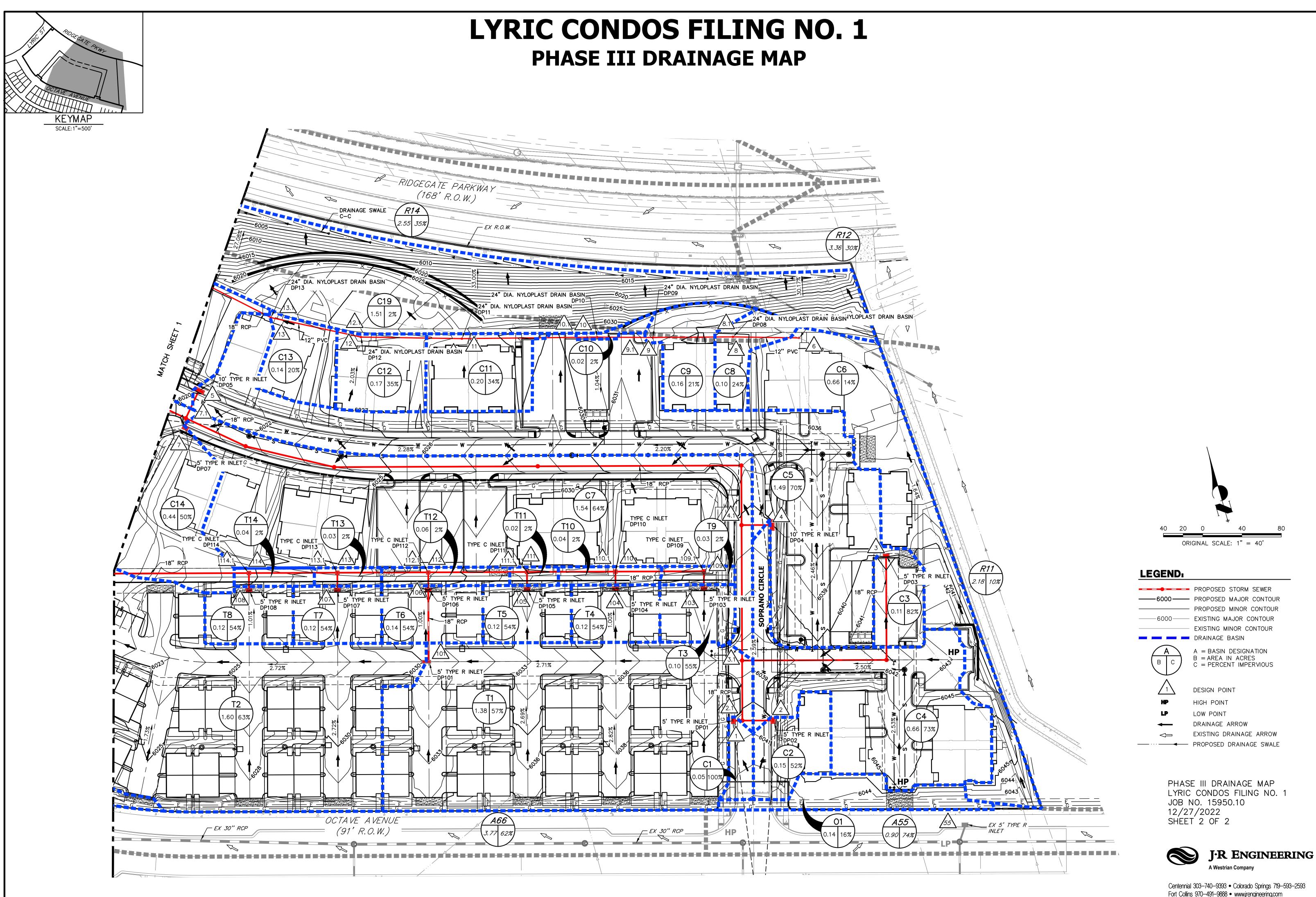
BASIN SUMMARY TABLE							
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
T1	1.37	57%	0.51	0.72	5.0	3.42	8.73
T2	1.60	63%	0.55	0.74	5.2	4.32	10.40
T3	0.10	55%	0.48	0.71	5.0	0.25	0.62
T4	0.12	54%	0.48	0.70	5.0	0.30	0.71
T5	0.12	54%	0.48	0.70	5.0	0.30	0.71
T6	0.14	54%	0.48	0.71	5.0	0.35	0.88
T7	0.12	54%	0.48	0.70	8.3	0.25	0.60
T8	0.12	54%	0.48	0.70	8.3	0.25	0.60
Т9	0.03	2%	0.05	0.49	9.2	0.00	0.07
T10	0.04	2%	0.05	0.49	9.2	0.00	0.15
T11	0.02	2%	0.05	0.49	9.2	0.00	0.07
T12	0.06	2%	0.05	0.49	9.2	0.00	0.22
T13	0.03	2%	0.05	0.49	9.2	0.00	0.07
T14	0.04	2%	0.05	0.49	9.2	0.00	0.15
T15	0.05	28%	0.26	0.60	5.0	0.05	0.26
T16	0.23	87%	0.75	0.84	5.0	0.84	1.68
T17	0.14	79%	0.68	0.81	5.0	0.50	0.97
T18	0.34	65%	0.57	0.75	5.0	0.94	2.29
T19	0.43	57%	0.50	0.72	5.0	1.04	2.73
T20	0.07	58%	0.51	0.72	5.0	0.20	0.44
T21	0.08	2%	0.05	0.49	5.0	0.00	0.35
T22	0.03	2%	0.05	0.49	5.0	0.00	0.09
C1	0.05	100%	0.86	0.89	5.0	0.20	0.35
C2	0.15	52%	0.46	0.70	5.0	0.35	0.88
C3	0.11	82%	0.71	0.82	5.0	0.40	0.79
C4	0.66	73%	0.63	0.78	6.3	1.94	4.29
C5	1.49	70%	0.61	0.77	6.6	4.12	9.38
C6	0.66	14%	0.15	0.54	8.8	0.41	2.65
C7	1.54	63%	0.56	0.74	9.5	3.42	8.23
C8	0.10	24%	0.23	0.58	5.0	0.10	0.53
C9	0.16	21%	0.21	0.57	5.0	0.15	0.79
C10	0.02	2%	0.05	0.49	5.0	0.00	0.09
C11	0.20	34%	0.32	0.62	5.0	0.30	1.06
C12	0.17	35%	0.32	0.63	5.0	0.25	0.97
C13	0.14	20%	0.20	0.57	5.0	0.15	0.71
C14	0.44	50%	0.44	0.69	5.0	0.99	2.65
C15	0.30	64%	0.56	0.74	5.0	0.84	1.94
C16	1.09	65%	0.57	0.75	5.0	3.07	7.23
C17	0.16	40%	0.36	0.65	5.0	0.30	0.88
C18	0.13	38%	0.35	0.64	5.0	0.25	0.71
C19	1.51	2%	0.05	0.49	16.4	0.25	4.18
C20	0.05	2%	0.05	0.49	5.0	0.00	0.18
01	0.14	16%	0.17	0.55	5.7	0.10	0.68
02	0.32	4%	0.07	0.50	5.0	0.10	1.41
03	0.07	2%	0.05	0.49	5.0	0.00	0.26

LEGEND:

PROPOSED STORM SEWER DRAINAGE BASIN Α HIGH POINT LOW POINT LP \leq

- PROPOSED MINOR CONTOUR - EXISTING MINOR CONTOUR

A = BASIN DESIGNATION B = AREA IN ACRES C = PERCENT IMPERVIOUS


DESIGN POINT DRAINAGE ARROW EXISTING DRAINAGE ARROW ------- PROPOSED DRAINAGE SWALE

> PHASE III DRAINAGE MAP LYRIC CONDOS FILING NO. 1 JOB NO. 15950.10 12/27/2022 SHEET 1 OF 2

J·R ENGINEERING A Westrian Company

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

80

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com