Traffic Impact Study

RidgeGate Couplet Apartments Lone Tree, Colorado

Prepared for:
Century Communities
Kimley»)Horn

```
T R A F F I C I M P A C T S T U D Y
```


RidgeGate Couplet Apartments

Lone Tree, Colorado

Prepared for
Century Communities
8390 E. Crescent Parkway
Suite 650

Greenwood Village, Colorado 80111

Prepared by
Kimley-Horn and Associates, Inc.
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

April 2023

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Hom and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF TABLES ii
LIST OF FIGURES ii
1.0 EXECUTIVE SUMMARY 1
2.0 INTRODUCTION 5
3.0 EXISTING AND FUTURE CONDITIONS 7
3.1 Existing Study Area 7
3.2 Existing and Future Roadway Network 7
3.3 Existing Traffic Volumes 8
3.4 Unspecified Development Traffic Growth 11
4.0 PROJECT TRAFFIC CHARACTERISTICS 14
4.1 Trip Generation 14
4.2 Trip Distribution 15
4.3 Traffic Assignment 15
4.4 Total (Background Plus Project) Traffic 15
5.0 TRAFFIC OPERATIONS ANALYSIS 22
5.1 Analysis Methodology 22
5.2 Key Intersection Operational Analysis 23
5.3 Vehicle Queuing Analysis 30
5.4 Pedestrian and Bicycle Evaluation 33
5.5 Improvement Summary 33
6.0 CONCLUSIONS AND RECOMMENDATIONS 36

APPENDICES

Appendix A - Intersection Count Sheets
Appendix B - Future Traffic Projections \& Adjacent Developments/Traffic Study
Appendix C - Trip Generation Worksheets
Appendix D - Intersection Analysis Worksheets
Appendix E - Signal Warrant Analysis Worksheets
Appendix F - Queue Analysis Worksheets
Appendix G - Conceptual Site Plan and Turn Lane Exhibit

LIST OF TABLES

Table 1 - RidgeGate Couplet Apartments Traffic Generation 14
Table 2 - Level of Service Definitions 22
Table 3 - RidgeGate Parkway WB \& Rhapsody Road (\#1) LOS Results 23
Table 4 - RidgeGate Parkway WB \& West Road (\#2) LOS Results 24
Table 5 - RidgeGate Parkway WB \& East Road (\#3) LOS Results 26
Table 6 - RidgeGate Parkway EB \& Rhapsody Road (\#4) LOS Results 27
Table 7 - RidgeGate Parkway EB \& West Road (\#5) LOS Results 27
Table 8 - RidgeGate Parkway EB \& East Road (\#6) LOS Results 29
Table 9 - Project Access Level of Service Results 30
Table 10 - Turn Lane Queuing Analysis Results 31
LIST OF FIGURES
Figure 1 - Vicinity Map. 6
Figure 2 - Existing Geometry 9
Figure 3 - 2022 Existing Traffic Volumes 10
Figure 4-2025 Background Traffic Volumes. 12
Figure 5 - 2045 Background Traffic Volumes. 13
Figure 6 - 2025 Project Trip Distribution 16
Figure 7 - 2045 Project Trip Distribution 17
Figure 8 - 2025 Project Traffic Assignment. 18
Figure 9 - 2045 Project Traffic Assignment. 19
Figure 10-2025 Total Traffic Volumes 20
Figure 11 - 2045 Total Traffic Volumes 21
Figure 12 - 2025 Recommended Geometry and Control 34
Figure 13-2045 Recommended Geometry and Control 35

1.0 EXECUTIVE SUMMARY

RidgeGate Couplet Apartments is proposed to be located within the eastern portion in between the eastbound (EB) and westbound (WB) travel lanes of RidgeGate Parkway, east of future Rhapsody Road, in Lone Tree, Colorado. The project is proposed to include 349 multifamily dwelling units. It is expected that RidgeGate Couplet Apartments will be completed in the next several years. Therefore, analysis was conducted for the 2025 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with the City of Lone Tree standards and requirements:

- RidgeGate Parkway WB \& Rhapsody Road (\#1)
- RidgeGate Parkway WB \& West Road (\#2)
- RidgeGate Parkway WB \& East Road (\#3)
- RidgeGate Parkway EB \& Rhapsody Road (\#4)
- RidgeGate Parkway EB \& West Road (\#5)
- RidgeGate Parkway EB \& East Road (\#6)

In addition, the proposed full movement West Access (\#7) on the West Road and the proposed full movement East Access (\#8) on the East Road were evaluated.

Regional access to the project will be provided by Interstate 25 (I-25), RidgeGate Parkway, and Chambers Road. Primary access will be provided by RidgeGate Parkway while direct access will be provided by a proposed full movement West Access (\#7) along the proposed private northsouth road to the west of the site—identified as West Road within this study-and a proposed full movement East Access (\#8) along the proposed north-south road to the east of the site, identified as East Road herein.

RidgeGate Couplet Apartments is expected to generate approximately 1,586 weekday daily trips, with 129 of these trips occurring during the morning peak hour and 136 of these trips occurring during the afternoon peak hour.

Based on the analysis presented in this report, Kimley-Horn believes RidgeGate Couplet Apartments will be successfully incorporated into the existing and future roadway network. Analysis of the existing street network, the proposed project development, and expected traffic volumes resulted in the following recommendations:

2025 Recommendations

- Bicycle lanes and sidewalk are anticipated to be provided along each side of Rhapsody Road. Sidewalk is anticipated to be provided traveling north-south along the perimeter of the project site along West Road and East Road, in addition to sidewalk anticipated to be provided along the north and south ends of the project to connect West Road to East Road. Crosswalks are also anticipated to be provided in each direction at the RidgeGate Parkway WB and EB \& Rhapsody Road intersections (\#1 \& \#4). Crosswalks are also anticipated to be provided at the West Road and East Road intersections (\#2, \#3, \#5, \#6) to cross east-west across East Road and West Road. Sidewalk will also be provided onsite as appropriate to provide safe access to the apartment units from the parking and to and from other amenities anticipated to be provided by the apartment complex to residents.
- Rhapsody Road is proposed to be constructed as part of the RidgeGate King Soopers development with one through lane in each direction with on-street bicycle lanes and on-street parallel parking along both sides of the roadway. The RidgeGate Parkway WB \& Rhapsody Road (\#1) and the RidgeGate Parkway EB \& Rhapsody Road (\#4) intersections are anticipated to be signalized ' T '-intersections operating with full turning movements as appropriate on the one-way couplet. At these T-intersections, R3-1 No Right Turn signs should be installed at the approaches to RidgeGate Parkway and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic. The RidgeGate Parkway WB \& Rhapsody Road (\#1) intersection should provide a westbound left turn lane with 190 feet in length and a 110-foot taper. A northbound left turn lane should also be provided with 120 feet in length and a 50-foot taper. The RidgeGate Parkway EB \& Rhapsody Road (\#4) intersection should provide an eastbound left turn lane 101 feet in length with a 75 -foot taper. This intersection should also provide a
southbound left turn lane with 120 feet in length and a 50-foot taper. Any improvements to the Rhapsody Road intersections (\#1 and \#4) should be provided in construction of the RidgeGate King Soopers development. Of note, as Rhapsody Road is anticipated to provide north and south legs on either side of RidgeGate Parkway before 2045, it is recommended that sufficient pavement width be provided, and chevron striping be placed where the future southbound through and northbound through lanes will be placed.
- RidgeGate Parkway is anticipated to use the existing available pavement width to restripe the roadway to provide three through lanes in each direction within the study area during this horizon. It is recommended that the existing striped-out inside lane along RidgeGate Parkway in both directions be striped as the third through lane.
- Along RidgeGate Parkway WB, westbound left turn lanes should be provided at the West Road (\#2) and East Road (\#3) intersections. At the West Road (\#2) intersection, a westbound left turn lane 190 feet in length with a 120-foot taper should be provided. The East Road (\#3) intersection should also provide a westbound left turn lane 190 feet in length with a 120-foot taper. The northbound approach to each of these intersections are anticipated to be for northbound left turning movements and should be stop-controlled with R1-1 "STOP" signs placed at each northbound approach to these intersections. R3-1 No Right Turn signs should be placed underneath the "STOP" signs while R6-1 "ONE WAY" signs should be placed along RidgeGate Parkway WB as appropriate to prevent vehicles from turning right and entering oncoming traffic.
- Along RidgeGate Parkway EB, eastbound left turn lanes should be provided at the West Road (\#5) and East Road (\#6) intersections. Due to intersection spacing, the East Road (\#5) intersection should provide an eastbound left turn lane 175 feet in length with a 75 -foot taper. At the East Road (\#6) intersection, an eastbound left turn lane with 190 feet in length and a 75 -foot taper should be provided. The southbound approach to each of these intersections are anticipated to be for southbound left turning movements and should be stop-controlled with R1-1 "STOP" signs placed at each southbound approach to these intersections. R3-1 No Right Turn signs should be placed underneath the "STOP" signs while R6-1 "ONE WAY" signs should be placed along RidgeGate Parkway EB as appropriate to prevent vehicles from turning right and entering oncoming traffic.
- The East Road and West Road are both anticipated to operate well with one through lane in each direction with turning movements occurring from within the proposed through lanes.
- Two full movement accesses are proposed to be constructed with this project, with the West Access (\#7) located along the West Road and the East Access (\#8) located along the East Road. Each approach exiting the development should operate well with a shared left/right turn lane and should be stop-controlled with an R1-1 "STOP" sign.

2045 Recommendations

- The north and south legs of Rhapsody Road on either side of RidgeGate Parkway are anticipated to be constructed before the 2045 long-term horizon. When these legs are constructed, the two Rhapsody Road intersections (\#1 and \#4) will become four-leg signalized intersections. When this construction occurs, a westbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway WB \& Rhapsody Road (\#1) intersection while an eastbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway EB \& Rhapsody Road (\#4) intersection.
- The north and south legs of East Road on either side of RidgeGate Parkway are anticipated to be constructed before the 2045 long-term horizon. When these legs are constructed, the two East Road intersections (\#3 and \#6) will become four-leg signalized intersections. When this construction occurs, a westbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway WB \& East Road (\#3) intersection while the RidgeGate Parkway EB \& East Road (\#6) intersection is anticipated to operate well with eastbound right turning movements occurring from within the third eastbound through lane. The northbound and southbound approaches to each of these intersections along East Road are anticipated to operate well through the 2045 horizon with a shared lane for left/through or through/right turn lanes where appropriate.
- When the parcel to the west of the project site is developed, access along West Road should align with the West Access (\#7) proposed in this project if an access to that development is anticipated along West Road. In like manner, when the parcel to the east of the project site is developed, access along East Road should align with the East Access (\#8) constructed in this project if an access to that development is anticipated along East Road.

General Recommendations

- Any onsite or offsite improvements should be incorporated into the Civil Drawings and conform to standards of the City of Lone Tree and the Manual on Uniform Traffic Control Devices (MUTCD) - 2009 Edition.

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study for RidgeGate Couplet Apartments proposed to be located within the eastern portion in between the eastbound (EB) and westbound (WB) travel lanes of RidgeGate Parkway, east of future Rhapsody Road, in Lone Tree, Colorado. A vicinity map illustrating the RidgeGate Couplet Apartments development location is shown in Figure 1. RidgeGate Couplet Apartments is proposed to include 349 multifamily dwelling units. A conceptual site plan is attached in Appendix G. It is expected that RidgeGate Couplet Apartments will be completed in the next several years; therefore, analysis was conducted for the 2025 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with the City of Lone Tree standards and requirements:

- RidgeGate Parkway WB \& Rhapsody Road (\#1)
- RidgeGate Parkway WB \& West Road (\#2)
- RidgeGate Parkway WB \& East Road (\#3)
- RidgeGate Parkway EB \& Rhapsody Road (\#4)
- RidgeGate Parkway EB \& West Road (\#5)
- RidgeGate Parkway EB \& East Road (\#6)

In addition, the proposed full movement West Access (\#7) on the West Road and the proposed full movement East Access (\#8) on the East Road were evaluated.

Regional access to the project will be provided by Interstate 25 (I-25), RidgeGate Parkway, and Chambers Road. Primary access will be provided by RidgeGate Parkway while direct access will be provided by a proposed full movement West Access (\#7) along the proposed private northsouth road to the west of the site—identified as West Road within this study—and a proposed full movement East Access (\#8) along the proposed north-south road to the east of the site, identified as East Road herein.

FIGURE 1
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO VICINITY MAP

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area

The existing site is comprised of vacant land. The site is bounded to the north and south by the westbound and eastbound travel lanes of RidgeGate Parkway, respectively. Otherwise, surrounding the site is primarily vacant land. The City of Lone Tree Zoning Map refers to the area surrounding the site as "Planned Development District", specifically the "RidgeGate Planned Development."

3.2 Existing and Future Roadway Network

RidgeGate Parkway extends east-west with two through lanes in each direction within the study area, although each direction is planned to use the existing pavement width to provide three through lanes in the study area in the next few years. In the study area, RidgeGate Parkway separates the eastbound and westbound travel lanes by as much as approximately 750 feet in some areas. The RidgeGate Couplet Apartments project is proposed to be located within the eastern portion of this one-way couplet separation between the two directions of travel on RidgeGate Parkway. The posted speed limit is 45 miles per hour.

Rhapsody Road is a proposed future roadway approximately 300 feet to the west of the project area. It is anticipated this roadway will provide on-street bicycle lanes and on-street parallel parking along both sides of the roadway. This roadway will travel in the north-south direction between the two directions of travel of RidgeGate Parkway and is anticipated to provide one through lane in each direction with construction of the RidgeGate King Soopers project. As development continues to occur, this roadway is anticipated to provide north and south legs on either side of RidgeGate Parkway. Rhapsody Road is identified in the City of Lone Tree 2040 Transportation Plan as "Collector A" and according to the Transportation Plan it is anticipated to primarily provide one through lane in each direction. In the future, Rhapsody Road is anticipated to connect to Lincoln Avenue to the north and "Collector D" to the south.
"West Road" is proposed to be constructed as a private road along the west side of the project site with project construction between the two directions of travel along RidgeGate Parkway with one through lane in each direction. "East Road" is proposed to be constructed along the east side of the project site with project construction between the two directions of travel along RidgeGate

Parkway with one through lane in each direction. As development progresses in the area, a north leg of East Road is anticipated to be constructed before the 2045 horizon that is anticipated to primarily serve residential uses, while a south leg to the south of RidgeGate Parkway is anticipated to be constructed as direct access into a medical/hospital land use. The existing intersection lane configuration within the study area is shown in Figure 2.

3.3 Existing Traffic Volumes

To provide a basis of eastbound and westbound through movement counts adjacent to the project site, existing turning movement counts were conducted at the intersection of RidgeGate Parkway and Peoria Street on Thursday, July 7, 2022, during the weekday morning and afternoon peak hours. The counts were conducted during the morning and afternoon peak hours of adjacent street traffic in 15-minute intervals from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM on this count date. The existing intersection traffic volumes are shown in Figure 3 with count sheets provided in Appendix A.

FIGURE 2
RIDGEGATE COUPLET APARTMENTS LONE TREE, COLORADO

Thursday, July 7, 2022
7:15 to $8: 15$ AM (4:30 to $5: 30 \mathrm{PM}$)

FIGURE 3
RIDGEGATE COUPLET APARTMENTS LONE TREE, COLORADO 2022 EXISTING TRAFFIC VOLUMES

LEGEND

Study Area Key Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume

3.4 Unspecified Development Traffic Growth

According to traffic projections from the Denver Regional Council of Governments (DRCOG) traffic model, the area surrounding the site is expected to have an average 30-year growth factor of 1.87 based on a 2020 volume of 23,000 vehicles per day (vpd) and future 2050 projection of $43,000 \mathrm{vpd}$. This growth factor equates to an annual growth rate of 2.11 percent. Future traffic volume projections and growth rate calculations are provided in Appendix B. This annual growth rate was used to estimate short-term 2025 and long-term 2045 traffic volume projections in the RidgeGate King Soopers Traffic Impact Study completed by Kimley-Horn in March 2023. As the RidgeGate King Soopers is assumed to be completed prior to construction of this project, the background plus project traffic volumes from the RidgeGate King Soopers development were conservatively used as the background traffic volumes for this project. Of note, the RidgeGate King Soopers development included the traffic generated by the Southwest Village Traffic Impact Study completed by JR Engineering. The RidgeGate King Soopers study also included the traffic assumed to be induced by the future construction of the north and south legs of Rhapsody Road as well as High Note Avenue, which is a future proposed north-south roadway approximately 1,200 feet to the west of Rhapsody Road.

Within the one-way couplet, it is known that the approximately 200,000 square-foot property to the west of this project—between the proposed Rhapsody Road and the private West Road referenced in this project-is anticipated to be developed as general retail uses before the 2045 horizon. As such, the traffic anticipated to be generated by that retail development was included in the 2045 background volumes of this traffic study. Additionally, it is known that the approximately 178,000 square-foot property to the east of this project-east of the East Road referenced in this study-is anticipated to be developed as affordable multi-family housing before the 2045 horizon; the traffic generated by this development was also included in the 2045 background volumes of this traffic study. Finally, the anticipated land uses to the north of the project site as well as the medical/hospital land use to the south of the project site were also added into the background traffic volumes in the 2045 horizon. The assumed trip distribution and traffic assignment for the retail, affordable housing, and medical/hospital developments are included in Appendix B in Figures B1 through B6. Of note, the medical/dental office building trip generation land use was conservatively assumed for the medical/hospital parcel, as this is a higher trip generator than a hospital. The calculated background traffic volumes for 2025 and 2045 are shown in Figure 4 and Figure 5, respectively.

LEGEND

X Study Area Key Intersection
FIGURE 4
RIDGEGATE COUPLET APARTMENTS
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

LONE TREE, COLORADO
XX,X00 Estimated Daily Traffic Volume

LEGEND

Study Area Key Intersection
FIGURE 5
RIDGEGATE COUPLET APARTMENTS
XXX (XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume LONE TREE, COLORADO 2045 BACKGROUND TRAFFIC VOLUMES

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the Trip Generation Manual ${ }^{1}$ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report average rate equations that apply to Multifamily Mid-Rise Housing (ITE Land Use Code 221) for traffic associated with the development.

RidgeGate Couplet Apartments is expected to generate approximately 1,586 weekday daily trips, with 129 of these trips occurring during the morning peak hour and 136 of these trips occurring during the afternoon peak hour. Calculations were based on the procedure and information provided in the ITE Trip Generation Manual, $11^{\text {th }}$ Edition - Volume 1: User's Guide and Handbook, 2021. Table 1 summarizes the estimated trip generation for the RidgeGate Couplet Apartments. The trip generation worksheets for RidgeGate Couplet Apartments as well as the adjacent proposed future retail and affordable housing developments are included in Appendix C.

Table 1 - RidgeGate Couplet Apartments Traffic Generation

Land Use and Size	Weekday Vehicle Trips						
	Daily	AM Peak Hour			PM Peak Hour		
	In	Out	Total	In	Out	Total	
Multifamily Mid-Rise Housing (ITE 221) - 349 Dwelling Units	1,586	30	99	129	83	53	136

[^0]
4.2 Trip Distribution

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. Following construction of this development but prior to 2045, it is anticipated that the area surrounding the project site will be developed with additional roadway connections in place. As such, unique trip distributions were used for the 2025 and 2045 horizon years to account for this change. Figure 6 shows the 2025 project trip distribution while Figure 7 shows the 2045 trip distribution.

4.3 Traffic Assignment

RidgeGate Couplet Apartments traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in Table 1. Project traffic assignment for the 2025 horizon is shown in Figure 8 while the traffic assignment in the 2045 horizon is shown in Figure 9.

4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short-term 2025 buildout horizon and long-term 2045 twenty-year planning horizon. These total traffic volumes for the study area are illustrated for the 2025 and 2045 horizon years in Figures 10 and 11, respectively.

FIGURE 9
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2045 PROJECT TRAFFIC ASSIGNMENT

LEGEND

Study Area Key Intersection
Project Access Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

FIGURE 10
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2025 TOTAL TRAFFIC VOLUMES

LEGEND

Study Area Key Intersection
Project Access Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

FIGURE 11

RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2045 TOTAL TRAFFIC VOLUMES

LEGEND

Study Area Key Intersection
Project Access Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
Kimley»)Horn

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2025 and 2045 development horizons at the identified key intersections. The acknowledged source used in this study for determining overall capacity is the $6^{\text {th }}$ Edition of the Highway Capacity Manual (HCM) ${ }^{2}$.

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). For intersections and roadways in this study area, standard traffic engineering practice recommends overall intersection LOS D and movement/approach LOS E as the minimum desirable thresholds for acceptable operations. Table 2 shows the definition of level of service for signalized and unsignalized intersections.

Table 2 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stopcontrolled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for signalized, roundabout, and all-way stop controlled intersections are defined for each approach and for the overall intersection.

[^1]
5.2 Key Intersection Operational Analysis

Calculations for the operational level of service at the key intersections for the study area are provided in Appendix D. Existing peak hour factors were utilized in the 2025 and 2045 horizon analysis years. Synchro traffic analysis software was used to analyze the signalized and unsignalized key intersections for HCM level of service.

RidgeGate Parkway WB \& Rhapsody Road (\#1)

The intersection of RidgeGate Parkway WB \& Rhapsody Road (\#1) is a proposed future signalized intersection to the west of the project site. This intersection does not exist today but for purposes of this study it is assumed to be constructed as a ' T '-intersection in the 2025 horizon as part of the RidgeGate King Soopers project, with the north leg of the intersection to be constructed by others as development occurs to the north of RidgeGate Parkway prior to the 2045 horizon. In the 2025 horizon, this intersection is anticipated to be signalized to provide safer travel for pedestrians and bicyclists. A westbound left turn lane is anticipated to be provided as well as a northbound left turn lane during the 2025 horizon. As recommended in the RidgeGate King Soopers study, an R3-1 No Right Turn sign should be installed on the northbound approach to the intersection and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic. A northbound through lane will eventually be necessary as the north leg of Rhapsody Road is constructed. As such, it is recommended that sufficient pavement width be provided, and chevron striping be placed where the future northbound through lane will be placed. With project traffic, this intersection is anticipated to operate at an acceptable level of service during both the 2025 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. Table 3 provides the results of the LOS analysis conducted at this intersection.

Table 3 - RidgeGate Parkway WB \& Rhapsody Road (\#1) LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay	LOS
	(sec/veh)			
2025 Background \#	7.1	A	7.2	A
2025 Background Plus Project \#	7.3	A	7.3	A
2045 Background \#\#	16.2	B	16.2	B
2045 Background Plus Project \#\#	16.5	B	16.4	B

\# = Signalized 'T'-intersection; \#\# = Signalized 4-leg intersection

RidgeGate Parkway WB \& West Road (\#2)

The intersection of RidgeGate Parkway WB \& West Road (\#2) is proposed to be constructed along the west side of the project site as an unsignalized ' T '-intersection with development of this project with stop control on the northbound West Road approach to the intersection. West Road is anticipated to be a private road with one through lane in each direction between the two travel directions of RidgeGate Parkway. A westbound left turn lane is recommended to be provided at this intersection with project construction. The northbound approach to this intersection will be for northbound left turning movements only and should provide an R1-1 "STOP" sign with an R3-1 No Right Turn sign posted underneath the "STOP" sign and an R6-1 "ONE WAY" sign posted along RidgeGate Parkway directly to the north of the northbound West Road approach to prevent vehicles from turning right into oncoming traffic. With project traffic, this intersection is anticipated to operate at an acceptable level of service during both the 2025 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. Table 4 provides the results of the LOS analysis conducted at this intersection.

Table 4 - RidgeGate Parkway WB \& West Road (\#2) LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2025 Background Plus Project Northbound Left	14.8	B	12.1	B
2045 Background Northbound Left	20.3	C	16.1	C
2045 Background Plus Project Northbound Left	24.2	C	17.3	C

RidgeGate Parkway WB \& East Road (\#3)

The intersection of RidgeGate Parkway WB \& East Road (\#3) is proposed to be constructed along the east side of the project site as an unsignalized ' T '-intersection with development of this project with stop control on the northbound East Road approach to the intersection in the 2025 horizon. East Road is anticipated to provide one through lane in each direction between the two travel directions of RidgeGate Parkway. A westbound left turn lane is recommended to be provided at this intersection with project construction. During the 2025 horizon, the northbound approach to this intersection will be for northbound left turning movements only and should provide an R1-1 "STOP" sign with an R3-1 No Right Turn sign posted underneath the "STOP" sign and an R6-1 "ONE WAY" sign posted along RidgeGate Parkway directly to the north of the northbound East Road approach to prevent vehicles from turning right into oncoming traffic.

By the 2045 horizon, it is anticipated that there will be a north leg constructed at this intersection to access additional planned development to the north of RidgeGate Parkway. When this development to the north of RidgeGate Parkway occurs, this intersection is anticipated to require signalization to continue operating at an acceptable level of service. A signal warrant analysis was conducted at this intersection in the 2025 background plus project and 2045 background horizons. A signal is not anticipated to be warranted or needed at this intersection solely with project traffic in the 2025 or 2045 horizons; the signal is anticipated to needed because of the development to the north of this project and construction of this north leg. The signal warrant analysis worksheets are provided in Appendix E. The intersection is recommended to provide a westbound right turn lane when development to the north of the project occurs, while the northbound approach should operate well through the 2045 horizon with a shared left/through lane and the southbound approach is anticipated to operate well with one lane for shared through/right turning movements.

With project traffic, this intersection is anticipated to operate at an acceptable level of service during both the 2025 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. Table 5 provides the results of the LOS analysis conducted at this intersection.

Table 5 - RidgeGate Parkway WB \& East Road (\#3) LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2025 Background Plus Project \# Northbound Left	14.9	B	12.6	B
2045 Background \#\#	13.7	B	12.1	B
2045 Background Plus Project \#\#	13.8	B	13.0	B

\# = Unsignalized ' T '-intersection \#\# = Signalized 4-leg intersection; WB: add a right turn lane;
NB: shared left/through lane; SB: shared through/right turn lane

RidgeGate Parkway EB \& Rhapsody Road (\#4)

The intersection of RidgeGate Parkway EB \& Rhapsody Road (\#4) is a proposed future signalized intersection to the west of the project site. This intersection does not exist today but for purposes of this study it is assumed to be constructed as a 'T'-intersection in the 2025 horizon as part of the RidgeGate King Soopers project, with the south leg of the intersection to be constructed by others as development occurs to the south of RidgeGate Parkway prior to the 2045 horizon. In the 2025 horizon, this intersection is anticipated to be signalized to provide safer travel for pedestrians and bicyclists while also providing sufficient gaps for southbound left turning vehicles to turn onto RidgeGate Parkway EB. An eastbound left turn lane is anticipated to be provided as well as a southbound left turn lane during the 2025 horizon. As recommended in the RidgeGate King Soopers study, an R3-1 No Right Turn sign should be installed on the southbound approach to the intersection and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic.

A southbound through lane will eventually be necessary as the south leg of Rhapsody Road is constructed. As such, it is recommended that sufficient pavement width be provided, and chevron striping be placed where the future southbound through lane will be placed. With project traffic, this intersection is anticipated to operate at an acceptable level of service during both the 2025 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. Table 6 provides the results of the LOS analysis conducted at this intersection.

Table 6 - RidgeGate Parkway EB \& Rhapsody Road (\#4) LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2025 Background \#	9.2	A	8.8	A
2025 Background Plus Project \#	9.2	A	10.1	B
2045 Background \#\#	13.1	B	17.4	B
2045 Background Plus Project \#\#	13.3	B	18.6	B

\# = Signalized 'T'-intersection; \#\# = Signalized 4-leg intersection

RidgeGate Parkway EB \& West Road (\#5)

The intersection of RidgeGate Parkway EB \& West Road (\#5) is proposed to be constructed along the west side of the project site as an unsignalized ' T '-intersection with development of this project with stop control on the southbound West Road approach to the intersection. West Road is anticipated to be a private road with one through lane in each direction between the two travel directions of RidgeGate Parkway. An eastbound left turn lane is recommended to be provided at this intersection with project construction. The southbound approach to this intersection will be for southbound left turning movements only and should provide an R1-1 "STOP" sign with an R3-1 No Right Turn sign posted underneath the "STOP" sign and an R6-1 "ONE WAY" sign posted along RidgeGate Parkway directly to the south of the southbound West Road approach to prevent vehicles from turning right into oncoming traffic. With project traffic, this intersection is anticipated to operate at an acceptable level of service during both the 2025 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. Table 7 provides the results of the LOS analysis conducted at this intersection.

Table 7 - RidgeGate Parkway EB \& West Road (\#5) LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2025 Background Plus Project Southbound Left	10.8	B	15.9	C
2045 Background Southbound Left	10.8	B	20.3	C
2045 Background Plus Project Southbound Left	12.6	B	26.6	D

RidgeGate Parkway EB \& East Road (\#6)

The intersection of RidgeGate Parkway EB \& East Road (\#6) is proposed to be constructed along the east side of the project site as an unsignalized ' T '-intersection with development of this project with stop control on the southbound East Road approach to the intersection during the 2025 horizon. East Road is anticipated to provide one through lane in each direction between the two travel directions of RidgeGate Parkway. An eastbound left turn lane is recommended to be provided at this intersection with project construction. The southbound approach to this intersection will be for southbound left turning movements only during the 2025 horizon and should provide an R1-1 "STOP" sign with an R6-1 No Right Turn sign posted underneath the "STOP" sign and an R6-1 "ONE WAY" sign posted along RidgeGate Parkway directly to the south of the southbound East Road approach to prevent vehicles from turning right into oncoming traffic.

By the 2045 horizon, it is anticipated that there will be a south leg constructed at this intersection to access a planned medical/hospital land use to the south of RidgeGate Parkway. When this development to the north of RidgeGate Parkway occurs, this intersection is anticipated to require signalization to continue operating at an acceptable level of service. A signal warrant analysis was conducted at this intersection in the 2025 background plus project and 2045 background horizons. A signal is not anticipated to be warranted or needed at this intersection solely with project traffic in the 2025 or 2045 horizons; the signal is anticipated to needed because of the development to the north and south of this project and the traffic from those developments that would use this roadway in between the one-way couplet of RidgeGate Parkway. The signal warrant analysis worksheets are provided in Appendix E. The northbound approach should operate well through the 2045 horizon with a shared through/right turn lane and the southbound approach is anticipated to operate well with one lane for shared left/through turning movements.

With project traffic, this intersection is anticipated to operate at an acceptable level of service during both the 2025 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. Table 8 provides the results of the LOS analysis conducted at this intersection.

Table 8 - RidgeGate Parkway EB \& East Road (\#6) LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2025 Background Plus Project \# Southbound Left	11.1	B	16.5	C
2045 Background \#\#	13.8	B	14.1	B
2045 Background Plus Project \#\#	13.9	B	14.3	B

\# = Unsignalized 'T'-intersection \#\# = Signalized 4-leg intersection;
NB: shared through/right turn lane; SB: shared left/through lane

Project Accesses

With completion of the RidgeGate Couplet Apartments project, two full movement accesses are proposed to the development. The West Access (\#7) is proposed to be located along the West Road while the East Access (\#8) is proposed to be located along the East Road. The westbound approach exiting the West Access (\#7) and the eastbound approach exiting the East Access (\#8) should each provide an R1-1 "STOP" sign for vehicles exiting the project site. The northbound approach to each access is anticipated to operate well through the 2045 horizon with a shared left/through lane along each roadway while the southbound approach to each access is also anticipated to operate well through the 2045 horizon with a shared left/through lane. Of note, it is assumed for purposes of this analysis that as the anticipated retail space to the west of West Road develops that an eastern access to that site will be constructed which should align with the West Access (\#7). Additionally, it is assumed in this study that as the proposed affordable housing develops to the east of East Road that an access to that site will be constructed which should align with the East Access (\#8).

Table 9 provides the results of the level of service for these accesses. As shown in the table, both accesses are anticipated to have all movements operating at LOS A during the peak hours in both the buildout year 2025 and the 2045 long-term horizons.

Table 9 - Project Access Level of Service Results

Intersection	2025 Total				2045 Total			
	AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
	Delay (sec/ veh)	LOS						
West Access \& West Rd (\#7)								
Northbound Left	-	-	-	-	7.3	A	7.4	A
Eastbound Approach	-	-	-	-	8.8	A	9.0	A
Westbound Approach	8.5	A	8.5	A	8.7	A	8.9	A
Southbound Left	7.2	A	7.3	A	7.3	A	7.3	A
East Access \& East Rd (\#8)								
Northbound Left	7.3	A	7.3	A	7.5	A	7.6	A
Eastbound Approach	8.8	A	8.8	A	10.1	B	10.6	B
Westbound Approach	-	-	-	-	9.3	A	9.8	A
Southbound Left	-	-	-	-	7.4	A	7.5	A

5.3 Vehicle Queuing Analysis

A vehicle queuing analysis was conducted for the study area intersections. The queuing analysis was performed using Synchro presenting the results of the $95^{\text {th }}$ percentile queue lengths. Results are shown in the following Table 10 with calculations provided within the level of service operational sheets of Appendix \mathbf{D} for unsignalized intersections and Appendix \mathbf{F} for signalized intersections.

Table 10 - Turn Lane Queuing Analysis Results

Intersection Turn Lane	$\begin{aligned} & 2025 \\ & \text { Calculated } \\ & \text { Queue (feet) } \\ & \hline \end{aligned}$	2025 Recommended Length (feet)	2045 Calculated Queue (feet)	2045 Recommended Length (feet)
RidgeGate WB \& Rhapsody (\#1) Westbound Left Westbound Right Northbound Left	$\begin{gathered} 34^{\prime} \\ \text { DNE } \\ 27^{\prime} \\ \hline \end{gathered}$	$\begin{gathered} 190^{\prime}+110^{\prime} \mathrm{T} \\ \text { DNE } \\ 120^{\prime}+50^{\prime} \mathrm{T} \\ \hline \end{gathered}$	$\begin{gathered} 54^{\prime} \\ 20^{\prime} \\ 117^{\prime} \\ \hline \end{gathered}$	$\begin{gathered} 190^{\prime}+110^{\prime} \mathrm{T} \\ 190^{\prime}+1200^{\prime} T \\ 120^{\prime}+50^{\prime} \mathrm{T} \\ \hline \end{gathered}$
RidgeGate WB \& West (\#2) Westbound Left Northbound Left	$\begin{gathered} 0^{\prime} \\ 25^{\prime} \end{gathered}$	$\begin{gathered} 190^{\prime}+120^{\prime} T \\ C \end{gathered}$	$\begin{gathered} 0^{\prime} \\ 25^{\prime} \end{gathered}$	$\begin{gathered} 190 '+120^{\prime} \mathrm{T} \\ \mathrm{C} \end{gathered}$
RidgeGate WB \& East (\#3) Westbound Left Westbound Right Northbound Approach Southbound Approach	$\begin{gathered} 0^{\prime} \\ \text { DNE } \\ 25^{\prime} \\ \text { DNE } \\ \hline \end{gathered}$	$\begin{gathered} 190 \text { '+120'T } \\ \text { DNE } \\ \text { C } \\ \text { DNE } \\ \hline \end{gathered}$	$\begin{gathered} 0^{\prime} \\ 18^{\prime} \\ 152 \\ 154^{\prime} \\ \hline 15 \end{gathered}$	$\begin{gathered} 190^{\prime}+120^{\prime} \mathrm{T} \\ 190^{\prime}+120^{\prime} \mathrm{T} \\ \text { C } \\ \text { C } \\ \hline \end{gathered}$
RidgeGate EB \& Rhapsody (\#4) Eastbound Left Eastbound Right Southbound Left	$\begin{gathered} 7^{\prime} \\ \text { DNE } \\ 106^{\prime} \\ \hline \end{gathered}$	$\begin{gathered} 101^{\prime}+75^{\prime} \mathrm{T} \\ \text { DNE } \\ 120^{\prime}+50^{\prime} \mathrm{S} \\ \hline \end{gathered}$	$\begin{aligned} & 52^{\prime} \\ & 26^{\prime} \\ & 93^{\prime} \\ & \hline \end{aligned}$	$\begin{gathered} 101 '+75^{\prime} \mathrm{T} \\ 190^{\prime}+120 \mathrm{~T} \\ 120^{\prime}+50^{\prime} \mathrm{S} \\ \hline \end{gathered}$
RidgeGate EB \& West (\#5) Eastbound Left Southbound Left	$\begin{array}{r} 0^{\prime} \\ 25^{\prime} \\ \hline \end{array}$	$\begin{gathered} 175^{\prime}+75^{\prime} \mathrm{T} \\ \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 0^{\prime} \\ 25^{\prime} \\ \hline \end{gathered}$	$\begin{gathered} 175^{\prime}+75^{\prime} \mathrm{T} \\ \mathrm{C} \\ \hline \end{gathered}$
RidgeGate EB \& East (\#6) Eastbound Left Northbound Approach Southbound Approach	$\begin{gathered} 0^{\prime} \\ \text { DNE } \\ 25^{\prime} \end{gathered}$	$\begin{gathered} 190 \text { '+75'T } \\ \text { DNE } \\ \text { C } \end{gathered}$	$\begin{aligned} & 57^{\prime} \\ & 95^{\prime} \\ & 118^{\prime} \end{aligned}$	$\begin{gathered} 190^{\prime}+75^{\prime} T \\ \text { C } \\ \text { C } \end{gathered}$

DNE = Does Not Exist; T = Taper Length; C = Continuous; S = Shared Taper;
Blue Text = Recommendation
All queues are anticipated to remain within the recommended turn lane lengths through 2045. The storage and taper lengths along RidgeGate Parkway provided in Table 10 are based on a standard turn lane length of 190 feet with a 120 -foot taper. Where these turn lane and taper lengths are not feasible, the recommended turn lane length provided is the maximum feasible length based on site constraints, with the minimum recommended turn lane length set as 100 feet and the minimum taper length set as 75 feet. Of note, it is not advisable to provide a continuous deceleration/acceleration lane along either direction of RidgeGate Parkway as this would be likely to cause unsafe weaving maneuvers for vehicles entering and exiting the development. For this reason, separate left turn lanes have been recommended at each study area intersection on RidgeGate Parkway. The turn lanes along Rhapsody Road were assigned a minimum storage length of 100 feet, with additional storage length provided where advisable to accommodate
expected queues. The turn lane exhibit used for the provided turn lane and taper lengths is provided in Appendix G.

In 2025, the intersection of RidgeGate Parkway WB \& Rhapsody Road (\#1) is recommended to provide a westbound left turn lane with a storage length of 190 feet with a 110-foot taper. A northbound left turn lane should be provided at this intersection 120 feet in length with a 50-foot taper.

At the RidgeGate Parkway WB \& West Road (\#2) intersection, a westbound left turn lane should be provided with 190 feet in length and a 120-foot taper. The RidgeGate Parkway WB \& East Road (\#3) intersection should provide a westbound left turn lane 190 feet in length with a 120foot taper.

In 2025, the intersection of RidgeGate Parkway EB \& Rhapsody Road (\#4) is recommended to provide an eastbound left turn lane with 101 feet in length and a 75 -foot taper. A southbound left turn should also be provided at this intersection with 120 feet in length and a 50-foot shared taper; the taper length will be shared with the northbound left turn lane into the RidgeGate King Soopers development.

At the RidgeGate Parkway EB \& West Road (\#5) intersection, an eastbound left turn lane should be provided with 175 feet in length and a 75-foot taper. The RidgeGate Parkway EB \& East Road (\#6) intersection should provide an eastbound left turn lane 190 feet in length with a 75-foot taper. With the projected use of Rhapsody Road as a local collector by 2045, it is recommended that a westbound right turn lane be provided at the RidgeGate Parkway WB \& Rhapsody Road (\#1) intersection when the north leg of this intersection is constructed. This turn lane should provide 190 feet in length with a 120-foot taper. In like manner, an eastbound right turn lane should be provided with 190 feet in length and a 120-foot taper when the south leg of the RidgeGate Parkway EB \& Rhapsody Road (\#4) intersection is constructed. It is also recommended when development to the north of RidgeGate Parkway WB occurs that a westbound right turn lane be provided at the RidgeGate Parkway WB \& East Road (\#3) intersection be provided with 190 feet in length and a 120-foot taper.

5.4 Pedestrian and Bicycle Evaluation

To address components of a multimodal traffic study, pedestrian and bicycle infrastructure evaluations were conducted. Sidewalk exists along both the eastbound and westbound RidgeGate Parkway couplets within the study area, with the sidewalk south of the eastbound direction able to be utilized as cycle track as it provides approximately a 12 -foot width. Bicycle lanes and sidewalk are also anticipated to be provided along each side of Rhapsody Road. Sidewalk is anticipated to be provided traveling north-south along the perimeter of the project site along West Road and East Road, in addition to sidewalk anticipated to be provided along the north and south ends of the project to connect West Road to East Road. Crosswalks are also anticipated to be provided in each direction at the RidgeGate Parkway WB and EB \& Rhapsody Road intersections (\#1 \& \#4). Crosswalks are also anticipated to be provided at the West Road and East Road intersections (\#2, \#3, \#5, \#6) to cross east-west across East Road and West Road. Sidewalk will also be provided onsite as appropriate to provide safe access to the apartment units from the parking lot as well to and from the amenities anticipated to be provided by the apartment complex to residents. As the surrounding area continues to develop as part of the overall RidgeGate East Planned Development, these pedestrian and bicycle facilities will serve the larger community and provide safer access to the development.

5.5 Improvement Summary

Based on the results of the intersection operational and vehicle queuing analysis, the key intersection recommended improvements and control are shown in Figure 12 for the 2025 horizon and in Figure 13 for the 2045 long-term planning horizon.

FIGURE 12
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2025 RECOMMENDED GEOMETRY AND CONTROL

Kimley\%Horm
NQRTD

LEGEND
(X) Study Area Key Intersection
(X) Project Access Intersection
: Signalized Intersection
stop Stop Controlled Approach

- Improvement By Others
- Recommended Improvement
- 100'+ Turn Lane Length (feet) 100'T Taper Length (feet)
100'S Shared Taper Length (feet)
Kimley»)Horn

FIGURE 13
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2045 RECOMMENDED GEOMETRY AND CONTROL

LEGEND

X Study Area Key Intersection
(X) Project Access Intersection
! Signalized Intersection
sTop Stop Controlled Approach

- Improvement By Others

100' + Turn Lane Length (feet)

- 100'T Taper Length (feet)

100's Shared Taper Length (feet)
Kimley») Horn

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes RidgeGate Couplet Apartments will be successfully incorporated into the existing and future roadway network. Analysis of the existing street network, the proposed project development, and expected traffic volumes resulted in the following recommendations:

2025 Recommendations

- Bicycle lanes and sidewalk are anticipated to be provided along each side of Rhapsody Road. Sidewalk is anticipated to be provided traveling north-south along the perimeter of the project site along West Road and East Road, in addition to sidewalk anticipated to be provided along the north and south ends of the project to connect West Road to East Road. Crosswalks are also anticipated to be provided in each direction at the RidgeGate Parkway WB and EB \& Rhapsody Road intersections (\#1 \& \#4). Crosswalks are also anticipated to be provided at the West Road and East Road intersections (\#2, \#3, \#5, \#6) to cross east-west across East Road and West Road. Sidewalk will also be provided onsite as appropriate to provide safe access to the apartment units from the parking and to and from other amenities anticipated to be provided by the apartment complex to residents.
- Rhapsody Road is proposed to be constructed as part of the RidgeGate King Soopers development with one through lane in each direction with on-street bicycle lanes and on-street parallel parking along both sides of the roadway. The RidgeGate Parkway WB \& Rhapsody Road (\#1) and the RidgeGate Parkway EB \& Rhapsody Road (\#4) intersections are anticipated to be signalized ' T '-intersections operating with full turning movements as appropriate on the one-way couplet. At these T-intersections, R3-1 No Right Turn signs should be installed at the approaches to RidgeGate Parkway and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic. The RidgeGate Parkway WB \& Rhapsody Road (\#1) intersection should provide a westbound left turn lane with 190 feet in length and a 110-foot taper. A northbound left turn lane should also be provided with 120 feet in length and a 50-foot taper. The RidgeGate Parkway EB \& Rhapsody Road (\#4) intersection should provide an eastbound left turn lane 101 feet in length with a 75 -foot taper. This intersection should also provide a southbound left turn lane with 120 feet in length and a 50-foot taper. Any improvements to the Rhapsody Road intersections (\#1 and \#4) should be provided in construction of the RidgeGate

King Soopers development. Of note, as Rhapsody Road is anticipated to provide north and south legs on either side of RidgeGate Parkway before 2045, it is recommended that sufficient pavement width be provided, and chevron striping be placed where the future southbound through and northbound through lanes will be placed.

- RidgeGate Parkway is anticipated to use the existing available pavement width to restripe the roadway to provide three through lanes in each direction within the study area during this horizon. It is recommended that the existing striped-out inside lane along RidgeGate Parkway in both directions be striped as the third through lane.
- Along RidgeGate Parkway WB, westbound left turn lanes should be provided at the West Road (\#2) and East Road (\#3) intersections. At the West Road (\#2) intersection, a westbound left turn lane 190 feet in length with a 120-foot taper should be provided. The East Road (\#3) intersection should also provide a westbound left turn lane 190 feet in length with a 120-foot taper. The northbound approach to each of these intersections are anticipated to be for northbound left turning movements and should be stop-controlled with R1-1 "STOP" signs placed at each northbound approach to these intersections. R3-1 No Right Turn signs should be placed underneath the "STOP" signs while R6-1 "ONE WAY" signs should be placed along RidgeGate Parkway WB as appropriate to prevent vehicles from turning right and entering oncoming traffic.
- Along RidgeGate Parkway EB, eastbound left turn lanes should be provided at the West Road (\#5) and East Road (\#6) intersections. Due to intersection spacing, the East Road (\#5) intersection should provide an eastbound left turn lane 175 feet in length with a 75 -foot taper. At the East Road (\#6) intersection, an eastbound left turn lane with 190 feet in length and a 75 -foot taper should be provided. The southbound approach to each of these intersections are anticipated to be for southbound left turning movements and should be stop-controlled with R1-1 "STOP" signs placed at each southbound approach to these intersections. R3-1 No Right Turn signs should be placed underneath the "STOP" signs while R6-1 "ONE WAY" signs should be placed along RidgeGate Parkway EB as appropriate to prevent vehicles from turning right and entering oncoming traffic.
- The East Road and West Road are both anticipated to operate well with one through lane in each direction with turning movements occurring from within the proposed through lanes.
- Two full movement accesses are proposed to be constructed with this project, with the West Access (\#7) located along the West Road and the East Access (\#8) located along the East Road. Each approach exiting the development should operate well with a shared left/right turn lane and should be stop-controlled with an R1-1 "STOP" sign.

2045 Recommendations

- The north and south legs of Rhapsody Road on either side of RidgeGate Parkway are anticipated to be constructed before the 2045 long-term horizon. When these legs are constructed, the two Rhapsody Road intersections (\#1 and \#4) will become four-leg signalized intersections. When this construction occurs, a westbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway WB \& Rhapsody Road (\#1) intersection while an eastbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway EB \& Rhapsody Road (\#4) intersection.
- The north and south legs of East Road on either side of RidgeGate Parkway are anticipated to be constructed before the 2045 long-term horizon. When these legs are constructed, the two East Road intersections (\#3 and \#6) will become four-leg signalized intersections. When this construction occurs, a westbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway WB \& East Road (\#3) intersection while the RidgeGate Parkway EB \& East Road (\#6) intersection is anticipated to operate well with eastbound right turning movements occurring from within the third eastbound through lane. The northbound and southbound approaches to each of these intersections along East Road are anticipated to operate well through the 2045 horizon with a shared lane for left/through or through/right turn lanes where appropriate.
- When the parcel to the west of the project site is developed, access along West Road should align with the West Access (\#7) proposed in this project if an access to that development is anticipated along West Road. In like manner, when the parcel to the east of the project site is developed, access along East Road should align with the East Access (\#8) constructed in this project if an access to that development is anticipated along East Road.

General Recommendations

- Any onsite or offsite improvements should be incorporated into the Civil Drawings and conform to standards of the City of Lone Tree and the Manual on Uniform Traffic Control Devices (MUTCD) - 2009 Edition.

APPENDICES

APPENDIX A

Intersection Count Sheets

Ridgeview Data
Collection

Lone Tree, CO
Ridgegate King Soopers
AM Peak
Ridgegate Pkwy and Peoria St

File Name : Ridgegate and Peoria AM
Site Code : IPO 609
Start Date: 7/7/2022
Page No : 1

	Ridgegate Pkwy Eastbound				Ridgegate Pkwy Westbound				Peoria St Southbound				
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
07:00 AM	34	130	0	164	343	15	0	358	3	21	0	24	546
07:15 AM	30	169	0	199	397	21	0	418	6	22	0	28	645
07:30 AM	37	145	0	182	418	29	0	447	7	24	0	31	660
07:45 AM	41	173	0	214	421	20	0	441	11	19	0	30	685
Total	142	617	0	759	1579	85	0	1664	27	86	0	113	2536
08:00 AM	34	155	0	189	363	24	0	387	6	20	0	26	602
08:15 AM	38	168	0	206	349	18	0	367	10	25	0	35	608
08:30 AM	40	179	0	219	334	17	0	351	7	28	0	35	605
08:45 AM	25	169	0	194	378	26	0	404	5	20	0	25	623
Total	137	671	0	808	1424	85	0	1509	28	93	0	121	2438
Grand Total	279	1288	0	1567	3003	170	0	3173	55	179	0	234	4974
Apprch \%	17.8	82.2	0		94.6	5.4	0		23.5	76.5	0		
Total \%	5.6	25.9	0	31.5	60.4	3.4	0	63.8	1.1	3.6	0	4.7	
Automobiles	275	1288	0	1563	3003	170	0	3173	55	178	0	233	4969
\% Automobiles	98.6	100	0	99.7	100	100	0	100	100	99.4	0	99.6	99.9
Bicycle and Pedestrian	4	0	0	4	0	0	0	0	0	1	0	1	5
\% Bicycle and Pedestrian	1.4	0	0	0.3	0	0	0	0	0	0.6	0	0.4	0.1

Ridgeview Data Collection

Lone Tree, CO
Ridgegate King Soopers
AM Peak
Ridgegate Pkwy and Peoria St

File Name : Ridgegate and Peoria AM
Site Code : IPO 609
Start Date : 7/7/2022
Page No : 2

Ridgeview Data
Collection

Lone Tree, CO
Ridgegate King Soopers
AM Peak
Ridgegate Pkwy and Peoria St

File Name : Ridgegate and Peoria AM
Site Code : IPO 609
Start Date : 7/7/2022
Page No : 3

	Ridgegate Pkwy Eastbound				Ridgegate Pkwy Westbound				Peoria St Southbound				
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1													
Peak Hour for Entire Intersection Begins at 07:15 AM													
07:15 AM	30	169	0	199	397	21	0	418	6	22	0	28	645
07:30 AM	37	145	0	182	418	29	0	447	7	24	0	31	660
07:45 AM	41	173	0	214	421	20	0	441	11	19	0	30	685
08:00 AM	34	155	0	189	363	24	0	387	6	20	0	26	602
Total Volume	142	642	0	784	1599	94	0	1693	30	85	0	115	2592
\% App. Total	18.1	81.9	0		94.4	5.6	0		26.1	73.9	0		
PHF	. 866	. 928	. 000	. 916	. 950	. 810	. 000	. 947	. 682	. 885	. 000	. 927	. 946

Ridgeview Data
Collection

Lone Tree, CO
Ridgegate King Soopers
PM Peak
Ridgegate Pkwy and Peoria St

File Name : Ridgegate and Peoria PM
Site Code : IPO 609
Start Date : 7/7/2022
Page No : 1

	Ridgegate Pkwy Eastbound				Ridgegate Pkwy Westbound				Peoria St Southbound				
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
04:00 PM	14	354	0	368	217	11	0	228	17	40	0	57	653
04:15 PM	15	375	0	390	247	12	0	259	16	43	0	59	708
04:30 PM	27	387	0	414	227	10	0	237	11	44	0	55	706
04:45 PM	18	406	1	425	201	12	0	213	16	38	1	55	693
Total	74	1522	1	1597	892	45	0	937	60	165	1	226	2760
05:00 PM	29	411	0	440	209	11	0	220	30	42	0	72	732
05:15 PM	19	420	0	439	256	13	0	269	22	50	0	72	780
05:30 PM	20	381	0	401	212	14	0	226	18	43	0	61	688
05:45 PM	14	388	0	402	245	10	0	255	17	32	0	49	706
Total	82	1600	0	1682	922	48	0	970	87	167	0	254	2906
Grand Total	156	3122	1	3279	1814	93	0	1907	147	332	1	480	5666
Apprch \%	4.8	95.2	0		95.1	4.9	0		30.6	69.2	0.2		
Total \%	2.8	55.1	0	57.9	32	1.6	0	33.7	2.6	5.9	0	8.5	
Automobiles	156	3122	0	3278	1814	93	0	1907	147	330	0	477	5662
\% Automobiles	100	100	0	100	100	100	0	100	100	99.4	0	99.4	99.9
Bicycle and Pedestrian	0	0	1	1	0	0	0	0	0	2	1	3	4
\% Bicycle and Pedestrian	0	0	100	0	0	0	0	0	0	0.6	100	0.6	0.1

Ridgeview Data Collection

Lone Tree, CO
Ridgegate King Soopers
PM Peak
Ridgegate Pkwy and Peoria St

File Name : Ridgegate and Peoria PM
Site Code : IPO 609
Start Date : 7/7/2022
Page No : 2

Ridgeview Data
Collection

Lone Tree, CO
Ridgegate King Soopers
PM Peak
Ridgegate Pkwy and Peoria St

File Name : Ridgegate and Peoria PM
Site Code : IPO 609
Start Date: 7/7/2022
Page No :3

	Ridgegate Pkwy Eastbound				Ridgegate Pkwy Westbound				Peoria St Southbound				
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1													
Peak Hour for Entire Intersection Begins at 04:30 PM													
04:30 PM	27	387	0	414	227	10	0	237	11	44	0	55	706
04:45 PM	18	406	1	425	201	12	0	213	16	38	1	55	693
05:00 PM	29	411	0	440	209	11	0	220	30	42	0	72	732
05:15 PM	19	420	0	439	256	13	0	269	22	50	0	72	780
Total Volume	93	1624	1	1718	893	46	0	939	79	174	1	254	2911
\% App. Total	5.4	94.5	0.1		95.1	4.9	0		31.1	68.5	0.4		
PHF	. 802	. 967	. 250	. 976	. 872	. 885	. 000	. 873	. 658	. 870	. 250	. 882	. 933

APPENDIX B

Future Traffic Projections and Adjacent Developments/Traffic Study

DRCOG Traffic Projections: Ridgegate King Soopers

Location	$\mathbf{2 0 2 0}$	$\mathbf{2 0 5 0}$	Growth Factor	Annual Growth
Ridgegate Parkway E/O Peoria St	23,000	43,000	1.87	$\mathbf{2 . 1 1 \%}$

LEGEND
Study Area Key Intersection
Project Access Intersection
FIGURE B2
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2045 ADJACENT LOT 7 RESIDENTIAL TRIP DISTRIBUTION
External Trip Distribution Percentage Entering[Exiting]
Trip Distribution Percentage

Kimley\%Horm
$\mathbf{N} \underset{\mathrm{NTS} \text { 196382001 }}{\boldsymbol{R} \boldsymbol{F}}$

FIGURE B4
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2045 ADJACENT LOT 5 RETAIL TRAFFIC ASSIGNMENT

LEGEND

Study Area Key Intersection
Project Access Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume

FIGURE B5
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2045 ADJACENT LOT 7 RESIDENTIAL TRAFFIC ASSIGNMENT

LEGEND

Study Area Key Intersection
Project Access Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
Kimley»)Horn

LEGEND

EXISTING INTERSECTION \qquad COLLECTOR ROAD PROPOSED INTERSECTION - EXTERNAL PROPOSED INTERSECTION - INTERNAL AVERAGE DAILY TRAFFIC AVERA(ADT) $x x$ (x x) AM (PM) PEAK HOUR
 \square 0 RO.

STOP SIGN
CONTROL
O SIGNAL CONTROL

FIGURE 7 - YEAR 2022 SITE GENERATED TRAFFIC -
EXTERNAL RIDGEGATE SOUTHWEST VILLAGE FILING 1
PROJ. NO. 15950.01

- J•R ENGINEERING

A Westrian Company

LEGEND

EXISTING INTERSECTIONCOLLECTOR ROAD PROPOSED INTERSECTION - ExTERNAL PROPOSED INTERSECTION - INTERNAL AVERAGE DAILY TRAFFIC (ADT) $x x(x X) \underset{\text { TRIP (PISTRIBUTION }}{\text { AM }}$
 \square 8 RO.

STOP SIGN
CONTROL
SIGNAL CONTROL

2022 TOTAL ADT
(B1) 34,350

FIGURE 8 - YEAR 2022 TOTAL TRAFFIC - EXTERNAL RIDGEGATE SOUTHWEST VILLAGE FILING 1
PROJ. NO. 15950.01

- J•R ENGINEERING

A Westrian Company
Centennial 303-740-9939 • Colrado Spings 79-593-2593 Fort Colins 970-491-9888 • wwirengineeingcom

RIDGEGATE EAST TECHNICAL SUPPLEMENT

February 2018
Amended July 2022

Ridge Gate EAST

CLANTON \& ASSOCIATES

\qquad
\square
LIGHTING STRATEGY MAP

LIGHTING DESIGN AND ENGINEERING

RidgeGate Development Lighting Strategy Map

SK. 01

City Center Plan

Felsburg
FELSBURG
HOLT \&
ULLEVIG
ULLEVIG
1
Traffic Analysis Zones

Page B-3

September 28, 2016
Memorandum to Rampart Range Metropolitan District No. 1
Page 4

Traffic Analysis Zone (TAZ)	Residential Dwelling Units	Retail (Sq Ft)	Office (Sq Ft)
2874	270	0	213,186
2875	64	0	0
2876	150	5,670	118,466
2877	238	0	188,004
2878	341	0	0
2879	127	16,536	99,925
2880	214	0	168,377
2881	238	0	187,925
2882	0	69,688	0
2883	0	75,776	0
2884	0	70,196	0
2885	0	0	0
2886	0	102,219	0
2887	0	25,012	0
2888	83	5,490	65,371
2889	119	2,745	93,246
2890	65	4,848	51,018
2891	119	2,745	93,246
2892	87	0	0
2893	84	106,709	0
2894	65	0	0
2895	610	209,183	99,611
2896	467	159,992	76,186
2897	391	0	0
2898	0	0	0
2899	1,519	143,800	68,476
2900	1,380	97,216	46,293
2901	709	0	0
2902	320	109,634	52,207
2903	283	96,942	46,163
2904	750	0	0
2905	189	3,087	1,470
2906	463	0	0
2907	839	91,179	43,418
2908	1,435	81,505	38,812
2909	381	0	0
2910	1,076	0	0
2911	1,311	0	0
Total	18,174	2,181,674	7,864,164

September 28, 2016
Memorandum to Rampart Range Metropolitan District No. 1
Page 5

II. GENERAL THROUGH LANEAGE REQUIREMENTS

The updated travel demand model was used to evaluate build-out through laneage requirements on roadways internal to the RidgeGate East project. The travel demand model is a tool designed to produce daily volume forecasts on roadways and to incorporate a transit component that allows the transit network to be refined to capture the impacts of the planned Lone Tree City Center and RidgeGate Parkway light rail stations.
Figure 2 depicts the build-out through laneage requirements on roadways within the project area. The following summarizes the major findings of this analysis:

- RidgeGate Parkway within the project boundaries will need to have six through lanes given its east-west connectivity and regional access to the Town of Parker.
- Four-lane roadway segments are primarily located along those streets that are considered critical access routes into the City Center and that provide access to the roadway network outside the RidgeGate East boundary. Portions of Sky Ridge Avenue, Peoria Street, Zenith Meridian Drive, and Havana Street will each require four through travel lanes. Also, an unnamed east-west roadway in the southern portion of the City Center was identified as a four-lane roadway as it is anticipated to serve significant vehicular volumes destined for the Corporate Office zoning identified in the southwest corner of the City Center planning area.
- Other streets within RidgeGate East have traffic volume projections that will allow them to have a two-lane roadway cross-section.
Figure 2 only represents the number of through lanes needed within RidgeGate East; it does not identify intersection geometry and auxiliary lane requirements. Section III of this memorandum details the intersection geometry and auxiliary lane needs. Additionally, intersections that are constructed in-between the major intersections that are included in this report may require auxiliary lanes, specifically left turn lanes.

III. INTERSECTION TRAFFIC CONTROL AND GEOMETRY

An evaluation was conducted to understand the likely traffic control needs for RidgeGate East and to understand the laneage requirements on intersection approaches. Figure $\mathbf{3}$ identifies the intersections that were included in this analysis. This evaluation does not make any judgment or recommendation about other intersections throughout the development or provide any details about requirements outside the project boundaries due to the high-level planning nature of this study. As future development occurs within the site, ongoing analysis and refinement of the network traffic control and laneage requirements will need to occur to determine the appropriate intersection characteristics.

City Center Plan

Felsburg
FELSBURG
HOLT \&
ULLEVIG

$\underset{\text { ULLEVIG }}{\text { H }}$
Page B-7

Figure 5
\square

APPENDIX C

Trip Generation Worksheets

Kimley»Horn

Project RidgeGate Couplet Apartments
Subject Trip Generation for Multifamily Housing (Mid-Rise)
Designed by \qquad

Checked by \qquad Date March 02, 2023
Date Job No. 196382001 Sheet No. \qquad of 1

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rate Equations
Land Use Code - Multifamily Housing (Mid-Rise) (221)
Independent Variable - Dwelling Units (X)
$X=349$
T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (200 Series Page 275)
Average Weekday
Directional Distribution: 23\% ent. 77\% exit.
$(\mathrm{T})=0.37(\mathrm{X})$
$(T)=0.37$ *

$\mathrm{T}=$	129	Average Vehicle Trip Ends	
30	entering	99	exiting

$30+99=129$

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (200 Series Page 276)

Average Weekday
$(\mathrm{T})=0.39(\mathrm{X})$
$(T)=0.39$ *

Directional Distribution: 61% ent. 39% exit.
T = $136 \quad$ Average Vehicle Trip Ends 83 entering 53 exiting $83+53=136$

Weekday (200 Series Page 274)

Average Weekday
$(\mathrm{T})=4.54(\mathrm{X})$
$(T)=4.54$ *

Directional Distribution: 50\% entering, 50\% exiting $\mathrm{T}=1586 \quad$ Average Vehicle Trip Ends 793 entering 793 exiting
$793+793=1586$

Kimley»)Horn

Project
RidgeGate Couplet (2045 Background Traffic Lot 7)
Subject
Trip Generation for Affordable Housing (Income Limits)
Designed by _TJD Date September 21, 2022
Checked by \qquad

Job No

196382001
$1 \quad$ of 1

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rate Equations
Land Use Code - Affordable Housing (Income Limits) (ITE 223)
Independent Variable - Dwelling Units (X)
$X=225$
T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Page 342)

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Page 343)

Average Weekday
$(T)=0.46(X)$
$\mathrm{T}=0.46$ * 225

Directional Distribution: 59\% ent. 41% exit. $\mathrm{T}=104 \quad$ Average Vehicle Trip Ends 61 entering 43 exiting $61+43=104$

Weekday (Page 341)

Average Weekday

$$
\begin{array}{ll}
(\mathrm{T})=4.81(\mathrm{X}) & \\
\mathrm{T}=4.81 \text { * } & 225
\end{array}
$$

Directional Distribution: 50% ent. 50% exit. T = 1084 Average Vehicle Trip Ends 542 entering 542 exiting
$542+542=1084$

Kimley»Horn

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rate Equations
Land Use Code - Strip Retail Plaza (<40k) (822)
Independent Variable - 1000 Square Feet Gross Leasable Area (X)

```
Gross Leasable Area = 40,000 Square Feet
X = 40.000
T = Average Vehicle Trip Ends
```

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (800 Series Page 230)

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (800 Series page 231)
Average Weekday Directional Distribution: 50\% ent. 5
$\mathrm{T}=6.59$ * (X)
$\mathrm{T}=6.59$ *

T = $264 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=6.59$ * 40
132 entering 132 exiting
$132+132=264$

Non Pass-By Trip Volumes (Per ITE Trip Generation Manual, 11th Edition)

| AM Peak Hour $=$ | 60% | Non-Pass By | PM Peak Hour $=60 \%$ Non-Pass By | |
| :--- | :---: | :---: | :---: | :--- | :--- |
| | IN | Out | Total | Pass-By Rates from ITE 821 |

Pass-By Trip Volumes (Per ITE Trip Generation Manual, 11th Edition)

AM Peak Hour =		40\% Pass By		PM Peak Hour =	40\%	Pass By
	IN	Out	Total			
AM Peak	22	15	38	PM Peak Hour Rate Applied to AM Peak Hour		
PM Peak	53	53	106			
Daily	436	436	872	PM Peak Hour R	Applied	o Daily

Kimley») Horn

Project RidgeGate Couplet (Medical/Hospital Parcel)

Subject	Trip Generation for General Medical-Dental Office Building - Stand-Alone				
Designed by	TJD	Date	April 04, 2023	Job No.	196382001
Checked by				Sheet No.	of

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rates
Land Use Code - Medical-Dental Office Building (720)
Independent Variable - 1000 Square Feet (X)
SF = 65,000
$X=65.000$
T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (700 Series Page 762)
$(T)=3.10(X)$
$(T)=3.10 *$
(T) $=3.10$ *
Directional Distribution: 79% ent. 21% exit.
T = $202 \quad$ Average Vehicle Trip Ends
160 entering 42 exiting
$160+42=202$
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (700 Series Page 763)
Directional Distribution: 30\% ent. 70\% exit.

$$
\begin{align*}
& (\mathrm{T})=3.93(\mathrm{X}) \\
& (\mathrm{T})=3.93 \text { * } \tag{65.0}
\end{align*}
$$

T = $255 \quad$ Average Vehicle Trip Ends 77 entering 179 exiting $77+178=255$

Weekday (700 Series Page 761)
$(T)=36.00(X)$
$(T)=36.00{ }^{*}$

Directional Distribution: 50% ent. 50% exit. T = $2340 \quad$ Average Vehicle Trip Ends 1170 entering 1170 exiting

$$
1170+1170=2340
$$

Kimley»)Horn

Project RidgeGate Couple (Single-Family North of RidgeGate - TAZ 2900)
Subject Trip Generation for Single-Family Detached Housing
Designed by \qquad Date \qquad Job No. \qquad
Checked by \qquad Date Sheet No. -

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rate Equations
Land Use Code - Single-Family Detached Housing (210)
Independent Variable - Dwelling Units (X)

$$
\begin{aligned}
& X=1,380 \\
& T=\text { Average Vehicle Trip Ends }
\end{aligned}
$$

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (200 Series Page 220)
Average Weekday
Directional Distribution: 26\% ent. 74\% exit.
$(T)=0.70(X)$
$(\mathrm{T})=0.70$ *

$\mathrm{T}=$	966	Average Vehicle Trip Ends
251	entering	715
	exiting	

$251+715=966$
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (200 Series Page 221)
Average Weekday
$(T)=0.94(X)$
$(T)=0.94$ *
(1380.0)

Weekday (200 Series Page 219)

Average Weekday
$(T)=9.43(X)$
$(T)=9.43$ *
(1380.0)

Directional Distribution: 50\% entering, 50\% exiting T = $13014 \quad$ Average Vehicle Trip Ends 6507 entering 6507 exiting $6507+6507=13014$

Kimley») Horn

Project RidgeGate Couplet (Office North of RidgeGate - TAZ 2900)
Subject Trip Generation for General Office Building

Designed by	TJD	Date \quad April 04, 2023	Job No.
Checked by	Date	Sheet No.	of

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rates
Land Use Code - General Office Building (710)
Independent Variable - 1000 Square Feet (X)
SF = 46,293
X = 46.293
T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (700 Series Page 710)

```
(T) = 1.52(X)
(T) = 1.52 *
Directional Distribution: 88\% ent. 12\% exit.
\(\begin{array}{ccc}\mathrm{T}= & 70 & \text { Average Vehicle Trip Ends } \\ 62 & \text { entering } & 8 \quad \text { exiting }\end{array}\)
\(62+8=70\)

\section*{Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (700 Series Page 711)}

Directional Distribution: 17\% ent. 83\% exit.
\[
\begin{align*}
& (\mathrm{T})=1.44(\mathrm{X}) \\
& (\mathrm{T})=1.44^{*} \tag{46.3}
\end{align*}
\]

T = \(67 \quad\) Average Vehicle Trip Ends 11 entering 56 exiting \(11+56=67\)

Weekday (700 Series Page 709)
\[
\begin{align*}
& (T)=10.84(X) \\
& (T)=10.84 * \tag{46.3}
\end{align*}
\]

Directional Distribution: \(50 \%\) ent. \(50 \%\) exit. T = \(502 \quad\) Average Vehicle Trip Ends 251 entering 251 exiting

Kimley»Horn
\begin{tabular}{|c|c|c|c|c|c|}
\hline Project & \multicolumn{5}{|l|}{RidgeGate Couplet (Retail North of RidgeGate - TAZ 2900)} \\
\hline Subject & \multicolumn{5}{|l|}{Trip Generation for Shopping Plaza (40-150k) - Supermarket-No} \\
\hline Designed by & TJD & Date & April 04, 2023 & Job No. & 196382001 \\
\hline Checked by & & Date & & Sheet No. & of \\
\hline
\end{tabular}

\section*{TRIP GENERATION MANUAL TECHNIQUES}

ITE Trip Generation Manual 11th Edition, Average Rate Equations
Land Use Code - Shopping Plaza (40-150k) - Supermarket-No (821)
Independent Variable - 1000 Square Feet Gross Leasable Area (X)
\[
\begin{aligned}
& \text { Gross Leasable Area }=\quad 97,216 \text { Square Feet } \\
& X=97.216 \\
& \mathrm{~T}=\text { Average Vehicle Trip Ends }
\end{aligned}
\]

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. ( 800 Series Page 213)


Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. ( 800 Series page 214)
Average Weekday Directional Distribution: 49\% ent. \(51 \%\) exit.
\(\mathrm{T}=5.19\) * X ) \(\quad \mathrm{T}=505 \quad\) Average Vehicle Trip Ends
\(\mathrm{T}=5.19\) * 97.216
\[
247 \text { entering } 258 \text { exiting }
\]
\[
247+258=505
\]


Non Pass-By Trip Volumes (Between 40 and 150k) (Per ITE Trip Generation Manual, 11th Edition)
\begin{tabular}{lccclcc} 
AM Peak Hour \(=\) & \(60 \%\) & Non-Pass By & PM Peak Hour \(=\) & \(60 \%\) & Non-Pass By \\
& IN & Out & Total & & \\
AM Peak & 62 & 38 & 101 & PM Peak Hour Rate Applied to AM Peak Hour \\
PM Peak & 148 & 155 & 303 & \\
Daily & 1969 & 1969 & 3938 & PM Peak Hour Rate Applied to Daily
\end{tabular}

Pass-By Trip Volumes (Between 40 and 150k) (Per ITE Trip Generation Manual, 11th Edition)
AM Peak Hour \(=40 \%\) Pass By \(\quad\) PM Peak Hour \(=40 \%\) Pass By
\begin{tabular}{lcccc} 
& IN & Out & Total & \\
AM Peak & 42 & 26 & 68 & PM Peak Hour Rate Applied to AM Peak Hour \\
PM Peak & 99 & 103 & 202 & \\
Daily & 1313 & 1313 & 2626 & PM Peak Hour Rate Applied to Daily
\end{tabular}
Daily \(13131313 \quad 2626\) PM Peak Hour Rate Applied to Daily

\section*{APPENDIX D}

\section*{Intersection Analysis Worksheets}


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(24(27 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 50
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.52
Intersection Signal Delay: 7.2 Intersection LOS: A
Intersection Capacity Utilization 53.4\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1: Rhapsody Road \& RidgeGate Pkwy WB




Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(24(27 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 50
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.53
Intersection Signal Delay: 7.3 Intersection LOS: A
Intersection Capacity Utilization 53.4\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1: Rhapsody Road \& RidgeGate Pkwy WB




Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(24(27 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 50
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.54
Intersection Signal Delay: 7.4 Intersection LOS: A
Intersection Capacity Utilization 54.6\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 1: Rhapsody Road \& RidgeGate Pkwy WB




Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(43.6(48 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.37
Intersection Signal Delay: 7.4 Intersection LOS: A
Intersection Capacity Utilization 59.1\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 1: Rhapsody Road \& RidgeGate Pkwy WB




Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(24(27 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.83
Intersection Signal Delay: 17.7 Intersection LOS: B
Intersection Capacity Utilization 81.3\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 1: Rhapsody Road \& RidgeGate Pkwy WB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & & & 7 & \(\leftarrow\) & & 4 & \(\uparrow\) & 1 & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & & & \% & 个44 & 「 & \% & \(\uparrow\) & & & ¢ & \\
\hline Traffic Volume (veh/h) & 0 & 0 & 0 & 89 & 2645 & 72 & 117 & 75 & 0 & 0 & 85 & 130 \\
\hline Future Volume (veh/h) & 0 & 0 & 0 & 89 & 2645 & 72 & 117 & 75 & 0 & 0 & 85 & 130 \\
\hline Initial \(\mathrm{Q}(\mathrm{Qb})\), veh & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & & & & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & & & & No & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & & & & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 0 & 1870 & 1870 \\
\hline Adj Flow Rate, veh/h & & & & 94 & 2784 & 78 & 123 & 82 & 0 & 0 & 92 & 141 \\
\hline Peak Hour Factor & & & & 0.95 & 0.95 & 0.92 & 0.95 & 0.92 & 0.95 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh, \% & & & & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 2 & 2 \\
\hline Cap, veh/h & & & & 1178 & 3376 & 1048 & 214 & 447 & 0 & 0 & 159 & 244 \\
\hline Arrive On Green & & & & 0.66 & 0.66 & 0.66 & 0.40 & 0.40 & 0.00 & 0.00 & 0.24 & 0.24 \\
\hline Sat Flow, veh/h & & & & 1781 & 5106 & 1585 & 1147 & 1870 & 0 & 0 & 666 & 1021 \\
\hline Grp Volume(v), veh/h & & & & 94 & 2784 & 78 & 123 & 82 & 0 & 0 & 0 & 233 \\
\hline Grp Sat Flow(s),veh/h/ln & & & & 1781 & 1702 & 1585 & 1147 & 1870 & 0 & 0 & 0 & 1687 \\
\hline Q Serve(g_s), s & & & & 1.7 & 36.6 & 1.6 & 9.5 & 2.6 & 0.0 & 0.0 & 0.0 & 11.0 \\
\hline Cycle Q Clear(g_c), s & & & & 1.7 & 36.6 & 1.6 & 20.4 & 2.6 & 0.0 & 0.0 & 0.0 & 11.0 \\
\hline Prop In Lane & & & & 1.00 & & 1.00 & 1.00 & & 0.00 & 0.00 & & 0.61 \\
\hline Lane Grp Cap(c), veh/h & & & & 1178 & 3376 & 1048 & 214 & 447 & 0 & 0 & 0 & 403 \\
\hline V/C Ratio(X) & & & & 0.08 & 0.82 & 0.07 & 0.57 & 0.18 & 0.00 & 0.00 & 0.00 & 0.58 \\
\hline Avail Cap(c_a), veh/h & & & & 1178 & 3376 & 1048 & 214 & 447 & 0 & 0 & 0 & 403 \\
\hline HCM Platoon Ratio & & & & 1.00 & 1.00 & 1.00 & 1.67 & 1.67 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & & & & 1.00 & 1.00 & 1.00 & 0.96 & 0.96 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & & & & 5.5 & 11.4 & 5.4 & 32.1 & 21.4 & 0.0 & 0.0 & 0.0 & 30.2 \\
\hline Incr Delay (d2), s/veh & & & & 0.1 & 2.4 & 0.1 & 10.3 & 0.9 & 0.0 & 0.0 & 0.0 & 5.9 \\
\hline Initial Q Delay(d3),s/veh & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & & & & 0.5 & 10.8 & 0.4 & 2.9 & 1.2 & 0.0 & 0.0 & 0.0 & 5.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & & & & 5.6 & 13.8 & 5.6 & 42.4 & 22.2 & 0.0 & 0.0 & 0.0 & 36.2 \\
\hline LnGrp LOS & & & & A & B & A & D & C & A & A & A & D \\
\hline Approach Vol, veh/h & & & & & 2956 & & & 205 & & & 233 & \\
\hline Approach Delay, s/veh & & & & & 13.3 & & & 34.4 & & & 36.2 & \\
\hline Approach LOS & & & & & B & & & C & & & D & \\
\hline Timer - Assigned Phs & & 2 & & & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), \(s\) & & 26.0 & & & & 26.0 & & 64.0 & & & & \\
\hline Change Period ( \(Y+R \mathrm{Rc}\) ), s & & 4.5 & & & & 4.5 & & 4.5 & & & & \\
\hline Max Green Setting (Gmax), s & & 21.5 & & & & 21.5 & & 59.5 & & & & \\
\hline Max Q Clear Time (g_c+1), s & & 22.4 & & & & 13.0 & & 38.6 & & & & \\
\hline Green Ext Time (p_c), s & & 0.0 & & & & 0.8 & & 18.8 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 6th Ctrr Delay} & \multicolumn{10}{|l|}{16.2} \\
\hline HCM 6th LOS & & & B & & & & & & & & & \\
\hline
\end{tabular}


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(43.6(48 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 50
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.66
Intersection Signal Delay: 11.9 Intersection LOS: B
Intersection Capacity Utilization 82.4\% ICU Level of Service E
Analysis Period (min) 15
Splits and Phases: 1: Rhapsody Road \& RidgeGate Pkwy WB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & 4 & 4 & \(\dagger\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & & & \% & 帆 & 「 & \% & \(\uparrow\) & & & \(\dagger\) & \\
\hline Traffic Volume (veh/h) & 0 & 0 & 0 & 136 & 1672 & 105 & 187 & 171 & 0 & 0 & 107 & 85 \\
\hline Future Volume (veh/h) & 0 & 0 & 0 & 136 & 1672 & 105 & 187 & 171 & 0 & 0 & 107 & 85 \\
\hline Initial \(Q(Q b)\), veh & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & & & & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & & & & No & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & & & & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 0 & 1870 & 1870 \\
\hline Adj Flow Rate, veh/h & & & & 146 & 1798 & 114 & 201 & 186 & 0 & 0 & 116 & 92 \\
\hline Peak Hour Factor & & & & 0.93 & 0.93 & 0.92 & 0.93 & 0.92 & 0.93 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh, \% & & & & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 2 & 2 \\
\hline Cap, veh/h & & & & 960 & 2752 & 854 & 402 & 675 & 0 & 0 & 349 & 277 \\
\hline Arrive On Green & & & & 0.54 & 0.54 & 0.54 & 0.60 & 0.60 & 0.00 & 0.00 & 0.36 & 0.36 \\
\hline Sat Flow, veh/h & & & & 1781 & 5106 & 1585 & 1174 & 1870 & 0 & 0 & 966 & 766 \\
\hline Grp Volume(v), veh/h & & & & 146 & 1798 & 114 & 201 & 186 & 0 & 0 & 0 & 208 \\
\hline Grp Sat Flow(s),veh/h/ln & & & & 1781 & 1702 & 1585 & 1174 & 1870 & 0 & 0 & 0 & 1732 \\
\hline Q Serve(g_s), s & & & & 3.7 & 22.6 & 3.2 & 11.7 & 4.3 & 0.0 & 0.0 & 0.0 & 7.8 \\
\hline Cycle Q Clear(g_c), s & & & & 3.7 & 22.6 & 3.2 & 19.6 & 4.3 & 0.0 & 0.0 & 0.0 & 7.8 \\
\hline Prop In Lane & & & & 1.00 & & 1.00 & 1.00 & & 0.00 & 0.00 & & 0.44 \\
\hline Lane Grp Cap(c), veh/h & & & & 960 & 2752 & 854 & 402 & 675 & 0 & 0 & 0 & 626 \\
\hline V/C Ratio(X) & & & & 0.15 & 0.65 & 0.13 & 0.50 & 0.28 & 0.00 & 0.00 & 0.00 & 0.33 \\
\hline Avail Cap(c_a), veh/h & & & & 960 & 2752 & 854 & 402 & 675 & 0 & 0 & 0 & 626 \\
\hline HCM Platoon Ratio & & & & 1.00 & 1.00 & 1.00 & 1.67 & 1.67 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & & & & 1.00 & 1.00 & 1.00 & 0.91 & 0.91 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & & & & 10.4 & 14.8 & 10.3 & 18.3 & 12.3 & 0.0 & 0.0 & 0.0 & 20.9 \\
\hline Incr Delay (d2), s/veh & & & & 0.3 & 1.2 & 0.3 & 4.0 & 0.9 & 0.0 & 0.0 & 0.0 & 0.3 \\
\hline Initial Q Delay(d3),s/veh & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & & & & 1.4 & 7.7 & 1.1 & 2.9 & 1.8 & 0.0 & 0.0 & 0.0 & 3.1 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay (d),s/veh & & & & 10.8 & 16.0 & 10.6 & 22.3 & 13.2 & 0.0 & 0.0 & 0.0 & 21.2 \\
\hline LnGrp LOS & & & & B & B & B & C & B & A & A & A & C \\
\hline Approach Vol, veh/h & & & & & 2058 & & & 387 & & & 208 & \\
\hline Approach Delay, s/veh & & & & & 15.3 & & & 17.9 & & & 21.2 & \\
\hline Approach LOS & & & & & B & & & B & & & C & \\
\hline Timer - Assigned Phs & & 2 & & & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), \(s\) & & 37.0 & & & & 37.0 & & 53.0 & & & & \\
\hline Change Period ( \(Y+R \mathrm{c}\) ), s & & 4.5 & & & & 4.5 & & 4.5 & & & & \\
\hline Max Green Setting (Gmax), s & & 32.5 & & & & 32.5 & & 48.5 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 21.6 & & & & 9.8 & & 24.6 & & & & \\
\hline Green Ext Time (p_c), s & & 1.4 & & & & 1.2 & & 14.9 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{16.2}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Notes}

User approved pedestrian interval to be less than phase max green.


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(24(27 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.85
Intersection Signal Delay: 10.9 Intersection LOS: B
Intersection Capacity Utilization 82.5\% ICU Level of Service E
Analysis Period (min) 15
Splits and Phases: 1: Rhapsody Road \& RidgeGate Pkwy WB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & － & & 4 & \(\dagger\) & & \(\downarrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & & & \％ & 个4ヶ & 「 & \％ & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume（veh／h） & 0 & 0 & 0 & 95 & 2700 & 85 & 120 & 75 & 0 & 0 & 85 & 130 \\
\hline Future Volume（veh／h） & 0 & 0 & 0 & 95 & 2700 & 85 & 120 & 75 & 0 & 0 & 85 & 130 \\
\hline Initial \(Q(Q b)\) ，veh & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped－Bike Adj（A＿pbT） & & & & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus，Adj & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & & & & No & & & No & & & No & \\
\hline Adj Sat Flow，veh／h／ln & & & & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 0 & 1870 & 1870 \\
\hline Adj Flow Rate，veh／h & & & & 100 & 2842 & 89 & 126 & 79 & 0 & 0 & 89 & 137 \\
\hline Peak Hour Factor & & & & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh，\％ & & & & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 2 & 2 \\
\hline Cap，veh／h & & & & 1178 & 3376 & 1048 & 220 & 447 & 0 & 0 & 159 & 244 \\
\hline Arrive On Green & & & & 0.66 & 0.66 & 0.66 & 0.40 & 0.40 & 0.00 & 0.00 & 0.24 & 0.24 \\
\hline Sat Flow，veh／h & & & & 1781 & 5106 & 1585 & 1155 & 1870 & 0 & 0 & 664 & 1022 \\
\hline Grp Volume（v），veh／h & & & & 100 & 2842 & 89 & 126 & 79 & 0 & 0 & 0 & 226 \\
\hline Grp Sat Flow（s），veh／h／n & & & & 1781 & 1702 & 1585 & 1155 & 1870 & 0 & 0 & 0 & 1686 \\
\hline Q Serve（g＿s），s & & & & 1.8 & 38.3 & 1.8 & 9.6 & 2.5 & 0.0 & 0.0 & 0.0 & 10.6 \\
\hline Cycle Q Clear \(\mathrm{g}_{\text {＿c }}\) ），s & & & & 1.8 & 38.3 & 1.8 & 20.2 & 2.5 & 0.0 & 0.0 & 0.0 & 10.6 \\
\hline Prop In Lane & & & & 1.00 & & 1.00 & 1.00 & & 0.00 & 0.00 & & 0.61 \\
\hline Lane Grp Cap（c），veh／h & & & & 1178 & 3376 & 1048 & 220 & 447 & 0 & 0 & 0 & 403 \\
\hline V／C Ratio（X） & & & & 0.08 & 0.84 & 0.08 & 0.57 & 0.18 & 0.00 & 0.00 & 0.00 & 0.56 \\
\hline Avail Cap（c＿a），veh／h & & & & 1178 & 3376 & 1048 & 220 & 447 & 0 & 0 & 0 & 403 \\
\hline HCM Platoon Ratio & & & & 1.00 & 1.00 & 1.00 & 1.67 & 1.67 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter（l） & & & & 1.00 & 1.00 & 1.00 & 0.97 & 0.97 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay（d），s／veh & & & & 5.5 & 11.7 & 5.5 & 31.8 & 21.3 & 0.0 & 0.0 & 0.0 & 30.1 \\
\hline Incr Delay（d2），s／veh & & & & 0.1 & 2.7 & 0.2 & 10.1 & 0.8 & 0.0 & 0.0 & 0.0 & 5.6 \\
\hline Initial Q Delay（d3），s／veh & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \％ile BackOfQ（50\％），veh／ln & & & & 0.6 & 11.4 & 0.5 & 3.0 & 1.1 & 0.0 & 0.0 & 0.0 & 4.8 \\
\hline \multicolumn{13}{|l|}{Unsig．Movement Delay，s／veh} \\
\hline LnGrp Delay（d），s／veh & & & & 5.6 & 14.4 & 5.6 & 42.0 & 22.2 & 0.0 & 0.0 & 0.0 & 35.7 \\
\hline LnGrp LOS & & & & A & B & A & D & C & A & A & A & D \\
\hline Approach Vol，veh／h & & & & & 3031 & & & 205 & & & 226 & \\
\hline Approach Delay，s／veh & & & & & 13.8 & & & 34.3 & & & 35.7 & \\
\hline Approach LOS & & & & & B & & & C & & & D & \\
\hline Timer－Assigned Phs & & 2 & & & & 6 & & 8 & & & & \\
\hline Phs Duration（ \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ）， s & & 26.0 & & & & 26.0 & & 64.0 & & & & \\
\hline Change Period（ \(Y+R \mathrm{R}\) ），s & & 4.5 & & & & 4.5 & & 4.5 & & & & \\
\hline Max Green Setting（Gmax），s & & 21.5 & & & & 21.5 & & 59.5 & & & & \\
\hline Max Q Clear Time（g＿c＋11），s & & 22.2 & & & & 12.6 & & 40.3 & & & & \\
\hline Green Ext Time（p＿c），s & & 0.0 & & & & 0.8 & & 17.6 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{16.5}} \\
\hline & & & B & & & & & & & & & \\
\hline
\end{tabular}


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(43.6(48 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 50
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.67
Intersection Signal Delay: 12.3 Intersection LOS: B
Intersection Capacity Utilization 84.1\% ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: 1: Rhapsody Road \& RidgeGate Pkwy WB


\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr} 
Intersection & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.3 & & & & & \\
Movement & EBT & EBR & WBL & WBT & NBL & NBR \\
\hline Lane Configurations & & & & 个4.4 & i & \\
Traffic Vol, veh/h & 0 & 0 & 30 & 2840 & 40 & 0 \\
Future Vol, veh/h & 0 & 0 & 30 & 2840 & 40 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Stop & Stop \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & - & - & 150 & - & 0 & - \\
Veh in Median Storage, \# & 1 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 0 & 0 & 32 & 2989 & 42 & 0
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.2 & & & & & \\
\hline Movement & EBT & EBR & WBL & WBT & NBL & NBR \\
\hline Lane Configurations & & & & 个4.4 & a & \\
Traffic Vol, veh/h & 0 & 0 & 11 & 1814 & 30 & 0 \\
Future Vol, veh/h & 0 & 0 & 11 & 1814 & 30 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Stop & Stop \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & - & - & 150 & - & 0 & - \\
Veh in Median Storage, \# & 1 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 0 & 0 & 12 & 1909 & 32 & 0
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.2 & & & & & \\
\hline Movement & EBT & EBR & WBL & WBT & NBL & NBR \\
\hline Lane Configurations & & & & 个中4 & 1 & \\
Traffic Vol, veh/h & 0 & 0 & 29 & 1231 & 16 & 0 \\
Future Vol, veh/h & 0 & 0 & 29 & 1231 & 16 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Stop & Stop \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & - & - & 150 & - & 0 & - \\
Veh in Median Storage, \# & 1 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 0 & 0 & 31 & 1324 & 17 & 0
\end{tabular}


3: East Road \& RidgeGate Pkwy WB


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(22.5(25 \%)\), Referenced to phase 2:NBTL and 6:SBT, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.81
Intersection Signal Delay: \(13.8 \quad\) Intersection LOS: B
Intersection Capacity Utilization 77.2\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 3: East Road \& RidgeGate Pkwy WB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & 7 & \(\checkmark\) & & 4 & \(\uparrow\) & 7 & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & & & \% & 率 & F & & \(\uparrow\) & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 0 & 0 & 0 & 65 & 2721 & 42 & 28 & 43 & 0 & 0 & 84 & 79 \\
\hline Future Volume (veh/h) & 0 & 0 & 0 & 65 & 2721 & 42 & 28 & 43 & 0 & 0 & 84 & 79 \\
\hline Initial \(Q(Q b)\), veh & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & & & & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & & & & No & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & & & & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 0 & 1870 & 1870 \\
\hline Adj Flow Rate, veh/h & & & & 68 & 2864 & 44 & 29 & 45 & 0 & 0 & 88 & 30 \\
\hline Peak Hour Factor & & & & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & & & & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 2 & 2 \\
\hline Cap, veh/h & & & & 1193 & 3421 & 1062 & 164 & 233 & 0 & 0 & 307 & 105 \\
\hline Arrive On Green & & & & 0.67 & 0.67 & 0.67 & 0.23 & 0.23 & 0.00 & 0.00 & 0.23 & 0.23 \\
\hline Sat Flow, veh/h & & & & 1781 & 5106 & 1585 & 473 & 1013 & 0 & 0 & 1334 & 455 \\
\hline Grp Volume(v), veh/h & & & & 68 & 2864 & 44 & 74 & 0 & 0 & 0 & 0 & 118 \\
\hline Grp Sat Flow(s),veh/h/ln & & & & 1781 & 1702 & 1585 & 1485 & 0 & 0 & 0 & 0 & 1789 \\
\hline Q Serve(g_s), s & & & & 1.2 & 37.9 & 0.8 & 0.1 & 0.0 & 0.0 & 0.0 & 0.0 & 4.9 \\
\hline Cycle Q Clear(g_c), s & & & & 1.2 & 37.9 & 0.8 & 5.0 & 0.0 & 0.0 & 0.0 & 0.0 & 4.9 \\
\hline Prop In Lane & & & & 1.00 & & 1.00 & 0.39 & & 0.00 & 0.00 & & 0.25 \\
\hline Lane Grp Cap (c), veh/h & & & & 1193 & 3421 & 1062 & 397 & 0 & 0 & 0 & 0 & 411 \\
\hline V/C Ratio(X) & & & & 0.06 & 0.84 & 0.04 & 0.19 & 0.00 & 0.00 & 0.00 & 0.00 & 0.29 \\
\hline Avail Cap(c_a), veh/h & & & & 1237 & 3546 & 1101 & 397 & 0 & 0 & 0 & 0 & 411 \\
\hline HCM Platoon Ratio & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & & & & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & & & & 5.1 & 11.2 & 5.0 & 27.8 & 0.0 & 0.0 & 0.0 & 0.0 & 28.6 \\
\hline Incr Delay (d2), s/veh & & & & 0.0 & 1.8 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.7 \\
\hline Initial Q Delay(d3),s/veh & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/In & & & & 0.3 & 10.8 & 0.2 & 1.4 & 0.0 & 0.0 & 0.0 & 0.0 & 2.3 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & & & & 5.1 & 13.0 & 5.1 & 28.8 & 0.0 & 0.0 & 0.0 & 0.0 & 30.3 \\
\hline LnGrp LOS & & & & A & B & A & C & A & A & A & A & C \\
\hline Approach Vol, veh/h & & & & & 2976 & & & 74 & & & 118 & \\
\hline Approach Delay, s/veh & & & & & 12.7 & & & 28.8 & & & 30.3 & \\
\hline Approach LOS & & & & & B & & & C & & & C & \\
\hline Timer - Assigned Phs & & 2 & & & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 25.2 & & & & 25.2 & & 64.8 & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 4.5 & & & & 4.5 & & 4.5 & & & & \\
\hline Max Green Setting (Gmax), s & & 18.5 & & & & 18.5 & & 62.5 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 7.0 & & & & 6.9 & & 39.9 & & & & \\
\hline Green Ext Time (p_c), s & & 0.2 & & & & 0.4 & & 20.4 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 6th Ctrr Delay} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{13.7}} \\
\hline HCM 6th LOS & & & & & & & & & & & & \\
\hline
\end{tabular}

3: East Road \& RidgeGate Pkwy WB


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(26(29 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 55
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.61
Intersection Signal Delay: 12.4 Intersection LOS: B
Intersection Capacity Utilization 63.7\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 3: East Road \& RidgeGate Pkwy WB



3: East Road \& RidgeGate Pkwy WB


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(22.5(25 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.81
Intersection Signal Delay: \(14.0 \quad\) Intersection LOS: B
Intersection Capacity Utilization 79.2\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 3: East Road \& RidgeGate Pkwy WB

\begin{tabular}{lllllllllllll}
\hline & & & & & & & & \\
\hline
\end{tabular}

\section*{Notes}

User approved pedestrian interval to be less than phase max green.

3: East Road \& RidgeGate Pkwy WB


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(26(29 \%)\), Referenced to phase 8:WBTL, Start of Green
Natural Cycle: 55
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.61
Intersection Signal Delay: 12.7 Intersection LOS: B
Intersection Capacity Utilization 65.3\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 3: East Road \& RidgeGate Pkwy WB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & \(\sim\) & & 4 & 4 & p & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & & & \({ }^{7}\) & 恌 & F & & \(\uparrow\) & & & \(\hat{\beta}\) & \\
\hline Traffic Volume (veh/h) & 0 & 0 & 0 & 60 & 1855 & 110 & 50 & 115 & 0 & 0 & 85 & 80 \\
\hline Future Volume (veh/h) & 0 & 0 & 0 & 60 & 1855 & 110 & 50 & 115 & 0 & 0 & 85 & 80 \\
\hline Initial \(Q(Q b)\), veh & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & & & & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & & & & No & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & & & & 1870 & 1870 & 1870 & 1870 & 1870 & 0 & 0 & 1870 & 1870 \\
\hline Adj Flow Rate, veh/h & & & & 65 & 1995 & 120 & 54 & 125 & 0 & 0 & 92 & 87 \\
\hline Peak Hour Factor & & & & 0.93 & 0.93 & 0.92 & 0.93 & 0.92 & 0.93 & 0.92 & 0.92 & 0.92 \\
\hline Percent Heavy Veh, \% & & & & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 2 & 2 \\
\hline Cap, veh/h & & & & 1138 & 3262 & 1013 & 137 & 291 & 0 & 0 & 231 & 218 \\
\hline Arrive On Green & & & & 0.64 & 0.64 & 0.64 & 0.26 & 0.26 & 0.00 & 0.00 & 0.26 & 0.26 \\
\hline Sat Flow, veh/h & & & & 1781 & 5106 & 1585 & 325 & 1115 & 0 & 0 & 884 & 836 \\
\hline Grp Volume(v), veh/h & & & & 65 & 1995 & 120 & 179 & 0 & 0 & 0 & 0 & 179 \\
\hline Grp Sat Flow(s),veh/h/ln & & & & 1781 & 1702 & 1585 & 1439 & 0 & 0 & 0 & 0 & 1720 \\
\hline Q Serve(g_s), s & & & & 1.2 & 20.8 & 2.7 & 3.3 & 0.0 & 0.0 & 0.0 & 0.0 & 7.7 \\
\hline Cycle Q Clear(g_c), s & & & & 1.2 & 20.8 & 2.7 & 11.1 & 0.0 & 0.0 & 0.0 & 0.0 & 7.7 \\
\hline Prop In Lane & & & & 1.00 & & 1.00 & 0.30 & & 0.00 & 0.00 & & 0.49 \\
\hline Lane Grp Cap(c), veh/h & & & & 1138 & 3262 & 1013 & 428 & 0 & 0 & 0 & 0 & 449 \\
\hline V/C Ratio(X) & & & & 0.06 & 0.61 & 0.12 & 0.42 & 0.00 & 0.00 & 0.00 & 0.00 & 0.40 \\
\hline Avail Cap(c_a), veh/h & & & & 1138 & 3262 & 1013 & 428 & 0 & 0 & 0 & 0 & 449 \\
\hline HCM Platoon Ratio & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & & & & 1.00 & 1.00 & 1.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline Uniform Delay (d), s/veh & & & & 6.1 & 9.6 & 6.3 & 28.2 & 0.0 & 0.0 & 0.0 & 0.0 & 27.4 \\
\hline Incr Delay (d2), s/veh & & & & 0.1 & 0.9 & 0.2 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.6 \\
\hline Initial Q Delay(d3),s/veh & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & & & & 0.4 & 6.2 & 0.8 & 3.6 & 0.0 & 0.0 & 0.0 & 0.0 & 3.4 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & & & & 6.2 & 10.5 & 6.6 & 31.2 & 0.0 & 0.0 & 0.0 & 0.0 & 30.1 \\
\hline LnGrp LOS & & & & A & B & A & C & A & A & A & A & C \\
\hline Approach Vol, veh/h & & & & & 2180 & & & 179 & & & 179 & \\
\hline Approach Delay, s/veh & & & & & 10.2 & & & 31.2 & & & 30.1 & \\
\hline Approach LOS & & & & & B & & & C & & & C & \\
\hline Timer - Assigned Phs & & 2 & & & & 6 & & 8 & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), \(s\) & & 28.0 & & & & 28.0 & & 62.0 & & & & \\
\hline Change Period ( \(Y+R \mathrm{c}\) ), s & & 4.5 & & & & 4.5 & & 4.5 & & & & \\
\hline Max Green Setting (Gmax), s & & 23.5 & & & & 23.5 & & 57.5 & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 13.1 & & & & 9.7 & & 22.8 & & & & \\
\hline Green Ext Time (p_c), s & & 0.7 & & & & 0.8 & & 20.7 & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 6th Ctrl Delay} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{13.0}} \\
\hline HCM 6th LOS & & & & & & & & & & & & \\
\hline
\end{tabular}


Splits and Phases: 4: RidgeGate Pkwy EB \& Rhapsody Road




Splits and Phases: 4: RidgeGate Pkwy EB \& Rhapsody Road




Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(33(37 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.28
Intersection Signal Delay: 9.6 Intersection LOS: A

Intersection Capacity Utilization 54.6\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 4: Rhapsody Road \& RidgeGate Pkwy EB




Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(43.6(48 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 55
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.63
Intersection Signal Delay: \(10.5 \quad\) Intersection LOS: B
Intersection Capacity Utilization 59.1\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 4: Rhapsody Road \& RidgeGate Pkwy EB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & 4 & & \% & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & 慛 & & & & & & ¢ & & \% & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 9 & 1990 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 94 & 0 & 0 \\
\hline Future Volume (veh/h) & 9 & 1990 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 94 & 0 & 0 \\
\hline Initial \(Q(Q b)\), veh & 0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & 1870 & 1870 & 1870 & & & & 0 & 1870 & 1870 & 1870 & 1870 & 0 \\
\hline Adj Flow Rate, veh/h & 10 & 2140 & 0 & & & & 0 & 0 & 0 & 101 & 0 & 0 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & & & & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & & & & 0 & 2 & 2 & 2 & 2 & 0 \\
\hline Cap, veh/h & 1197 & 3432 & 0 & & & & 0 & 426 & 0 & 486 & 426 & 0 \\
\hline Arrive On Green & 0.67 & 0.67 & 0.00 & & & & 0.00 & 0.00 & 0.00 & 0.23 & 0.00 & 0.00 \\
\hline Sat Flow, veh/h & 1781 & 5274 & 0 & & & & 0 & 1870 & 0 & 1781 & 1870 & 0 \\
\hline Grp Volume(v), veh/h & 10 & 2140 & 0 & & & & 0 & 0 & 0 & 101 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/n & 1781 & 1702 & 0 & & & & 0 & 1870 & 0 & 1781 & 1870 & 0 \\
\hline Q Serve(g_s), s & 0.2 & 21.3 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 4.2 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 0.2 & 21.3 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 4.2 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 0.00 & & & & 0.00 & & 0.00 & 1.00 & & 0.00 \\
\hline Lane Grp Cap(c), veh/h & 1197 & 3432 & 0 & & & & 0 & 426 & 0 & 486 & 426 & 0 \\
\hline V/C Ratio(X) & 0.01 & 0.62 & 0.00 & & & & 0.00 & 0.00 & 0.00 & 0.21 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 1197 & 3432 & 0 & & & & 0 & 426 & 0 & 486 & 426 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 0.00 & & & & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 4.9 & 8.3 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 28.4 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.0 & 0.9 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.1 & 5.9 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 1.9 & 0.0 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & 4.9 & 9.2 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 29.4 & 0.0 & 0.0 \\
\hline LnGrp LOS & A & A & A & & & & A & A & A & C & A & A \\
\hline Approach Vol, veh/h & & 2150 & & & & & & 0 & & & 101 & \\
\hline Approach Delay, s/veh & & 9.2 & & & & & & 0.0 & & & 29.4 & \\
\hline Approach LOS & & A & & & & & & & & & C & \\
\hline Timer - Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 25.0 & & 65.0 & & 25.0 & & & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 4.5 & & 4.5 & & 4.5 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 20.5 & & 60.5 & & 20.5 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 0.0 & & 23.3 & & 6.2 & & & & & & \\
\hline Green Ext Time (p_c), s & & 0.0 & & 22.6 & & 0.2 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{10.1}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

4: RidgeGate Pkwy EB \& Rhapsody Road


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(33(37 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.44
Intersection Signal Delay: \(13.0 \quad\) Intersection LOS: B
Intersection Capacity Utilization 81.3\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 4: RidgeGate Pkwy EB \& Rhapsody Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & \(\dagger\) & & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & 帆 & 「 & & & & & \(\uparrow\) & & \% & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 54 & 1191 & 126 & 0 & 0 & 0 & 0 & 140 & 66 & 52 & 89 & 0 \\
\hline Future Volume (veh/h) & 54 & 1191 & 126 & 0 & 0 & 0 & 0 & 140 & 66 & 52 & 89 & 0 \\
\hline Initial \(Q(Q b)\), veh & 0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & 1870 & 1870 & 1870 & & & & 0 & 1870 & 1870 & 1870 & 1870 & 0 \\
\hline Adj Flow Rate, veh/h & 57 & 1254 & 137 & & & & 0 & 152 & 72 & 55 & 97 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.92 & & & & 0.92 & 0.92 & 0.92 & 0.95 & 0.92 & 0.95 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & & & & 0 & 2 & 2 & 2 & 2 & 0 \\
\hline Cap, veh/h & 1000 & 2865 & 889 & & & & 0 & 407 & 193 & 361 & 634 & 0 \\
\hline Arrive On Green & 0.56 & 0.56 & 0.56 & & & & 0.00 & 0.34 & 0.34 & 0.68 & 0.68 & 0.00 \\
\hline Sat Flow, veh/h & 1781 & 5106 & 1585 & & & & 0 & 1200 & 568 & 1157 & 1870 & 0 \\
\hline Grp Volume(v), veh/h & 57 & 1254 & 137 & & & & 0 & 0 & 224 & 55 & 97 & 0 \\
\hline Grp Sat Flow(s),veh/h/n & 1781 & 1702 & 1585 & & & & 0 & 0 & 1768 & 1157 & 1870 & 0 \\
\hline Q Serve(g_s), s & 1.3 & 12.9 & 3.7 & & & & 0.0 & 0.0 & 8.6 & 2.4 & 1.7 & 0.0 \\
\hline Cycle Q Clear \(\mathrm{g}_{\text {_c }}\) ), s & 1.3 & 12.9 & 3.7 & & & & 0.0 & 0.0 & 8.6 & 11.1 & 1.7 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & & & & 0.00 & & 0.32 & 1.00 & & 0.00 \\
\hline Lane Grp Cap(c), veh/h & 1000 & 2865 & 889 & & & & 0 & 0 & 599 & 361 & 634 & 0 \\
\hline V/C Ratio(X) & 0.06 & 0.44 & 0.15 & & & & 0.00 & 0.00 & 0.37 & 0.15 & 0.15 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 1000 & 2865 & 889 & & & & 0 & 0 & 599 & 361 & 634 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 2.00 & 2.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 1.00 & & & & 0.00 & 0.00 & 1.00 & 0.91 & 0.91 & 0.00 \\
\hline Uniform Delay (d), s/veh & 9.0 & 11.5 & 9.5 & & & & 0.0 & 0.0 & 22.5 & 13.8 & 9.9 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.1 & 0.5 & 0.4 & & & & 0.0 & 0.0 & 0.4 & 0.8 & 0.5 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.5 & 4.2 & 1.2 & & & & 0.0 & 0.0 & 3.6 & 0.5 & 0.7 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & 9.1 & 12.0 & 9.9 & & & & 0.0 & 0.0 & 22.9 & 14.6 & 10.3 & 0.0 \\
\hline LnGrp LOS & A & B & A & & & & A & A & C & B & B & A \\
\hline Approach Vol, veh/h & & 1448 & & & & & & 224 & & & 152 & \\
\hline Approach Delay, s/veh & & 11.7 & & & & & & 22.9 & & & 11.9 & \\
\hline Approach LOS & & B & & & & & & C & & & B & \\
\hline Timer - Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 35.0 & & 55.0 & & 35.0 & & & & & & \\
\hline Change Period ( \(Y+R \mathrm{R}\) ), s & & 4.5 & & 4.5 & & 4.5 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 30.5 & & 50.5 & & 30.5 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 10.6 & & 14.9 & & 13.1 & & & & & & \\
\hline Green Ext Time (p_c), s & & 1.2 & & 11.2 & & 0.6 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{13.1}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

4: RidgeGate Pkwy EB \& Rhapsody Road


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(43.6(48 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 18.3 Intersection LOS: B
Intersection Capacity Utilization 82.4\% ICU Level of Service E
Analysis Period (min) 15
Splits and Phases: 4: RidgeGate Pkwy EB \& Rhapsody Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & \(\dagger\) & \(p\) & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & 种4 & 「 & & & & & \(\uparrow\) & & \% & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 155 & 2614 & 174 & 0 & 0 & 0 & 0 & 188 & 67 & 120 & 127 & 0 \\
\hline Future Volume (veh/h) & 155 & 2614 & 174 & 0 & 0 & 0 & 0 & 188 & 67 & 120 & 127 & 0 \\
\hline Initial \(Q(Q b)\), veh & 0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & 1870 & 1870 & 1870 & & & & 0 & 1870 & 1870 & 1870 & 1870 & 0 \\
\hline Adj Flow Rate, veh/h & 167 & 2811 & 189 & & & & 0 & 204 & 73 & 129 & 138 & 0 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.92 & & & & 0.92 & 0.92 & 0.92 & 0.93 & 0.92 & 0.93 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & & & & 0 & 2 & 2 & 2 & 2 & 0 \\
\hline Cap, veh/h & 1138 & 3262 & 1013 & & & & 0 & 343 & 123 & 218 & 488 & 0 \\
\hline Arrive On Green & 0.64 & 0.64 & 0.64 & & & & 0.00 & 0.26 & 0.26 & 0.52 & 0.52 & 0.00 \\
\hline Sat Flow, veh/h & 1781 & 5106 & 1585 & & & & 0 & 1315 & 471 & 1102 & 1870 & 0 \\
\hline Grp Volume(v), veh/h & 167 & 2811 & 189 & & & & 0 & 0 & 277 & 129 & 138 & 0 \\
\hline Grp Sat Flow(s),veh/h/n & 1781 & 1702 & 1585 & & & & 0 & 0 & 1786 & 1102 & 1870 & 0 \\
\hline Q Serve(g_s), s & 3.4 & 39.8 & 4.4 & & & & 0.0 & 0.0 & 12.2 & 10.3 & 3.7 & 0.0 \\
\hline Cycle Q Clear \(\mathrm{g}_{\text {_c }}\) ), s & 3.4 & 39.8 & 4.4 & & & & 0.0 & 0.0 & 12.2 & 22.5 & 3.7 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & & & & 0.00 & & 0.26 & 1.00 & & 0.00 \\
\hline Lane Grp Cap(c), veh/h & 1138 & 3262 & 1013 & & & & 0 & 0 & 466 & 218 & 488 & 0 \\
\hline V/C Ratio(X) & 0.15 & 0.86 & 0.19 & & & & 0.00 & 0.00 & 0.59 & 0.59 & 0.28 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 1138 & 3262 & 1013 & & & & 0 & 0 & 466 & 218 & 488 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 2.00 & 2.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 1.00 & & & & 0.00 & 0.00 & 1.00 & 0.98 & 0.98 & 0.00 \\
\hline Uniform Delay (d), s/veh & 6.5 & 13.1 & 6.7 & & & & 0.0 & 0.0 & 29.1 & 27.2 & 16.8 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.3 & 3.3 & 0.4 & & & & 0.0 & 0.0 & 2.0 & 11.0 & 1.4 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 1.1 & 12.4 & 1.3 & & & & 0.0 & 0.0 & 5.4 & 2.9 & 1.7 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & 6.7 & 16.3 & 7.1 & & & & 0.0 & 0.0 & 31.1 & 38.3 & 18.2 & 0.0 \\
\hline LnGrp LOS & A & B & A & & & & A & A & C & D & B & A \\
\hline Approach Vol, veh/h & & 3167 & & & & & & 277 & & & 267 & \\
\hline Approach Delay, s/veh & & 15.3 & & & & & & 31.1 & & & 27.9 & \\
\hline Approach LOS & & B & & & & & & C & & & C & \\
\hline Timer - Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(\mathrm{G}+\mathrm{Y}+\mathrm{Rc}\) ), s & & 28.0 & & 62.0 & & 28.0 & & & & & & \\
\hline Change Period ( \(Y+R \mathrm{R}\) ), s & & 4.5 & & 4.5 & & 4.5 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 23.5 & & 57.5 & & 23.5 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 14.2 & & 41.8 & & 24.5 & & & & & & \\
\hline Green Ext Time (p_c), s & & 1.1 & & 14.6 & & 0.0 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{17.4}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(33(37 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.45
Intersection Signal Delay: 12.8 Intersection LOS: B
Intersection Capacity Utilization 82.5\% ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: 4: Rhapsody Road \& RidgeGate Pkwy EB




Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(43.6(48 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 75
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: 19.2 Intersection LOS: B
Intersection Capacity Utilization 84.1\% ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: 4: Rhapsody Road \& RidgeGate Pkwy EB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & \(\dagger\) & \(p\) & * & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & 惟 & 「 & & & & & \(\uparrow\) & & \% & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 155 & 2660 & 175 & 0 & 0 & 0 & 0 & 190 & 70 & 130 & 130 & 0 \\
\hline Future Volume (veh/h) & 155 & 2660 & 175 & 0 & 0 & 0 & 0 & 190 & 70 & 130 & 130 & 0 \\
\hline Initial \(Q(Q b)\), veh & 0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & 1870 & 1870 & 1870 & & & & 0 & 1870 & 1870 & 1870 & 1870 & 0 \\
\hline Adj Flow Rate, veh/h & 167 & 2860 & 188 & & & & 0 & 204 & 75 & 140 & 140 & 0 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & & & & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & & & & 0 & 2 & 2 & 2 & 2 & 0 \\
\hline Cap, veh/h & 1138 & 3262 & 1013 & & & & 0 & 341 & 125 & 217 & 488 & 0 \\
\hline Arrive On Green & 0.64 & 0.64 & 0.64 & & & & 0.00 & 0.26 & 0.26 & 0.44 & 0.44 & 0.00 \\
\hline Sat Flow, veh/h & 1781 & 5106 & 1585 & & & & 0 & 1304 & 480 & 1100 & 1870 & 0 \\
\hline Grp Volume(v), veh/h & 167 & 2860 & 188 & & & & 0 & 0 & 279 & 140 & 140 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1781 & 1702 & 1585 & & & & 0 & 0 & 1784 & 1100 & 1870 & 0 \\
\hline Q Serve(g_s), s & 3.4 & 41.4 & 4.4 & & & & 0.0 & 0.0 & 12.3 & 11.2 & 4.3 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 3.4 & 41.4 & 4.4 & & & & 0.0 & 0.0 & 12.3 & 23.5 & 4.3 & 0.0 \\
\hline Prop In Lane & 1.00 & & 1.00 & & & & 0.00 & & 0.27 & 1.00 & & 0.00 \\
\hline Lane Grp Cap(c), veh/h & 1138 & 3262 & 1013 & & & & 0 & 0 & 466 & 217 & 488 & 0 \\
\hline V/C Ratio(X) & 0.15 & 0.88 & 0.19 & & & & 0.00 & 0.00 & 0.60 & 0.65 & 0.29 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 1138 & 3262 & 1013 & & & & 0 & 0 & 466 & 217 & 488 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.67 & 1.67 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 1.00 & & & & 0.00 & 0.00 & 1.00 & 0.98 & 0.98 & 0.00 \\
\hline Uniform Delay (d), s/veh & 6.5 & 13.3 & 6.7 & & & & 0.0 & 0.0 & 29.1 & 31.7 & 20.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.3 & 3.7 & 0.4 & & & & 0.0 & 0.0 & 5.6 & 13.7 & 1.4 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%oile BackOfQ(50\%),veh/ln & 1.1 & 12.9 & 1.3 & & & & 0.0 & 0.0 & 5.9 & 3.5 & 2.0 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay (d),s/veh & 6.7 & 17.0 & 7.1 & & & & 0.0 & 0.0 & 34.7 & 45.4 & 21.4 & 0.0 \\
\hline LnGrp LOS & A & B & A & & & & A & A & C & D & C & A \\
\hline Approach Vol, veh/h & & 3215 & & & & & & 279 & & & 280 & \\
\hline Approach Delay, s/veh & & 15.9 & & & & & & 34.7 & & & 33.4 & \\
\hline Approach LOS & & B & & & & & & C & & & C & \\
\hline Timer - Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), \(s\) & & 28.0 & & 62.0 & & 28.0 & & & & & & \\
\hline Change Period ( \(Y+R \mathrm{c}\) ), s & & 4.5 & & 4.5 & & 4.5 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 23.5 & & 57.5 & & 23.5 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 14.3 & & 43.4 & & 25.5 & & & & & & \\
\hline Green Ext Time (p_c), s & & 1.1 & & 13.3 & & 0.0 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{18.6} \\
\hline & & & B & & & & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Intersection} \\
\hline \multicolumn{8}{|l|}{Int Delay, s/veh 0} \\
\hline \multicolumn{7}{|l|}{Movement EBL EBT WBT WBR SBL SBR} & \\
\hline Lane Configurations & \({ }^{7}\) & 性个 & & & \({ }^{7}\) & & \\
\hline Traffic Vol, veh/h & 21 & 2063 & 0 & 0 & 3 & 0 & 0 \\
\hline Future Vol, veh/h & 21 & 2063 & 0 & 0 & 3 & 0 & 0 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control Fr & Free & Free & Stop & Stop & Stop & Stop & \\
\hline RT Channelized & - & None & - & None & - & None & \\
\hline Storage Length 150 & 150 & - & - & - & 0 & & - \\
\hline \multicolumn{4}{|l|}{Veh in Median Storage, \# - 1080442304} & - & 0 & & - \\
\hline Grade, \% & - & 0 & 0 & - & 0 & & - \\
\hline Peak Hour Factor & 93 & 93 & 93 & 93 & 93 & 93 & 3 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 23 & 2218 & 0 & 0 & 3 & 0 & 0 \\
\hline
\end{tabular}



HCMLOS B
\begin{tabular}{lrrr} 
Minor Lane/Major Mvmt & EBL & EBT SBLn1 & \\
\hline Capacity (veh//) & - & -639 & \\
HCM Lane V/C Ratio & - & -0.021 & \\
HCM Control Delay (s) & - & -10.8 & \\
HCM Lane LOS & - & - & \(B\) \\
HCM 95th \%/tile Q(veh) & - & -0.1 & \\
Notes & & & \\
\hline\(\sim\) : Volume exceeds capacity & \$: Delay exceeds \(300 \mathrm{~s} \quad+:\) Computation Not Defined & *: All major volume in platoon
\end{tabular}



HCMLOS C
\begin{tabular}{lrrr} 
Minor Lane/Major Mvmt & EBL & EBT SBLn1 & \\
\hline Capacity (veh//) & - & -284 & \\
HCM Lane V/C Ratio & - & -0.174 & \\
HCM Control Delay (s) & - & -20.3 & \\
HCM Lane LOS & - & - & \(C\) \\
HCM 95th \%/tile Q(veh) & - & -0.6 & \\
Notes & & & \\
\hline\(\sim\) : Volume exceeds capacity & \$: Delay exceeds \(300 \mathrm{~s} \quad+:\) Computation Not Defined \(\quad *:\) All major volume in platoon
\end{tabular}




\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.4 & & & & & \\
Movement & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & 个 & 个4 & & & a & \\
Traffic Vol, veh/h & 11 & 843 & 0 & 0 & 35 & 0 \\
Future Vol, veh/h & 11 & 843 & 0 & 0 & 35 & 0 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Free & Free & Stop & Stop & Stop & Stop \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 150 & - & - & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & 0 & - & 0 & - \\
Grade, \% & - & 0 & 0 & - & 0 & - \\
Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 12 & 887 & 0 & 0 & 37 & 0
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.2 & & & & & \\
Movement & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & T & TA & & & & 1 \\
\hline
\end{tabular}


6: RidgeGate Pkwy EB \& East Road


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(29(32 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.49
Intersection Signal Delay: 10.4 Intersection LOS: B
Intersection Capacity Utilization 46.8\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 6: RidgeGate Pkwy EB \& East Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & 4 & p & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & 恌 & & & & & & \(\hat{\beta}\) & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 53 & 1255 & 11 & 0 & 0 & 0 & 0 & 4 & 17 & 82 & 69 & 0 \\
\hline Future Volume (veh/h) & 53 & 1255 & 11 & 0 & 0 & 0 & 0 & 4 & 17 & 82 & 69 & 0 \\
\hline Initial \(Q(Q b)\), veh & 0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & 1870 & 1870 & 1870 & & & & 0 & 1870 & 1870 & 1870 & 1870 & 0 \\
\hline Adj Flow Rate, veh/h & 56 & 1321 & 12 & & & & 0 & 4 & 18 & 86 & 73 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.95 & & & & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & & & & 0 & 2 & 2 & 2 & 2 & 0 \\
\hline Cap, veh/h & 960 & 2812 & 26 & & & & 0 & 107 & 482 & 353 & 283 & 0 \\
\hline Arrive On Green & 0.54 & 0.54 & 0.54 & & & & 0.00 & 0.36 & 0.36 & 0.60 & 0.60 & 0.00 \\
\hline Sat Flow, veh/h & 1781 & 5218 & 47 & & & & 0 & 296 & 1334 & 808 & 783 & 0 \\
\hline Grp Volume(v), veh/h & 56 & 862 & 471 & & & & 0 & 0 & 22 & 159 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/n & 1781 & 1702 & 1862 & & & & 0 & 0 & 1630 & 1591 & 0 & 0 \\
\hline Q Serve(g_s), s & 1.3 & 14.1 & 14.1 & & & & 0.0 & 0.0 & 0.8 & 2.3 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 1.3 & 14.1 & 14.1 & & & & 0.0 & 0.0 & 0.8 & 4.0 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 0.03 & & & & 0.00 & & 0.82 & 0.54 & & 0.00 \\
\hline Lane Grp Cap (c), veh/h & 960 & 1834 & 1003 & & & & 0 & 0 & 589 & 636 & 0 & 0 \\
\hline V/C Ratio(X) & 0.06 & 0.47 & 0.47 & & & & 0.00 & 0.00 & 0.04 & 0.25 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 960 & 1834 & 1003 & & & & 0 & 0 & 589 & 636 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.67 & 1.67 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 1.00 & & & & 0.00 & 0.00 & 1.00 & 0.94 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 9.9 & 12.8 & 12.8 & & & & 0.0 & 0.0 & 18.6 & 12.2 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.1 & 0.9 & 1.6 & & & & 0.0 & 0.0 & 0.1 & 0.9 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.5 & 4.8 & 5.5 & & & & 0.0 & 0.0 & 0.3 & 1.5 & 0.0 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & 10.0 & 13.7 & 14.4 & & & & 0.0 & 0.0 & 18.7 & 13.0 & 0.0 & 0.0 \\
\hline LnGrp LOS & A & B & B & & & & A & A & B & B & A & A \\
\hline Approach Vol, veh/h & & 1389 & & & & & & 22 & & & 159 & \\
\hline Approach Delay, s/veh & & 13.8 & & & & & & 18.7 & & & 13.0 & \\
\hline Approach LOS & & B & & & & & & B & & & B & \\
\hline Timer - Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), \(s\) & & 37.0 & & 53.0 & & 37.0 & & & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 4.5 & & 4.5 & & 4.5 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 32.5 & & 48.5 & & 32.5 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 2.8 & & 16.1 & & 6.0 & & & & & & \\
\hline Green Ext Time (p_c), s & & 0.1 & & 10.3 & & 0.9 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{13.8} \\
\hline & & & B & & & & & & & & & \\
\hline
\end{tabular}

6: RidgeGate Pkwy EB \& East Road


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(23(26 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.82
Intersection Signal Delay: 11.8 Intersection LOS: B
Intersection Capacity Utilization 72.6\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 6: RidgeGate Pkwy EB \& East Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & 4 & \(p\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% &  & & & & & & \(\hat{\beta}\) & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 137 & 2698 & 5 & 0 & 0 & 0 & 0 & 18 & 71 & 81 & 33 & 0 \\
\hline Future Volume (veh/h) & 137 & 2698 & 5 & 0 & 0 & 0 & 0 & 18 & 71 & 81 & 33 & 0 \\
\hline Initial \(Q(Q b)\), veh & 0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & 1870 & 1870 & 1870 & & & & 0 & 1870 & 1870 & 1870 & 1870 & 0 \\
\hline Adj Flow Rate, veh/h & 147 & 2901 & 5 & & & & 0 & 19 & 76 & 87 & 35 & 0 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.93 & & & & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 & 0.93 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & & & & 0 & 2 & 2 & 2 & 2 & 0 \\
\hline Cap, veh/h & 1237 & 3655 & 6 & & & & 0 & 67 & 269 & 228 & 81 & 0 \\
\hline Arrive On Green & 0.69 & 0.69 & 0.69 & & & & 0.00 & 0.21 & 0.21 & 0.21 & 0.21 & 0.00 \\
\hline Sat Flow, veh/h & 1781 & 5264 & 9 & & & & 0 & 327 & 1308 & 774 & 393 & 0 \\
\hline Grp Volume(v), veh/h & 147 & 1876 & 1030 & & & & 0 & 0 & 95 & 122 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1781 & 1702 & 1869 & & & & 0 & 0 & 1635 & 1167 & 0 & 0 \\
\hline Q Serve(g_s), s & 2.5 & 33.7 & 33.8 & & & & 0.0 & 0.0 & 4.4 & 6.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 2.5 & 33.7 & 33.8 & & & & 0.0 & 0.0 & 4.4 & 10.4 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 0.00 & & & & 0.00 & & 0.80 & 0.71 & & 0.00 \\
\hline Lane Grp Cap(c), veh/h & 1237 & 2364 & 1298 & & & & 0 & 0 & 336 & 308 & 0 & 0 \\
\hline V/C Ratio(X) & 0.12 & 0.79 & 0.79 & & & & 0.00 & 0.00 & 0.28 & 0.40 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 1237 & 2364 & 1298 & & & & 0 & 0 & 336 & 308 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 1.00 & 1.00 & & & & 0.00 & 0.00 & 1.00 & 0.96 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 4.6 & 9.4 & 9.4 & & & & 0.0 & 0.0 & 30.2 & 33.6 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.2 & 2.8 & 5.1 & & & & 0.0 & 0.0 & 2.1 & 3.6 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.7 & 9.4 & 11.2 & & & & 0.0 & 0.0 & 1.9 & 2.7 & 0.0 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & 4.8 & 12.2 & 14.4 & & & & 0.0 & 0.0 & 32.3 & 37.2 & 0.0 & 0.0 \\
\hline LnGrp LOS & A & B & B & & & & A & A & C & D & A & A \\
\hline Approach Vol, veh/h & & 3053 & & & & & & 95 & & & 122 & \\
\hline Approach Delay, s/veh & & 12.6 & & & & & & 32.3 & & & 37.2 & \\
\hline Approach LOS & & B & & & & & & C & & & D & \\
\hline Timer - Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), \(s\) & & 23.0 & & 67.0 & & 23.0 & & & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 4.5 & & 4.5 & & 4.5 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 18.5 & & 62.5 & & 18.5 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 6.4 & & 35.8 & & 12.4 & & & & & & \\
\hline Green Ext Time (p_c), s & & 0.3 & & 23.4 & & 0.3 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{14.1} \\
\hline & & & B & & & & & & & & & \\
\hline
\end{tabular}

6: RidgeGate Pkwy EB \& East Road
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \(\rightarrow\) & \(\uparrow\) & \(\checkmark\) & \\
\hline Lane Group & EBL & EBT & NBT & SBL & SBT \\
\hline Lane Configurations & \% & 虾家 & \(\hat{\beta}\) & & \(\uparrow\) \\
\hline Traffic Volume (vph) & 65 & 1260 & 5 & 110 & 70 \\
\hline Future Volume (vph) & 65 & 1260 & 5 & 110 & 70 \\
\hline Turn Type & Perm & NA & NA & Perm & NA \\
\hline Protected Phases & & 4 & 2 & & 6 \\
\hline Permitted Phases & 4 & & & 6 & \\
\hline Detector Phase & 4 & 4 & 2 & 6 & 6 \\
\hline Switch Phase & & & & & \\
\hline Minimum Initial (s) & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 22.5 & 22.5 & 22.5 & 22.5 & 22.5 \\
\hline Total Split (s) & 53.0 & 53.0 & 37.0 & 37.0 & 37.0 \\
\hline Total Split (\%) & 58.9\% & 58.9\% & 41.1\% & 41.1\% & 41.1\% \\
\hline Yellow Time (s) & 3.5 & 3.5 & 3.5 & 3.5 & 3.5 \\
\hline All-Red Time (s) & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline Total Lost Time (s) & 4.5 & 4.5 & 4.5 & & 4.5 \\
\hline Lead/Lag & & & & & \\
\hline Lead-Lag Optimize? & & & & & \\
\hline Recall Mode & C-Max & C-Max & Max & Max & Max \\
\hline Act Efft Green (s) & 48.5 & 48.5 & 32.5 & & 32.5 \\
\hline Actuated g/C Ratio & 0.54 & 0.54 & 0.36 & & 0.36 \\
\hline v/c Ratio & 0.07 & 0.49 & 0.04 & & 0.35 \\
\hline Control Delay & 6.9 & 7.9 & 9.4 & & 20.7 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline Total Delay & 6.9 & 7.9 & 9.4 & & 20.7 \\
\hline LOS & A & A & A & & C \\
\hline Approach Delay & & 7.9 & 9.4 & & 20.7 \\
\hline Approach LOS & & A & A & & C \\
\hline \multicolumn{6}{|l|}{Intersection Summary} \\
\hline
\end{tabular}

Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(29(32 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.49
Intersection Signal Delay: 9.4 Intersection LOS: A
Intersection Capacity Utilization 48.6\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 6: RidgeGate Pkwy EB \& East Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & & & & & \(\dagger\) & \(p\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & 恌施 & & & & & & \(\hat{\square}\) & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 65 & 1260 & 15 & 0 & 0 & 0 & 0 & 5 & 20 & 110 & 70 & 0 \\
\hline Future Volume (veh/h) & 65 & 1260 & 15 & 0 & 0 & 0 & 0 & 5 & 20 & 110 & 70 & 0 \\
\hline Initial \(Q(Q b)\), veh & 0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & 1870 & 1870 & 1870 & & & & 0 & 1870 & 1870 & 1870 & 1870 & 0 \\
\hline Adj Flow Rate, veh/h & 68 & 1326 & 16 & & & & 0 & 5 & 22 & 116 & 76 & 0 \\
\hline Peak Hour Factor & 0.95 & 0.95 & 0.92 & & & & 0.92 & 0.92 & 0.92 & 0.95 & 0.92 & 0.95 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & & & & 0 & 2 & 2 & 2 & 2 & 0 \\
\hline Cap, veh/h & 960 & 2802 & 34 & & & & 0 & 109 & 480 & 387 & 239 & 0 \\
\hline Arrive On Green & 0.54 & 0.54 & 0.54 & & & & 0.00 & 0.36 & 0.36 & 0.60 & 0.60 & 0.00 \\
\hline Sat Flow, veh/h & 1781 & 5200 & 63 & & & & 0 & 302 & 1329 & 894 & 661 & 0 \\
\hline Grp Volume(v), veh/h & 68 & 868 & 474 & & & & 0 & 0 & 27 & 192 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1781 & 1702 & 1859 & & & & 0 & 0 & 1631 & 1556 & 0 & 0 \\
\hline Q Serve(g_s), s & 1.6 & 14.2 & 14.2 & & & & 0.0 & 0.0 & 1.0 & 4.0 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 1.6 & 14.2 & 14.2 & & & & 0.0 & 0.0 & 1.0 & 5.3 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 0.03 & & & & 0.00 & & 0.81 & 0.60 & & 0.00 \\
\hline Lane Grp Cap(c), veh/h & 960 & 1834 & 1002 & & & & 0 & 0 & 589 & 626 & 0 & 0 \\
\hline V/C Ratio(X) & 0.07 & 0.47 & 0.47 & & & & 0.00 & 0.00 & 0.05 & 0.31 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 960 & 1834 & 1002 & & & & 0 & 0 & 589 & 626 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.67 & 1.67 & 1.00 \\
\hline Upstream Filter(I) & 1.00 & 1.00 & 1.00 & & & & 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 9.9 & 12.8 & 12.8 & & & & 0.0 & 0.0 & 18.7 & 12.4 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.1 & 0.9 & 1.6 & & & & 0.0 & 0.0 & 0.1 & 1.3 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.6 & 4.9 & 5.5 & & & & 0.0 & 0.0 & 0.4 & 1.9 & 0.0 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & 10.1 & 13.7 & 14.4 & & & & 0.0 & 0.0 & 18.8 & 13.7 & 0.0 & 0.0 \\
\hline LnGrp LOS & B & B & B & & & & A & A & B & B & A & A \\
\hline Approach Vol, veh/h & & 1410 & & & & & & 27 & & & 192 & \\
\hline Approach Delay, s/veh & & 13.8 & & & & & & 18.8 & & & 13.7 & \\
\hline Approach LOS & & B & & & & & & B & & & B & \\
\hline Timer - Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), \(s\) & & 37.0 & & 53.0 & & 37.0 & & & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 4.5 & & 4.5 & & 4.5 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 32.5 & & 48.5 & & 32.5 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 3.0 & & 16.2 & & 7.3 & & & & & & \\
\hline Green Ext Time (p_c), s & & 0.1 & & 10.4 & & 1.1 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrl Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{13.9} \\
\hline & & & B & & & & & & & & & \\
\hline
\end{tabular}

6: RidgeGate Pkwy EB \& East Road


Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(23(26 \%)\), Referenced to phase 4:EBTL, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.83
Intersection Signal Delay: 12.2 Intersection LOS: B
Intersection Capacity Utilization 73.6\% ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 6: RidgeGate Pkwy EB \& East Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & & \(\dagger\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & 懈 & & & & & & \(\hat{}\) & & & \(\uparrow\) & \\
\hline Traffic Volume (veh/h) & 175 & 2705 & 5 & 0 & 0 & 0 & 0 & 20 & 75 & 95 & 35 & 0 \\
\hline Future Volume (veh/h) & 175 & 2705 & 5 & 0 & 0 & 0 & 0 & 20 & 75 & 95 & 35 & 0 \\
\hline Initial \(Q(Q b)\), veh & 0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Ped-Bike Adj(A_pbT) & 1.00 & & 1.00 & & & & 1.00 & & 1.00 & 1.00 & & 1.00 \\
\hline Parking Bus, Adj & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Work Zone On Approach & & No & & & & & & No & & & No & \\
\hline Adj Sat Flow, veh/h/ln & 1870 & 1870 & 1870 & & & & 0 & 1870 & 1870 & 1870 & 1870 & 0 \\
\hline Adj Flow Rate, veh/h & 188 & 2909 & 5 & & & & 0 & 22 & 82 & 102 & 38 & 0 \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.92 & & & & 0.92 & 0.92 & 0.92 & 0.93 & 0.92 & 0.93 \\
\hline Percent Heavy Veh, \% & 2 & 2 & 2 & & & & 0 & 2 & 2 & 2 & 2 & 0 \\
\hline Cap, veh/h & 1237 & 3655 & 6 & & & & 0 & 71 & 265 & 225 & 73 & 0 \\
\hline Arrive On Green & 0.69 & 0.69 & 0.69 & & & & 0.00 & 0.21 & 0.21 & 0.21 & 0.21 & 0.00 \\
\hline Sat Flow, veh/h & 1781 & 5264 & 9 & & & & 0 & 346 & 1291 & 757 & 358 & 0 \\
\hline Grp Volume(v), veh/h & 188 & 1881 & 1033 & & & & 0 & 0 & 104 & 140 & 0 & 0 \\
\hline Grp Sat Flow(s),veh/h/ln & 1781 & 1702 & 1869 & & & & 0 & 0 & 1638 & 1115 & 0 & 0 \\
\hline Q Serve(g_s), s & 3.2 & 33.9 & 34.0 & & & & 0.0 & 0.0 & 4.8 & 7.3 & 0.0 & 0.0 \\
\hline Cycle Q Clear(g_c), s & 3.2 & 33.9 & 34.0 & & & & 0.0 & 0.0 & 4.8 & 12.2 & 0.0 & 0.0 \\
\hline Prop In Lane & 1.00 & & 0.00 & & & & 0.00 & & 0.79 & 0.73 & & 0.00 \\
\hline Lane Grp Cap (c), veh/h & 1237 & 2364 & 1298 & & & & 0 & 0 & 337 & 298 & 0 & 0 \\
\hline VIC Ratio(X) & 0.15 & 0.80 & 0.80 & & & & 0.00 & 0.00 & 0.31 & 0.47 & 0.00 & 0.00 \\
\hline Avail Cap(c_a), veh/h & 1237 & 2364 & 1298 & & & & 0 & 0 & 337 & 298 & 0 & 0 \\
\hline HCM Platoon Ratio & 1.00 & 1.00 & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Upstream Filter(l) & 1.00 & 1.00 & 1.00 & & & & 0.00 & 0.00 & 1.00 & 1.00 & 0.00 & 0.00 \\
\hline Uniform Delay (d), s/veh & 4.7 & 9.4 & 9.4 & & & & 0.0 & 0.0 & 30.3 & 34.6 & 0.0 & 0.0 \\
\hline Incr Delay (d2), s/veh & 0.3 & 2.9 & 5.1 & & & & 0.0 & 0.0 & 2.4 & 5.2 & 0.0 & 0.0 \\
\hline Initial Q Delay(d3),s/veh & 0.0 & 0.0 & 0.0 & & & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \%ile BackOfQ(50\%),veh/ln & 0.9 & 9.5 & 11.3 & & & & 0.0 & 0.0 & 2.1 & 3.2 & 0.0 & 0.0 \\
\hline \multicolumn{13}{|l|}{Unsig. Movement Delay, s/veh} \\
\hline LnGrp Delay(d),s/veh & 5.0 & 12.3 & 14.5 & & & & 0.0 & 0.0 & 32.7 & 39.8 & 0.0 & 0.0 \\
\hline LnGrp LOS & A & B & B & & & & A & A & C & D & A & A \\
\hline Approach Vol, veh/h & & 3102 & & & & & & 104 & & & 140 & \\
\hline Approach Delay, s/veh & & 12.6 & & & & & & 32.7 & & & 39.8 & \\
\hline Approach LOS & & B & & & & & & C & & & D & \\
\hline Timer - Assigned Phs & & 2 & & 4 & & 6 & & & & & & \\
\hline Phs Duration ( \(G+Y+R \mathrm{c}\) ), \(s\) & & 23.0 & & 67.0 & & 23.0 & & & & & & \\
\hline Change Period ( \(\mathrm{Y}+\mathrm{Rc}\) ), s & & 4.5 & & 4.5 & & 4.5 & & & & & & \\
\hline Max Green Setting (Gmax), s & & 18.5 & & 62.5 & & 18.5 & & & & & & \\
\hline Max Q Clear Time (g_c+11), s & & 6.8 & & 36.0 & & 14.2 & & & & & & \\
\hline Green Ext Time (p_c), s & & 0.4 & & 23.3 & & 0.2 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{HCM 6th Ctrr Delay
HCM 6th LOS}} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{14.3}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Intersection & & & & & & & & & & & & & \\
\hline Int Delay, s/veh & 5.5 & & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR & \\
\hline Lane Configurations & & ¢ & & & \(\uparrow\) & & & \(\uparrow\) & & & \$ & & \\
\hline Traffic Vol, veh/h & 5 & 5 & 15 & 5 & 5 & 35 & 5 & 5 & 10 & 5 & 5 & 25 & \\
\hline Future Vol, veh/h & 5 & 5 & 15 & 5 & 5 & 35 & 5 & 5 & 10 & 5 & 5 & 25 & \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline Sign Control S & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free & \\
\hline RT Channelized & - & - & None & - & - & None & - & - & None & - & & None & \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & - & \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - & \\
\hline Peak Hour Factor & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & 95 & \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & \\
\hline Mvmt Flow & 5 & 5 & 16 & 5 & 5 & 37 & 5 & 5 & 11 & 5 & 5 & 26 & \\
\hline
\end{tabular}



\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline
\end{tabular}






\section*{APPENDIX E}

\section*{Signal Warrant Analysis Worksheets}

\section*{APPENDIX F}

\section*{Queue Analysis Worksheets}
\begin{tabular}{lrrr} 
& & & \\
& & & WBL \\
Lane Group & WBT & NBL \\
\hline Lane Group Flow (vph) & 65 & 1905 & 6 \\
v/c Ratio & 0.05 & 0.54 & 0.02 \\
Control Delay & 4.5 & 7.4 & 26.2 \\
Queue Delay & 0.0 & 0.0 & 0.0 \\
Total Delay & 4.5 & 7.4 & 26.2 \\
Queue Length 50th (ft) & 10 & 167 & 3 \\
Queue Length 95th (ft) & 22 & 200 & 14 \\
Internal Link Dist (ft) & & 399 & \\
Turn Bay Length (ft) & 150 & & 150 \\
Base Capacity (vph) & 1229 & 3531 & 289 \\
Starvation Cap Reductn & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.05 & 0.54 & 0.02 \\
Intersection Summary & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrr} 
& & & \\
& & & \\
Lane Group & & WBL & WBT \\
Lane Group Flow (vph) & 98 & 1256 & 17 \\
v/c Ratio & 0.08 & 0.37 & 0.05 \\
Control Delay & 5.7 & 7.2 & 28.2 \\
Queue Delay & 0.0 & 0.0 & 0.0 \\
Total Delay & 5.7 & 7.2 & 28.2 \\
Queue Length 50th (ft) & 18 & 104 & 8 \\
Queue Length 95th (ft) & 34 & 128 & 27 \\
Internal Link Dist (ft) & & 399 & \\
Turn Bay Length (ft) & 150 & & 150 \\
Base Capacity (vph) & 1170 & 3361 & 336 \\
Starvation Cap Reductn & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.08 & 0.37 & 0.05 \\
\hline Intersection Summary & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & & & 4 & 4 & \(\downarrow\) \\
\hline Lane Group & WBL & WBT & WBR & NBL & NBT & SBT \\
\hline Lane Group Flow (vph) & 100 & 2842 & 89 & 126 & 79 & 226 \\
\hline v/c Ratio & 0.10 & 1.02 & 0.10 & 0.40 & 0.14 & 0.44 \\
\hline Control Delay & 6.8 & 36.8 & 2.5 & 21.4 & 16.3 & 20.2 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 6.8 & 36.8 & 2.5 & 21.4 & 16.3 & 20.2 \\
\hline Queue Length 50th (ft) & 15 & ~357 & 1 & 36 & 21 & 65 \\
\hline Queue Length 95th (ft) & 34 & \#504 & 17 & 79 & 48 & 120 \\
\hline Internal Link Dist (ft) & & 399 & & & 658 & 464 \\
\hline Turn Bay Length (ft) & 150 & & 150 & 150 & & \\
\hline Base Capacity (vph) & 973 & 2796 & 906 & 315 & 558 & 513 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.10 & 1.02 & 0.10 & 0.40 & 0.14 & 0.44 \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{~ Volume exceeds capacity, queue is theoretically infinite.} \\
\hline \multicolumn{7}{|l|}{Queue shown is maximum after two cycles.} \\
\hline \multicolumn{7}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{7}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & & 4 & 4 & \(\uparrow\) & \(\downarrow\) \\
\hline Lane Group & WBL & WBT & WBR & NBL & NBT & SBT \\
\hline Lane Group Flow (vph) & 151 & 1828 & 124 & 204 & 188 & 209 \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & 0.17 & 0.71 & 0.14 & 0.53 & 0.30 & 0.35 \\
\hline Control Delay & 8.6 & 13.2 & 2.3 & 22.0 & 16.1 & 16.2 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 8.6 & 13.2 & 2.3 & 22.0 & 16.1 & 16.2 \\
\hline Queue Length 50th (ft) & 27 & 171 & 0 & 58 & 49 & 53 \\
\hline Queue Length 95th (ft) & 54 & 220 & 20 & 117 & 92 & 100 \\
\hline Internal Link Dist (ft) & & 399 & & & 658 & 464 \\
\hline Turn Bay Length (tt) & 150 & & 150 & 150 & & \\
\hline Base Capacity (vph) & 899 & 2584 & 865 & 385 & 636 & 604 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.17 & 0.71 & 0.14 & 0.53 & 0.30 & 0.35 \\
\hline
\end{tabular}

\footnotetext{
Intersection Summary
}
\begin{tabular}{lrrrrr}
\hline & & & & a & \\
& & & WBL & WBT & WBR \\
Lane Group & NBT & SBT \\
\hline Lane Group Flow (vph) & 79 & 2868 & 49 & 117 & 179 \\
v/c Ratio & 0.06 & 0.81 & 0.04 & 0.47 & 0.50 \\
Control Delay & 4.6 & 12.1 & 1.8 & 38.2 & 36.6 \\
Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Delay & 4.6 & 12.1 & 1.8 & 38.2 & 36.6 \\
Queue Length 50th (ft) & 12 & 360 & 1 & 64 & 89 \\
Queue Length 95th (ft) & 25 & 429 & 10 & 119 & 154 \\
Internal Link Dist (ft) & & 408 & & 266 & 230 \\
Turn Bay Length (ft) & 150 & & 150 & & \\
Base Capacity (vph) & 1229 & 3531 & 1112 & 247 & 360 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.06 & 0.81 & 0.04 & 0.47 & 0.50
\end{tabular}

\footnotetext{
Intersection Summary
}
\begin{tabular}{lrrrrr}
\hline & & & & a & \\
& & & WBL & WBT & WBR \\
Lane Group & NBT & SBT \\
\hline Lane Group Flow (vph) & 65 & 1995 & 120 & 179 & 179 \\
v/c Ratio & 0.06 & 0.61 & 0.11 & 0.43 & 0.38 \\
Control Delay & 6.3 & 10.7 & 1.5 & 29.8 & 27.8 \\
Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Delay & 6.3 & 10.7 & 1.5 & 29.8 & 27.8 \\
Queue Length 50th (ft) & 12 & 221 & 0 & 82 & 76 \\
Queue Length 95th (ft) & 27 & 264 & 18 & 152 & 135 \\
Internal Link Dist (ft) & & 408 & & 266 & 230 \\
Turn Bay Length (ft) & 150 & & 150 & & \\
Base Capacity (vph) & 1130 & 3248 & 1054 & 418 & 465 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.06 & 0.61 & 0.11 & 0.43 & 0.38 \\
\hline
\end{tabular}

Intersection Summary
\begin{tabular}{lrrr}
\hline & & & \\
& & & \\
Lane Group & EBT & SBL \\
\hline Lane Group Flow (vph) & 5 & 865 & 36 \\
v/c Ratio & 0.00 & 0.28 & 0.09 \\
Control Delay & 7.0 & 8.7 & 32.0 \\
Queue Delay & 0.0 & 0.0 & 0.0 \\
Total Delay & 7.0 & 8.7 & 32.0 \\
Queue Length 50th (ft) & 1 & 78 & 19 \\
Queue Length 95th (ft) & 5 & 100 & 47 \\
Internal Link Dist (ft) & & 554 & \\
Turn Bay Length (ft) & 150 & & 150 \\
Base Capacity (vph) & 1071 & 3079 & 415 \\
Starvation Cap Reductn & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.00 & 0.28 & 0.09 \\
Intersection Summary & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
\hline & & & \\
& & & \\
Lane Group & EBT & SBL \\
\hline Lane Group Flow (vph) & 10 & 2140 & 101 \\
v/c Ratio & 0.01 & 0.63 & 0.31 \\
Control Delay & 4.9 & 9.4 & 34.3 \\
Queue Delay & 0.0 & 0.0 & 0.0 \\
Total Delay & 4.9 & 9.4 & 34.3 \\
Queue Length 50th (ft) & 2 & 221 & 54 \\
Queue Length 95th (ft) & 7 & 263 & 106 \\
Internal Link Dist (ft) & & 554 & \\
Turn Bay Length (ft) & 150 & & 150 \\
Base Capacity (vph) & 1189 & 3418 & 321 \\
Starvation Cap Reductn & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.01 & 0.63 & 0.31 \\
Intersection Summary & & & \\
\hline
\end{tabular}

4: Rhapsody Road \& RidgeGate Pkwy EB
\begin{tabular}{lrrrrrr}
\hline & & & & EBL & EBT & EBR \\
& NBT & SBL & SBT \\
\hline Lane Group & 58 & 1274 & 137 & 221 & 63 & 100 \\
\hline Lane Group Flow (vph) & 0.06 & 0.45 & 0.14 & 0.36 & 0.18 & 0.16 \\
v/c Ratio & 9.2 & 12.2 & 2.1 & 21.1 & 17.6 & 16.5 \\
Control Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Queue Delay & 9.2 & 12.2 & 2.1 & 21.1 & 17.6 & 16.5 \\
Total Delay & 14 & 145 & 0 & 80 & 18 & 29 \\
Queue Length 50th (ft) & 31 & 178 & 24 & 140 & m 42 & m 61 \\
Queue Length 95th (ft) & & 554 & & 198 & & 658 \\
Internal Link Dist (ft) & 150 & & 150 & & 150 & \\
Turn Bay Length (ft) & 993 & 2853 & 948 & 622 & 342 & 631 \\
Base Capacity (vph) & 0 & 0 & 0 & 0 & 0 & 0 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0.06 & 0.45 & 0.14 & 0.36 & 0.18 & 0.16 \\
Reduced v/c Ratio & & & & &
\end{tabular}

Intersection Summary
m Volume for 95 th percentile queue is metered by upstream signal.
\begin{tabular}{lrrrrrr}
\hline & & & & EBL & EBT & EBR \\
& NBT & SBL & SBT \\
\hline Lane Group & 167 & 2860 & 188 & 279 & 140 & 140 \\
\hline Lane Group Flow (vph) & 0.17 & 1.02 & 0.20 & 0.52 & 0.52 & 0.25 \\
v/c Ratio & 7.3 & 38.8 & 2.3 & 21.5 & 26.6 & 18.7 \\
Control Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Queue Delay & 7.3 & 38.8 & 2.3 & 21.5 & 26.6 & 18.7 \\
Total Delay & 27 & \(\sim 368\) & 3 & 82 & 40 & 38 \\
Queue Length 50th (ft) & 52 & \(\# 509\) & 26 & 147 & 93 & 84 \\
Queue Length 95th (ft) & & 554 & & 198 & & 658 \\
Internal Link Dist (ft) & 150 & & 150 & & 150 & \\
Turn Bay Length (ft) & 973 & 2796 & 945 & 539 & 270 & 558 \\
Base Capacity (vph) & 0 & 0 & 0 & 0 & 0 & 0 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0.17 & 1.02 & 0.20 & 0.52 & 0.52 & 0.25 \\
Reduced v/c Ratio & & & &
\end{tabular}

\section*{Intersection Summary}
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.


\footnotetext{
Intersection Summary
}
\begin{tabular}{|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \(\dagger\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & NBT & SBT \\
\hline Lane Group Flow (vph) & 188 & 2914 & 104 & 140 \\
\hline v/c Ratio & 0.15 & 0.83 & 0.30 & 0.51 \\
\hline Control Delay & 6.6 & 10.6 & 32.2 & 40.0 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 6.6 & 10.6 & 32.2 & 40.0 \\
\hline Queue Length 50th (ft) & 39 & 266 & 49 & 56 \\
\hline Queue Length 95th (ft) & m57 & 337 & 95 & 118 \\
\hline Internal Link Dist (ft) & & 242 & 180 & 245 \\
\hline Turn Bay Length (ft) & 150 & & & \\
\hline Base Capacity (vph) & 1229 & 3531 & 344 & 275 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.15 & 0.83 & 0.30 & 0.51 \\
\hline Intersection Summary & & & & \\
\hline \multicolumn{5}{|l|}{m Volume for 95th percentile queue is metered by upstream sign} \\
\hline
\end{tabular}

\section*{APPENDIX G}

\section*{Conceptual Site Plan and Turn Lane Exhibit}

\section*{RidgeGate Couplet}

LONE TREE, CO


SITE PLAN NOTES








 coopers orfoct



LAND USE CHART

toral

PROJECT BIKE PARKNG
\begin{tabular}{l} 
SUBFACE MOUNTED BKE PARKING \\
TOTAA \\
\hline
\end{tabular}



\section*{SHEET INDEX}


DESIGN
DESIGN
DEVELOPMENT

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ISSUED} \\
\hline (ta & \\
\hline Reco os ommal & \({ }^{1212222}\) \\
\hline 起 & \\
\hline & \\
\hline \(\frac{\text { Revsions }}{\text { No Ooscriplon }}\) & - \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{COVER} \\
\hline \multicolumn{2}{|l|}{SEAL:} \\
\hline  & \\
\hline \begin{tabular}{l|l}
\hline PROJECT No.: & R22-035 \\
\hline DRAWN BY: & EC/AG \\
\hline REVIEWED BY: & SC
\end{tabular} & \\
\hline \multicolumn{2}{|l|}{ERAWING NUMBER:} \\
\hline 1 OF & \\
\hline
\end{tabular}

LEGEND
\(\qquad\) RIDGEGATE COUPLET



```


[^0]: ${ }^{1}$ Institute of Transportation Engineers, Trip Generation Manual, Eleventh Edition, Washington DC, 2021.

[^1]: ${ }^{2}$ Transportation Research Board, Highway Capacity Manual, Sixth Edition, Washington DC, 2016.

