Traffic Impact Study

RidgeGate Senior Affordable

Lone Tree, Colorado

Prepared for:

Ridgegate Parkway Affordable LLC

Kimley » Horn

TRAFFIC IMPACT STUDY

RidgeGate Senior Affordable

Lone Tree, Colorado

Prepared for Ridgegate Parkway Affordable LLC 5291 E. Yale Avenue Denver, CO 80222

Prepared by
Kimley-Horn and Associates, Inc.
6200 South Syracuse Way
Suite 300
Greenwood Village, Colorado 80111
(303) 228-2300

July 2023

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	ii
LIST OF FIGURES	ii
1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION	5
3.0 EXISTING AND FUTURE CONDITIONS	7
3.1 Existing Study Area	7
3.2 Existing and Future Roadway Network	7
3.3 Existing Traffic Volumes	
3.4 Unspecified Development Traffic Growth	11
4.0 PROJECT TRAFFIC CHARACTERISTICS	15
4.1 Trip Generation	15
4.2 Trip Distribution	
4.3 Traffic Assignment	
4.4 Total (Background Plus Project) Traffic	16
5.0 TRAFFIC OPERATIONS ANALYSIS	23
5.1 Analysis Methodology	23
5.2 Key Intersection Operational Analysis	24
5.3 Vehicle Queuing Analysis	
5.4 Pedestrian and Bicycle Evaluation	
5.5 Improvement Summary	
6.0 CONCLUSIONS AND RECOMMENDATIONS	33

APPENDICES

Appendix A -	Intersection	Count Sheets

- Appendix B Future Traffic Projections & Adjacent Traffic Studies
- Appendix C Trip Generation Worksheets
- Appendix D Intersection Analysis Worksheets
- Appendix E Signal Warrant Analysis Worksheets
- Appendix F Queue Analysis Worksheets
- Appendix G Conceptual Site Plan and Turn Lane Exhibit

LIST OF TABLES

Table 1 – RidgeGate Senior Affordable Traffic Generation	15
Table 2 – Level of Service Definitions	23
Table 3 - RidgeGate Parkway WB & Rhapsody Road (#1) LOS Results	24
Table 4 - RidgeGate Parkway WB & North-South Road (#2) LOS Results	26
Table 5 - RidgeGate Parkway EB & Rhapsody Road (#3) LOS Results	27
Table 6 - RidgeGate Parkway EB & North-South Road (#4) LOS Results	28
Table 7 – Project Access Level of Service Results	28
Table 8 – Turn Lane Queuing Analysis Results	29
LIST OF FIGURES	
Figure 1 – Vicinity Map	6
Figure 2 – Existing Geometry	9
Figure 3 – 2022 Existing Traffic Volumes	10
Figure 4 – 2028 Background Traffic Volumes	13
Figure 5 – 2045 Background Traffic Volumes	14
Figure 6 – 2028 Project Trip Distribution	17
Figure 7 – 2045 Project Trip Distribution	18
Figure 8 – 2028 Project Traffic Assignment	19
Figure 9 – 2045 Project Traffic Assignment	20
Figure 10 – 2028 Total Traffic Volumes	21
Figure 11 – 2045 Total Traffic Volumes	22
Figure 12 – 2028 Recommended Geometry and Control	31
Figure 13 – 2045 Recommended Geometry and Control	32

1.0 EXECUTIVE SUMMARY

RidgeGate Senior Affordable is proposed to be located within the eastern portion in between the eastbound (EB) and westbound (WB) travel lanes of the one-way couplet portion of RidgeGate Parkway, east of future Rhapsody Road in Lone Tree, Colorado. The project is proposed to include 165 senior multifamily affordable housing units. It is expected that full buildout of the project will be completed in two phases with full buildout expected in about five years, approximately 2028. Therefore, analysis was conducted for the 2028 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with the City of Lone Tree standards and requirements:

- RidgeGate Parkway WB & Rhapsody Road (Intersection #1)
- RidgeGate Parkway WB & North-South Road (#2)
- RidgeGate Parkway EB & Rhapsody Road (#3)
- RidgeGate Parkway EB & North-South Road (#4)

In addition, the proposed full movement access (Intersection #5) along the north-south road on the east side of the roadway to serve the site was evaluated.

Regional access to the project will be provided by Interstate 25 (I-25), RidgeGate Parkway, and Chambers Road. Primary access will be provided by RidgeGate Parkway while direct access will be provided by a proposed full movement access (#5) along the proposed north-south road on the east side of this roadway.

RidgeGate Senior Affordable is expected to generate approximately 536 daily weekday trips, with 33 of these trips occurring during the morning peak hour and 41 trips occurring during the afternoon peak hour.

Based on the analysis presented in this report, Kimley-Horn believes RidgeGate Senior Affordable will be successfully incorporated into the existing and future roadway network. The only traffic related project related recommendation is to construct the access along the North-South Road and to provide stop-control with a R1-1 "STOP" sign installed for the westbound driveway approach. To serve pedestrians, sidewalk should be constructed along the site's project frontage of RidgeGate Parkway and North-South Road. To provide a complete set of recommendations accounting for and recording what is being constructed by other projects, analysis of the expected traffic volumes resulted in the following recommendations:

2028 Recommendations

- Bicycle lanes and sidewalk are anticipated to be provided along each side of Rhapsody Road. Sidewalk is anticipated to be provided traveling north-south along the perimeter of the project site along the North-South Road. Crosswalks are also anticipated to be provided in each direction at the RidgeGate Parkway WB and EB & Rhapsody Road intersections (#1 & #3). Crosswalks are also anticipated to be provided at the North-South Road intersections (#2 & #4) to cross east-west across East Road and West Road. Sidewalk will also be provided onsite as appropriate to provide safe access to the apartment units from the parking and to and from other amenities anticipated to be provided by the apartment complex to residents.
- Rhapsody Road is proposed to be constructed as part of the RidgeGate King Soopers development with one through lane in each direction with on-street bicycle lanes and on-street parallel parking along both sides of the roadway. The RidgeGate Parkway WB & Rhapsody Road (#1) and the RidgeGate Parkway EB & Rhapsody Road (#3) intersections are anticipated to be signalized intersections operating with full turning movements as appropriate on the one-way couplet, with RidgeGate Parkway WB & Rhapsody Road (#1) anticipated to be a 'T'-intersection in the 2028 horizon while the RidgeGate Parkway EB & Rhapsody Road (#3) intersection is anticipated to be a four-leg intersection. At these intersections, R3-1 No Right Turn signs should be installed at the approaches to RidgeGate Parkway and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic.
- The RidgeGate Parkway WB & Rhapsody Road (#1) intersection, it is understood that the RidgeGate King Soopers development will provide a westbound left turn lane with 190 feet in length and a 110-foot taper. A northbound left turn lane is also being provided with 120 feet

- in length and a 50-foot taper by King Soopers, with a separate northbound through lane. The southbound approach should operate well with a shared through/right turn lane.
- The RidgeGate Parkway EB & Rhapsody Road (#3) intersection will provide an eastbound left turn lane 101 feet in length with a 75-foot taper and a right turn lane 190 feet in length with a 120-foot taper when the south leg is constructed as part of the RidgeGate King Soopers project. King Soopers is also providing a southbound left turn lane with 120 feet in length and a 50-foot taper and a southbound through lane at this intersection. The northbound approach to this intersection should operate well with a shared through/right turn lane.
- The improvements to the Rhapsody Road intersections (#1 and #3) will be provided by construction of the RidgeGate King Soopers development and Southwest Village development. Of note, as Rhapsody Road is anticipated to also provide a north leg to the north of RidgeGate Parkway before 2045, it is recommended that sufficient pavement width be provided, and chevron striping be placed where the future northbound through lane will be placed at the RidgeGate Parkway WB & Rhapsody Road (#3) intersection.
- The City of Lone Tree is anticipated to improve RidgeGate Parkway to use the existing available pavement width to restripe the roadway to provide three through lanes in each direction within the study area during this horizon. It is understood that the existing striped-out inside lane along RidgeGate Parkway in both directions will be striped as the third through lane.
- RidgeGate Parkway WB & North-South Road (#2) is anticipated to be constructed as a 'T'-intersection by RidgeGate Couplet Apartments development prior to the 2028 horizon. This intersection should operate well with stop control during this horizon with an R1-1 "STOP" sign posted on the northbound approach to this intersection. A westbound left turn lane 190 feet in length with a 120-foot taper should be provided at this intersection, while the northbound approach during this horizon would have only a northbound left turning movement. Of note, the North-South Road is anticipated to also provide a north leg to the north of RidgeGate Parkway before 2045.
- RidgeGate Parkway EB & North-South Road (#4) is anticipated to be constructed as a 'T'-intersection by RidgeGate Couplet Apartments development prior to this project's 2028 horizon. This intersection should operate well with stop control during this horizon with an R1-1 "STOP" sign posted on the southbound approach to this intersection. An eastbound left turn lane 190 feet in length with a 75-foot taper should be provided at this intersection, while the southbound approach during this horizon would have only a southbound left turning.

- movement. Of note, the North-South Road is anticipated to also provide a south leg to the south of RidgeGate Parkway before 2045.
- Access to RidgeGate Senior Affordable is proposed along North-South Road (#5) approximately 200 feet to the north of the RidgeGate Parkway EB & North-South Road (#4) intersection. It is recommended this intersection operate with full turning movements and an R1-1 "STOP" sign posted on the westbound approach for vehicles exiting the development. Each approach to the intersection is anticipated to operate well through 2045 with one lane in each direction for shared turning movements.

2045 Recommendations

- A north leg at the RidgeGate Parkway WB & Rhapsody Road (#1) intersection is anticipated to be constructed by others prior to the 2045 horizon, making this a four-leg signalized intersection. When this construction occurs, a westbound right turn lane 190 feet in length with a 120-foot taper should be provided. The northbound approach to this intersection should use the aforementioned chevron striping provided in the 2028 horizon to be restriped as the northbound through lane, while the southbound approach should operate well with one lane for shared through/right turning movements.
- The RidgeGate Parkway WB & North-South Road (#2) intersection is also anticipated to have a north leg prior to the 2045 horizon, constructed by others. Both the northbound and southbound approaches to this intersection should each operate well with one lane for shared turning movements, while a westbound right turn lane 190 feet in length with a 120-foot taper should be provided at this intersection when the north leg is constructed.
- A south leg at the RidgeGate Parkway EB & North-South Road (#4) intersection is expected to be constructed by the proposed medical development prior to 2045. The eastbound right turning movements are anticipated to operate well from within the outer eastbound through lane, while the northbound and southbound approaches to the intersection are expected to operate well with one lane in each direction for shared turning movements.

General Recommendations

 Any onsite or offsite improvements should be incorporated into the Civil Drawings and conform to standards of the City of Lone Tree and the Manual on Uniform Traffic Control Devices (MUTCD) – 2009 Edition.

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study for RidgeGate Senior Affordable proposed to be located within the eastern portion in between the eastbound (EB) and westbound (WB) travel lanes of the one-way couplet portion of RidgeGate Parkway, east of future Rhapsody Road in Lone Tree, Colorado. A vicinity map illustrating the RidgeGate Senior Affordable development location is shown in **Figure 1**. RidgeGate Senior Affordable is proposed to include 165 senior multifamily affordable housing units. A conceptual site plan is attached in **Appendix F**. It is expected that full buildout of the project will be completed in two phases with full buildout expected in about five years, approximately 2028; therefore, analysis was conducted for the 2028 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with the City of Lone Tree standards and requirements:

- RidgeGate Parkway WB & Rhapsody Road (Intersection #1)
- RidgeGate Parkway WB & North-South Road (#2)
- RidgeGate Parkway EB & Rhapsody Road (#3)
- RidgeGate Parkway EB & North-South Road (#4)

In addition, the proposed full movement access (Intersection #5) along the north-south road on the east side of the roadway to serve the site was evaluated.

Regional access to the project will be provided by Interstate 25 (I-25), RidgeGate Parkway, and Chambers Road. Primary access will be provided by RidgeGate Parkway while direct access will be provided by a proposed full movement access (#5) along the proposed north-south road on the east side of this roadway.

FIGURE 1
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
VICINITY MAP

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area

The existing site is comprised of vacant land. The site is bounded to the north and south by the westbound and eastbound travel lanes of RidgeGate Parkway, respectively. Otherwise, surrounding the site is primarily vacant land. The City of Lone Tree Zoning Map refers to the area surrounding the site as "Planned Development District", specifically the "RidgeGate Planned Development."

3.2 Existing and Future Roadway Network

RidgeGate Parkway extends east-west with two through lanes in each direction within the study area, although each direction is planned to use the existing pavement width to provide three through lanes in the study area in the next few years. In the study area, RidgeGate Parkway separates the eastbound and westbound travel lanes by as much as approximately 750 feet in some areas. The RidgeGate Senior Affordable project is proposed to be located within the eastern portion of this one-way couplet separation between the two directions of travel on RidgeGate Parkway. The posted speed limit is 45 miles per hour.

Rhapsody Road is a proposed future roadway approximately 900 feet to the west of the project area. It is anticipated this roadway will provide on-street bicycle lanes and on-street parallel parking along both sides of the roadway within the one-way couplet. This roadway will travel in the north-south direction between the two directions of travel of RidgeGate Parkway and is anticipated to provide one through lane in each direction with construction of the RidgeGate King Soopers project. As development continues to occur, this roadway is anticipated to provide north and south legs on either side of RidgeGate Parkway, with the south leg anticipated to be completed as part of Southwest Village development by approximately 2026. Rhapsody Road is identified in the City of Lone Tree 2040 Transportation Plan as "Collector A" and according to the Transportation Plan it is anticipated to primarily provide one through lane in each direction. In the future, Rhapsody Road is anticipated to connect to Lincoln Avenue to the north and "Collector D" to the south.

The North-South Road is proposed to be constructed along the west side of the project site with construction of the RidgeGate Couplet Apartments study to the west of this project between the

two directions of travel along RidgeGate Parkway with one through lane in each direction. As development progresses in the area, a north leg of this road is anticipated to be constructed before the 2045 horizon that is anticipated to primarily serve residential uses, while a south leg to the south of RidgeGate Parkway is anticipated to be constructed as direct access into a medical/hospital land use. The existing intersection lane configuration within the study area is shown in **Figure 2**.

3.3 Existing Traffic Volumes

To provide a basis of eastbound and westbound through movement counts adjacent to the project site, existing turning movement counts were conducted at the intersection of RidgeGate Parkway and Peoria Street on Thursday, July 7, 2022, during the weekday morning and afternoon peak hours. The counts were conducted during the morning and afternoon peak hours of adjacent street traffic in 15-minute intervals from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM on this count date. The existing intersection traffic volumes are shown in **Figure 3** with count sheets provided in **Appendix A**.

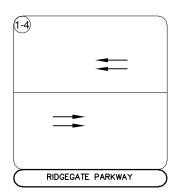
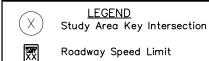



FIGURE 2
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
EXISTING GEOMETRY

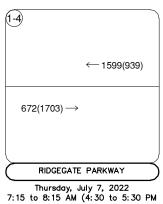


FIGURE 3 RIDGEGATE SENIOR AFFORDABLE LONE TREE, COLORADO 2022 EXISTING TRAFFIC VOLUME

LEGEND

Study Area Key Intersection

XXX(XXX)

Weekday AM(PM) Peak Hour Traffic Volumes

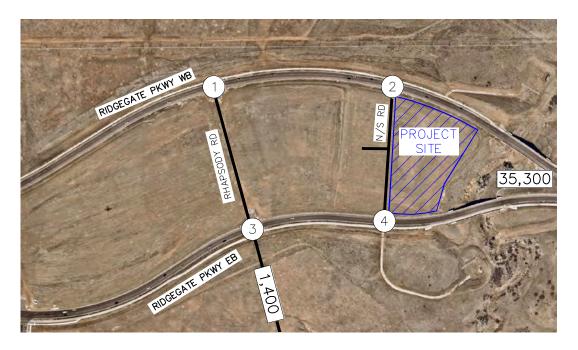
XX,X00 Estimated Daily Traffic Volume

3.4 Unspecified Development Traffic Growth

According to traffic projections from the Denver Regional Council of Governments (DRCOG) traffic model, the area surrounding the site is expected to have an average 30-year growth factor of 1.87 based on a 2020 volume of 23,000 vehicles per day (vpd) and future 2050 projection of 43,000 vpd. This growth factor equates to an annual growth rate of 2.11 percent. Future traffic volume projections and growth rate calculations are provided in **Appendix B**. This annual growth rate was used to estimate short-term 2025 and long-term 2045 traffic volume projections in the RidgeGate Couplet Apartments Traffic Impact Study completed by Kimley-Horn in April 2023.

As the RidgeGate Couplet Apartments is assumed to be completed prior to construction of this project, the background plus project traffic volumes from the RidgeGate Couplet Apartments development were used as the background traffic volumes for this project. The RidgeGate Couplet Apartments study includes the traffic anticipated to be generated by the following developments within the vicinity of this project:

- Southwest Village
- RidgeGate King Soopers—this traffic study also included the traffic assumed to be induced
 by the future construction of the north and south legs of Rhapsody Road as well as High Note
 Avenue, which is a future proposed north-south roadway approximately 1,200 feet to the west
 of Rhapsody Road. RidgeGate King Soopers is assumed to be completed by approximately
 2025.
- 200,000 square-foot property to just to the east of Rhapsody Road—between the proposed Rhapsody Road and the RidgeGate Couplet Apartments development—is anticipated to be developed as general retail uses. It is assumed to be completed after buildout of this project, but before the 2045 horizon.
- RidgeGate Couplet Apartments, assumed to be completed in approximately 2025.
- Anticipated land uses to the north of the project site as well as the medical/hospital land use
 to the south of the project site. It is assumed to be completed after buildout of this study, but
 before the 2045 horizon.


This study used the 2025 background plus project traffic volumes from the RidgeGate Couplet Apartments study and applied the 2.11 percent annual growth rate to generate the 2028 background traffic volumes used for this project. The 2045 background plus project traffic volumes

from the RidgeGate Couplet study—after subtracting out the traffic included as part of this RidgeGate Senior Affordable project—were used as the 2045 background traffic volumes in this study. The 2028 background traffic volumes are illustrated in **Figure 4** while the 2045 background traffic volumes are shown in **Figure 5**.

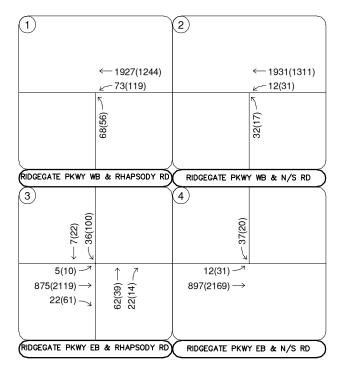
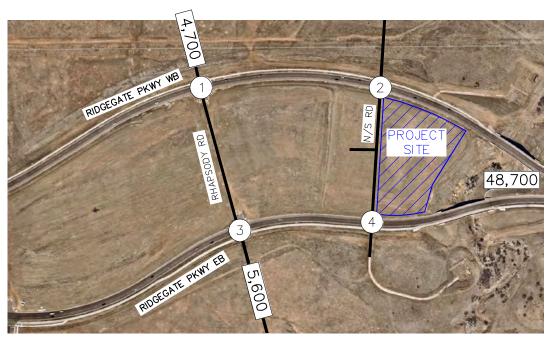


FIGURE 4 RIDGEGATE SENIOR AFFORDABLE LONE TREE, COLORADO 2028 BACKGROUND TRAFFIC VOLUME

Study Area Key Intersection

XXX(XXX)


Weekday AM(PM)

Peak Hour Traffic Volumes

XX,X00 Estimated Daily Traffic Volume

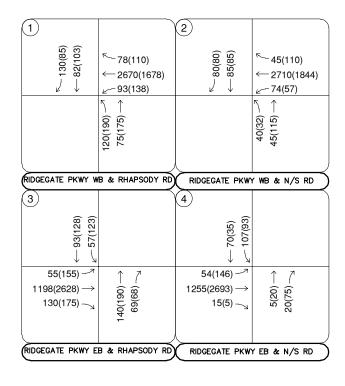


FIGURE 5
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2045 BACKGROUND TRAFFIC VOLUME

LEGEND

Study Area Key Intersection

XXX(XXX)

 ${\it Weekday}~{\it AM(PM)}$

Peak Hour Traffic Volumes

XX.X00

Estimated Daily Traffic Volume

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the *Trip Generation Manual*¹ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report average rates that apply to Senior Adult Multifamily Housing (ITE Land Use Code 252) for traffic associated with the development.

RidgeGate Senior Affordable is expected to generate approximately 536 daily weekday trips, with 33 of these trips occurring during the morning peak hour and 41 trips occurring during the afternoon peak hour. Calculations were based on the procedure and information provided in the ITE *Trip Generation Manual*, 11th Edition – Volume 1: User's Guide and Handbook, 2021. **Table** 1 summarizes the estimated trip generation for the RidgeGate Senior Affordable. The trip generation worksheets are included in **Appendix C**.

Table 1 – RidgeGate Senior Affordable Traffic Generation

	Weekday Vehicle Trips						
Land Use and Size	Deiby	AM Peak Hour		PM Peak Hour		our	
	Daily	In	Out	Total	ln	Out	Total
Senior Adult Multifamily Housing (ITE 252) – 165 Dwelling Units	536	11	22	33	23	18	41

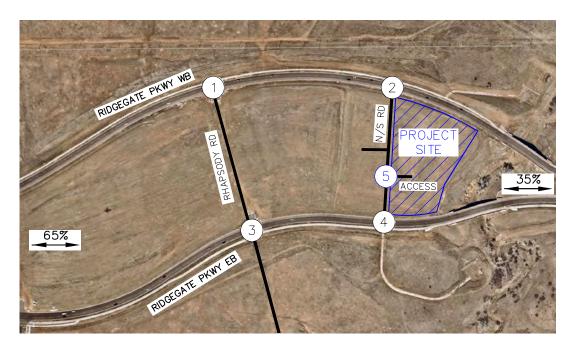
¹ Institute of Transportation Engineers, *Trip Generation Manual*, Eleventh Edition, Washington DC, 2021.

_

4.2 Trip Distribution

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. Following construction of this development but prior to 2045, it is anticipated that the area surrounding the project site will be developed with additional roadway connections in place. As such, unique trip distributions were used for the 2028 and 2045 horizon years to account for this change. **Figure 6** shows the 2028 project trip distribution while **Figure 7** shows the 2045 trip distribution.

4.3 Traffic Assignment


RidgeGate Senior Affordable traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in **Table 1**. Project traffic assignment for the 2028 horizon is shown in **Figure 8** while the traffic assignment in the 2045 horizon is shown in **Figure 9**.

4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short-term 2028 buildout horizon and long-term 2045 twenty-year planning horizon. These total traffic volumes for the study area are illustrated for the 2028 and 2045 horizon years in **Figures 10** and **11**, respectively.

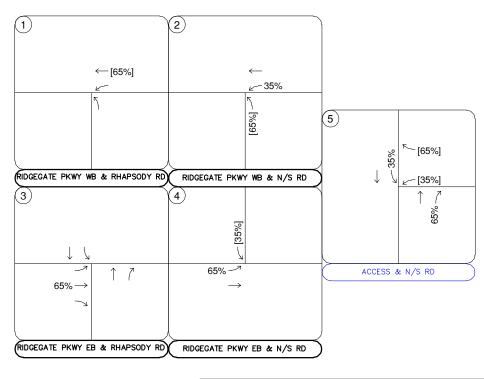
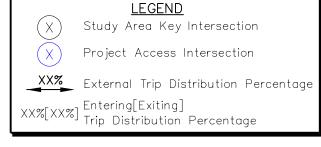
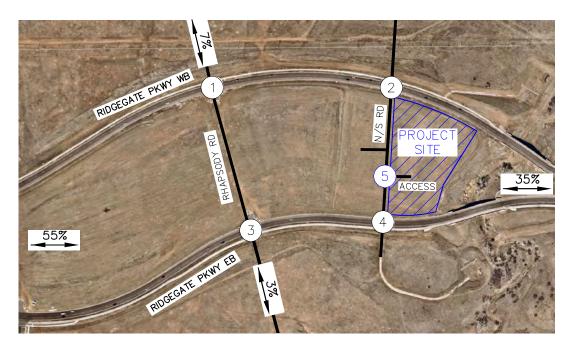




FIGURE 6
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2028 PROJECT TRIP DISTRIBUTION

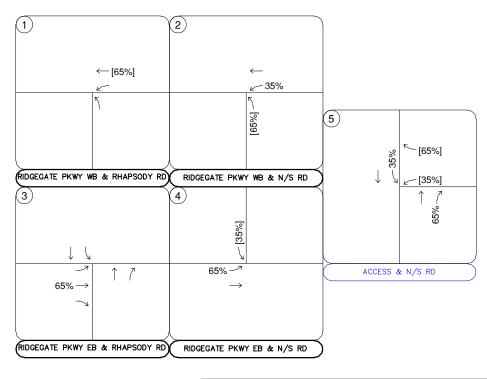
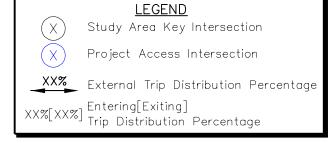
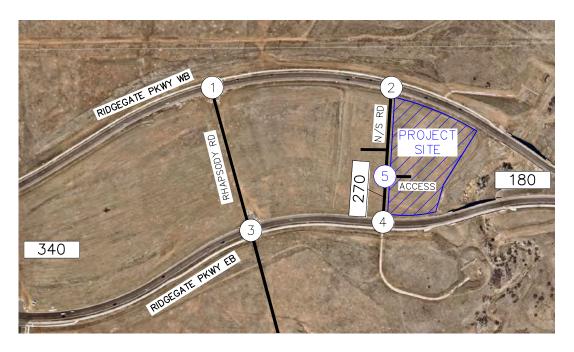




FIGURE 7
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2045 PROJECT TRIP DISTRIBUTION

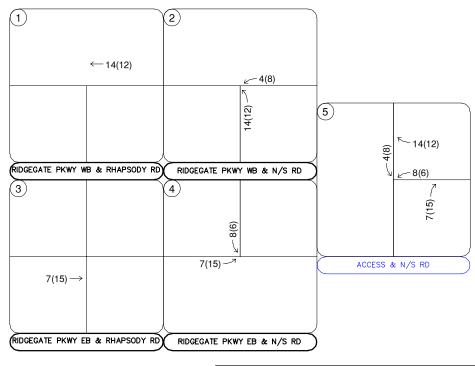
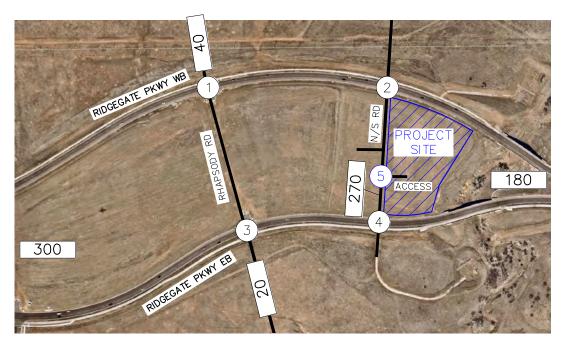



FIGURE 8
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2028 PROJECT TRAFFIC ASSIGNMENT

LEGEND X Study Area Key Intersection X Project Access Intersection XXX(XXX) Weekday AM(PM) Peak Hour Traffic Volumes XX,X00 Estimated Daily Traffic Volume

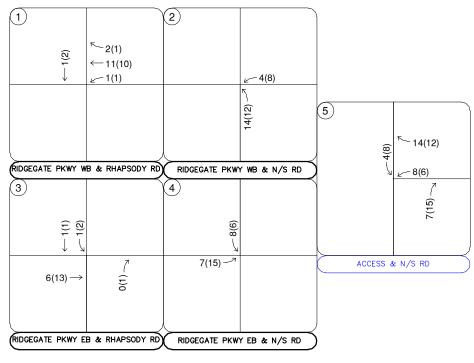
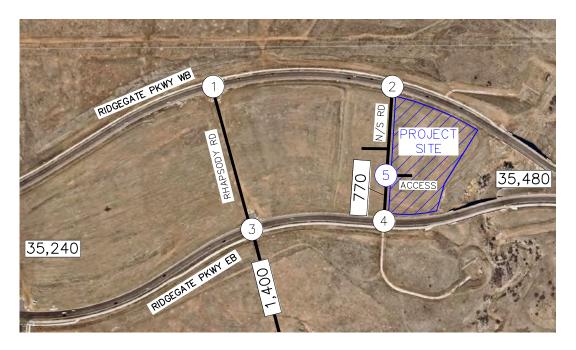



FIGURE 9
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2045 PROJECT TRAFFIC ASSIGNMENT

LEGEND X Study Area Key Intersection X Project Access Intersection XXX(XXX) Weekday AM(PM) Peak Hour Traffic Volumes XX,X00 Estimated Daily Traffic Volume

Kimley» Horn

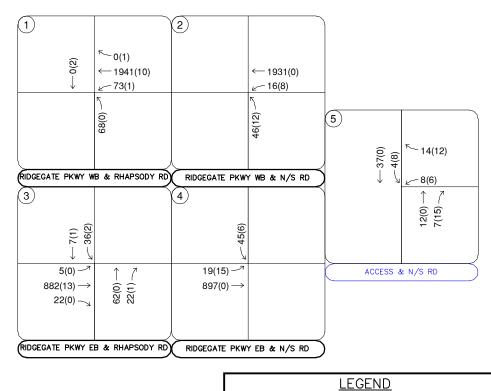
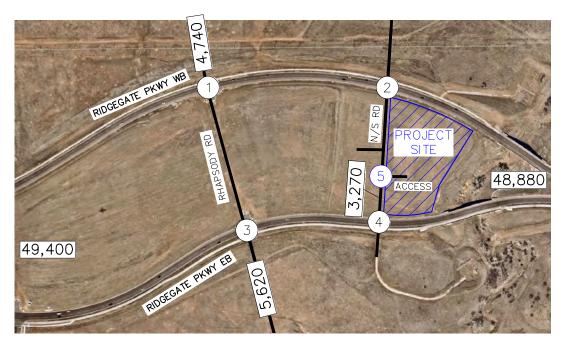



FIGURE 10
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2028 TOTAL TRAFFIC VOLUMES

Study Area Key Intersection X Project Access Intersection XXX(XXX) Weekday AM(PM) Peak Hour Traffic Volumes XX,X00 Estimated Daily Traffic Volume

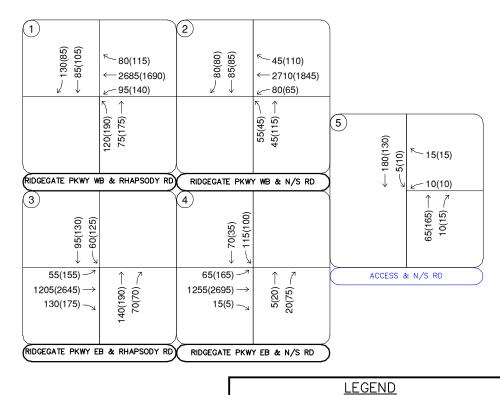


FIGURE 11
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2045 TOTAL TRAFFIC VOLUMES

X Study Area Key Intersection Project Access Intersection XXX(XXX) Weekday AM(PM) Peak Hour Traffic Volumes XX,X00 Estimated Daily Traffic Volume

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2028 and 2045 development horizons at the identified key intersections. The acknowledged source for determining overall capacity is the *Highway Capacity Manual (HCM)*².

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). For intersections and roadways in this study area, standard traffic engineering practice recommends overall intersection LOS D and movement/approach LOS E as the minimum desirable thresholds for acceptable operations. **Table 2** shows the definition of level of service for signalized and unsignalized intersections.

Table 2 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
А	≤ 10	≤ 10
В	> 10 and ≤ 20	> 10 and ≤ 15
С	> 20 and ≤ 35	> 15 and ≤ 25
D	> 35 and ≤ 55	> 25 and ≤ 35
E	> 55 and ≤ 80	> 35 and ≤ 50
F	> 80	> 50

Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for signalized, roundabout, and all-way stop controlled intersections are defined for each approach and for the overall intersection.

² Transportation Research Board, *Highway Capacity Manual*, Sixth Edition, Washington DC, 2016.

_

5.2 Key Intersection Operational Analysis

Calculations for the operational level of service at the key intersections for the study area are provided in **Appendix D**. Existing peak hour factors were utilized in the 2028 and 2045 horizon analysis years. Synchro traffic analysis software was used to analyze the signalized and unsignalized key intersections for HCM level of service.

RidgeGate Parkway WB & Rhapsody Road (#1)

The intersection of RidgeGate Parkway WB & Rhapsody Road (#1) is a proposed future signalized intersection to the west of the project site. This intersection does not exist today but for purposes of this study it is assumed to be constructed as a 'T'-intersection in the 2028 horizon as part of the RidgeGate King Soopers project, with the north leg of the intersection to be constructed by others as development occurs to the north of RidgeGate Parkway prior to the 2045 horizon. Prior to the 2028 horizon, this intersection is anticipated to be signalized to provide safer travel for pedestrians and bicyclists. With signalization, a westbound left turn lane is anticipated to be provided as well as a northbound left turn lane. As recommended in the RidgeGate King Soopers study, an R3-1 No Right Turn sign should be installed on the northbound approach to the intersection and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic. A northbound through lane will eventually be necessary as the north leg of Rhapsody Road is constructed. As such, it is recommended that sufficient pavement width be provided, and chevron striping be placed where the future northbound through lane will be placed. With project traffic and the recommended geometry and control, this intersection is anticipated to operate at an acceptable level of service during both the 2028 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. Table 3 provides the results of the LOS analysis conducted at this intersection.

Table 3 – RidgeGate Parkway WB & Rhapsody Road (#1) LOS Results

	AM Pea	ık Hour	PM Peak Hour		
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	
2028 Background – Signal	9.5	А	9.4	Α	
2028 Background Plus Project - Signal	9.3	А	9.4	А	
2045 Background – Signal	32.7	С	26.6	С	
2045 Background Plus Project - Signal	33.0	С	26.8	С	

RidgeGate Parkway WB & North-South Road (#2)

The intersection of RidgeGate Parkway WB & North-South Road (#2) is proposed to be constructed along the west side of the project site as an unsignalized 'T'-intersection with development of the RidgeGate Couplet Apartments project with stop control on the northbound North-South Road approach to the intersection prior to and in the 2028 horizon. North-South Road is anticipated to provide one through lane in each direction between the two travel directions of RidgeGate Parkway. A westbound left turn lane is recommended to be provided at this intersection with RidgeGate Couplet Apartments construction. During the 2028 horizon, the northbound approach to this intersection will be for northbound left turning movements only and should provide an R1-1 "STOP" sign with an R3-1 No Right Turn sign posted underneath the "STOP" sign and an R6-1 "ONE WAY" sign posted along RidgeGate Parkway directly to the north of the northbound North-South Road approach to prevent vehicles from turning right into oncoming traffic.

By the 2045 horizon, it is anticipated that there will be a north leg constructed at this intersection to access additional planned development to the north of RidgeGate Parkway. When this development to the north of RidgeGate Parkway occurs, this intersection is anticipated to require signalization to continue operating at an acceptable level of service. A signal warrant analysis was conducted at this intersection in the 2028 background plus project and 2045 background horizons. A signal is not anticipated to be warranted or needed at this intersection solely with project traffic in the 2028 or 2045 horizons; the signal is anticipated to be needed because of the development to the north of this project and construction of this north leg. The signal warrant analysis worksheets are provided in **Appendix E**. The intersection is recommended to provide a westbound right turn lane when development to the north of the project occurs, while the northbound approach should operate well through the 2045 horizon with a shared left/through lane and the southbound approach is anticipated to operate well with one lane for shared through/right turning movements.

With project traffic and these recommended improvements in the 2028 and 2045 horizons, the intersection is anticipated to operate at an acceptable level of service through the 2045 horizon with the addition of project traffic. **Table 4** provides the results of the LOS analysis conducted at this intersection.

Table 4 – RidgeGate Parkway WB & North-South Road (#2) LOS Results

	AM Peak Hour		PM Pea	ak Hour
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2028 Background				
Stop Control				
Northbound Left	16.0	С	13.0	В
2028 Background Plus Project				
Stop Control				
Northbound Left	16.2	С	13.3	В
2045 Background				
Signalized	12.3	В	13.1	В
2045 Background Plus Project				
Signalized	13.2	В	13.4	В

RidgeGate Parkway EB & Rhapsody Road (#3)

The intersection of RidgeGate Parkway EB & Rhapsody Road (#3) is a proposed future signalized intersection to the west of the project site. This intersection does not exist today but for purposes of this study it is assumed to be constructed as a 'T'-intersection by approximately 2025 as part of the RidgeGate King Soopers project, with the south leg of the intersection to be constructed as part of Southwest Village development shortly thereafter, prior to the 2028 horizon studied in this project.

By the 2028 horizon, this intersection is anticipated to be signalized. The eastbound approach is anticipated to provide a left turn lane, three through lanes, and a right turn lane, while the southbound approach should provide a left turn lane and separate through lane, and the northbound approach should operate well with a shared through/right turn lane. As recommended in the RidgeGate King Soopers study, an R3-1 No Right Turn sign should be installed on the southbound approach to the intersection and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic. This configuration is anticipated to operate well through the 2045 horizon.

With project traffic, this intersection is anticipated to operate at an acceptable level of service during both the 2028 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. **Table 5** provides the results of the LOS analysis conducted at this intersection.

Table 5 – RidgeGate Parkway EB & Rhapsody Road (#3) LOS Results

3		· · · · · · · · · · · · · · · · · · ·		
	AM Pea	ık Hour	PM Pea	ak Hour
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2028 Background – Signal	11.8	В	11.3	В
2028 Background Plus Project - Signal	11.8	В	11.3	В
2045 Background – Signal	14.8	В	20.4	С
2045 Background Plus Project - Signal	15.0	В	21.0	С

RidgeGate Parkway EB & North-South Road (#4)

The intersection of RidgeGate Parkway EB & North-South Road (#4) is proposed to be constructed along the west side of the project site as an unsignalized 'T'-intersection with development of this project with stop control on the southbound North-South Road approach to the intersection with RidgeGate Couplet Apartments development in approximately 2025. North-South Road is anticipated to provide one through lane in each direction between the two travel directions of RidgeGate Parkway. An eastbound left turn lane is recommended to be provided at this intersection with RidgeGate Couplet Apartments construction in 2025. The southbound approach to this intersection will be for southbound left turning movements only during the 2028 horizon and should provide an R1-1 "STOP" sign with an R6-1 No Right Turn sign posted underneath the "STOP" sign and an R6-1 "ONE WAY" sign posted along RidgeGate Parkway directly to the south of the southbound North-South Road approach to prevent vehicles from turning right into oncoming traffic.

By the 2045 horizon, it is anticipated that there will be a south leg constructed at this intersection to access a planned medical/hospital land use to the south of RidgeGate Parkway. When this development to the south of RidgeGate Parkway occurs, this intersection is anticipated to require signalization to continue operating at an acceptable level of service. A signal warrant analysis was conducted at this intersection in the 2028 background plus project and 2045 background horizons. A signal is not anticipated to be warranted or needed at this intersection solely with project traffic in the 2028 or 2045 horizons; the signal is anticipated to needed because of the development to the north and south of the RidgeGate Parkway couplet and the traffic from those developments that would use this roadway in between the one-way couplet of RidgeGate Parkway. The signal warrant analysis worksheets are provided in **Appendix E**. The northbound approach should operate well through the 2045 horizon with a shared through/right turn lane and the southbound approach is anticipated to operate well with one lane for shared left/through

turning movements, while the eastbound approach should operate well with a left turn lane, two through lanes, and a shared through/right turn lane.

With project traffic, this intersection is anticipated to operate at an acceptable level of service during both the 2028 and 2045 horizon years based on the addition of project traffic and this operational level of service analysis. **Table 6** provides the results of the LOS analysis conducted at this intersection.

Table 6 - RidgeGate Parkway EB & North-South Road (#4) LOS Results

	AM Pea	k Hour	PM Peak Hour	
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2028 Background				
Stop Control				
Southbound Left	11.4	В	17.6	С
2028 Background Plus Project				
Stop Control				
Southbound Left	11.5	В	18.2	С
2045 Background				
Signalized	24.5	С	29.7	С
2045 Background Plus Project				
Signalized	24.5	С	29.7	С

Project Access

With completion of the RidgeGate Senior Affordable project, access to the site is proposed with one full movement 'T'-intersection approximately 200 feet to the north of the RidgeGate Parkway EB & North-South Road (#4) intersection. An R1-1 "STOP" sign should be posted on the westbound approach to this intersection. Each approach at this intersection is anticipated to operate well through 2045 with one lane in each direction for shared turning movements. **Table 7** provides the results of the LOS analysis conducted at this access.

Table 7 - Project Access Level of Service Results

Take to the second second to the second seco								
	2028 Total				2045 Total			
	AM Pea	AM Peak Hour PM Peak Hour		AM Pea	k Hour	PM Peak Hour		
Intersection	Delay (sec/ veh)	LOS	Delay (sec/ veh)	LOS	Delay (sec/ veh)	Los	Delay (sec/ veh)	LOS
North-South Road Access (#5)								
Westbound Approach	8.6	Α	8.7	Α	9.0	Α	9.4	Α
Southbound Left	7.3	Α	7.3	Α	7.4	Α	7.6	Α

5.3 Vehicle Queuing Analysis

A vehicle queuing analysis was conducted for the study area intersections. The queuing analysis was performed using Synchro presenting the results of the 95th percentile queue lengths. Results are shown in the following **Table 8** with calculations provided within the level of service operational sheets of **Appendix E** for unsignalized intersections and **Appendix F** for signalized intersections.

Table 8 – Turn Lane Queuing Analysis Results

	2028 Calculated Queue	2028 Recommended	2045 Calculated Queue	2045 Recommended
Intersection Turn Lane	(feet)	Length (feet)	(feet)	Length (feet)
RidgeGate WB & Rhapsody (#1)				
Westbound Left	48'	190'+110'T	30'	190'+110'T
Westbound Right	DNE	DNE	4'	190'+120'T
Northbound Left	22'	120'+50'T	120'	120'+50'T
RidgeGate WB & N/S Rd (#2)				
Westbound Left	0'	190'+120'T	28'	190'+120'T
Westbound Right	DNE	DNE	18'	190'+120'T
Northbound Approach	25'	C	132'	С
Southbound Approach	DNE	DNE	154'	C
RidgeGate EB & Rhapsody (#3)				
Eastbound Left	7'	101'+75'T	66'	101'+75'T
Eastbound Right	12'	DNE	39'	190'+120'T
Southbound Left	100'	120'+50'S	114'	120'+50'S
RidgeGate EB & N/S Rd (#4)				
Eastbound Left	0'	190'+75'T	11'	190'+75'T
Northbound Approach	DNE	DNE	95'	C
Southbound Approach	25'	C	94'	С

DNE = Does Not Exist; C = Continuous; **Blue** Text = Recommendation

All queues are anticipated to remain within the recommended turn lane lengths through 2045. The storage and taper lengths along RidgeGate Parkway provided in **Table 8** are based on a standard turn lane length of 190 feet with a 120-foot taper. Where these turn lane and taper lengths are not feasible, the recommended turn lane length provided is the maximum feasible length based on constraints, with the minimum recommended turn lane length set as 100 feet and the minimum taper length set as 75 feet.

Of note, it is not advisable to provide a continuous deceleration/acceleration lane along either direction of RidgeGate Parkway as this would be likely to cause unsafe weaving maneuvers for vehicles entering and exiting the development within the one-way couplet. For this reason, separate left turn lanes have been recommended at each study area intersection on RidgeGate

Parkway. The turn lanes along Rhapsody Road were assigned a minimum storage length of 120 feet, which is anticipated to accommodate expected queues through the 2045 horizon. The turn lane exhibit used for the provided turn lane and taper lengths is provided in **Appendix G**.

5.4 Pedestrian and Bicycle Evaluation

To address components of a multimodal traffic study, pedestrian and bicycle infrastructure evaluations were conducted. Sidewalk exists along both the eastbound and westbound RidgeGate Parkway couplets within the study area, with the sidewalk south of the eastbound direction able to be utilized as cycle track as it provides approximately a 12-foot width. Bicycle lanes and sidewalk are also anticipated to be provided along each side of Rhapsody Road. Sidewalk is anticipated to be provided traveling north-south along the perimeter of the project site along North-South Road. Crosswalks are also anticipated to be provided in each direction at the RidgeGate Parkway WB and EB & Rhapsody Road intersections (#1 & #3). Crosswalks are also anticipated to be provided at the North-South Road intersections (#2 & #4) to cross east-west across the North-South Road. Sidewalk will also be provided onsite as appropriate to provide safe access to the apartment units from the parking lot and any other amenities. As the surrounding area continues to develop as part of the overall RidgeGate East Planned Development, these pedestrian and bicycle facilities will serve the larger community and provide safer access to the development.

5.5 Improvement Summary

Based on the results of the intersection operational and vehicle queuing analysis, the key intersection recommended improvements and control are shown in **Figure 12** for the 2028 horizon and in **Figure 13** for the 2045 long-term planning horizon.

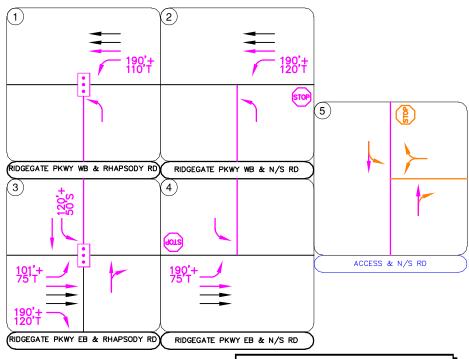


FIGURE 12
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2028 RECOMMENDED GEOMETRY
AND CONTROL

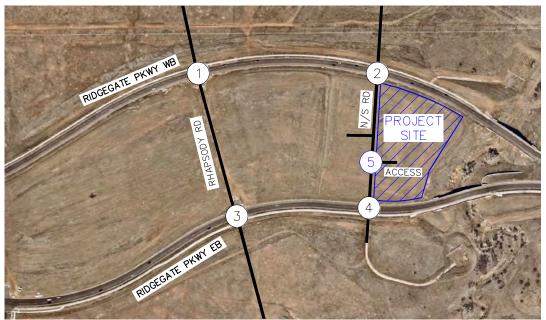
LEGEND

X Study Area Key Intersection

(X) Project Access Intersection

Signalized Intersection

Stop Controlled Approach


Improvement By Others

- Recommended Improvement

100'+Turn Lane Length (feet)
 100'T Taper Length (feet)
 100'S Shared Taper Length (feet)

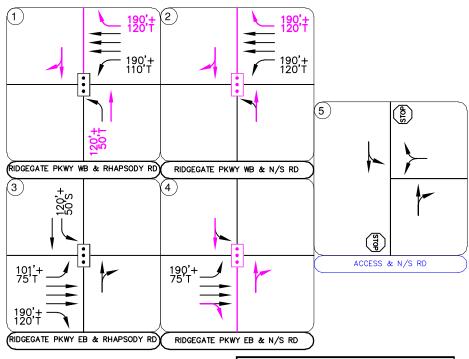


FIGURE 13
RIDGEGATE SENIOR AFFORDABLE
LONE TREE, COLORADO
2045 RECOMMENDED GEOMETRY
AND CONTROL

LEGEND

X Study Area Key Intersection

(X) Project Access Intersection

Signalized Intersection

Stop Controlled Approach

Improvement By Others

100'+Turn Lane Length (feet) 100'T Taper Length (feet) 100'S Shared Taper Length (feet)

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes RidgeGate Senior Affordable will be successfully incorporated into the existing and future roadway network. The only traffic related project related recommendation is to construct the access along the North-South Road and to provide stop-control with a R1-1 "STOP" sign installed for the westbound driveway approach. To serve pedestrians, sidewalk should be constructed along the site's project frontage of RidgeGate Parkway and North-South Road. To provide a complete set of recommendations accounting for and recording what is being constructed by other projects, analysis of the expected traffic volumes resulted in the following recommendations:

2028 Recommendations

- Bicycle lanes and sidewalk are anticipated to be provided along each side of Rhapsody Road. Sidewalk is anticipated to be provided traveling north-south along the perimeter of the project site along the North-South Road. Crosswalks are also anticipated to be provided in each direction at the RidgeGate Parkway WB and EB & Rhapsody Road intersections (#1 & #3). Crosswalks are also anticipated to be provided at the North-South Road intersections (#2 & #4) to cross east-west across East Road and West Road. Sidewalk will also be provided onsite as appropriate to provide safe access to the apartment units from the parking and to and from other amenities anticipated to be provided by the apartment complex to residents.
- Rhapsody Road is proposed to be constructed as part of the RidgeGate King Soopers development with one through lane in each direction with on-street bicycle lanes and on-street parallel parking along both sides of the roadway. The RidgeGate Parkway WB & Rhapsody Road (#1) and the RidgeGate Parkway EB & Rhapsody Road (#3) intersections are anticipated to be signalized intersections operating with full turning movements as appropriate on the one-way couplet, with RidgeGate Parkway WB & Rhapsody Road (#1) anticipated to be a 'T'-intersection in the 2028 horizon while the RidgeGate Parkway EB & Rhapsody Road (#3) intersection is anticipated to be a four-leg intersection. At these intersections, R3-1 No Right Turn signs should be installed at the approaches to RidgeGate Parkway and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic.
- The RidgeGate Parkway WB & Rhapsody Road (#1) intersection, it is understood that the RidgeGate King Soopers development will provide a westbound left turn lane with 190 feet in

- length and a 110-foot taper. A northbound left turn lane is also being provided with 120 feet in length and a 50-foot taper by King Soopers, with a separate northbound through lane. The southbound approach should operate well with a shared through/right turn lane.
- The RidgeGate Parkway EB & Rhapsody Road (#3) intersection will provide an eastbound left turn lane 101 feet in length with a 75-foot taper and a right turn lane 190 feet in length with a 120-foot taper when the south leg is constructed as part of the RidgeGate King Soopers project. King Soopers is also providing a southbound left turn lane with 120 feet in length and a 50-foot taper and a southbound through lane at this intersection. The northbound approach to this intersection should operate well with a shared through/right turn lane.
- The improvements to the Rhapsody Road intersections (#1 and #3) will be provided by construction of the RidgeGate King Soopers development and Southwest Village development. Of note, as Rhapsody Road is anticipated to also provide a north leg to the north of RidgeGate Parkway before 2045, it is recommended that sufficient pavement width be provided, and chevron striping be placed where the future northbound through lane will be placed at the RidgeGate Parkway WB & Rhapsody Road (#3) intersection.
- The City of Lone Tree is anticipated to improve RidgeGate Parkway to use the existing available pavement width to restripe the roadway to provide three through lanes in each direction within the study area during this horizon. It is understood that the existing striped-out inside lane along RidgeGate Parkway in both directions will be striped as the third through lane.
- RidgeGate Parkway WB & North-South Road (#2) is anticipated to be constructed as a 'T'-intersection by RidgeGate Couplet Apartments development prior to the 2028 horizon. This intersection should operate well with stop control during this horizon with an R1-1 "STOP" sign posted on the northbound approach to this intersection. A westbound left turn lane 190 feet in length with a 120-foot taper should be provided at this intersection, while the northbound approach during this horizon would have only a northbound left turning movement. Of note, the North-South Road is anticipated to also provide a north leg to the north of RidgeGate Parkway before 2045.
- RidgeGate Parkway EB & North-South Road (#4) is anticipated to be constructed as a 'T'intersection by RidgeGate Couplet Apartments development prior to this project's 2028
 horizon. This intersection should operate well with stop control during this horizon with an R11 "STOP" sign posted on the southbound approach to this intersection. An eastbound left turn
 lane 190 feet in length with a 75-foot taper should be provided at this intersection, while the

- southbound approach during this horizon would have only a southbound left turning movement. Of note, the North-South Road is anticipated to also provide a south leg to the south of RidgeGate Parkway before 2045.
- Access to RidgeGate Senior Affordable is proposed along North-South Road (#5) approximately 200 feet to the north of the RidgeGate Parkway EB & North-South Road (#4) intersection. It is recommended this intersection operate with full turning movements and an R1-1 "STOP" sign posted on the westbound approach for vehicles exiting the development. Each approach to the intersection is anticipated to operate well through 2045 with one lane in each direction for shared turning movements.

2045 Recommendations

- A north leg at the RidgeGate Parkway WB & Rhapsody Road (#1) intersection is anticipated to be constructed by others prior to the 2045 horizon, making this a four-leg signalized intersection. When this construction occurs, a westbound right turn lane 190 feet in length with a 120-foot taper should be provided. The northbound approach to this intersection should use the aforementioned chevron striping provided in the 2028 horizon to be restriped as the northbound through lane, while the southbound approach should operate well with one lane for shared through/right turning movements.
- The RidgeGate Parkway WB & North-South Road (#2) intersection is also anticipated to have a north leg prior to the 2045 horizon, constructed by others. Both the northbound and southbound approaches to this intersection should each operate well with one lane for shared turning movements, while a westbound right turn lane 190 feet in length with a 120-foot taper should be provided at this intersection when the north leg is constructed.
- A south leg at the RidgeGate Parkway EB & North-South Road (#4) intersection is expected to be constructed by the proposed medical development prior to 2045. The eastbound right turning movements are anticipated to operate well from within the outer eastbound through lane, while the northbound and southbound approaches to the intersection are expected to operate well with one lane in each direction for shared turning movements.

General Recommendations

 Any onsite or offsite improvements should be incorporated into the Civil Drawings and conform to standards of the City of Lone Tree and the Manual on Uniform Traffic Control Devices (MUTCD) – 2009 Edition.

APPENDICES

APPENDIX A

Intersection Count Sheets

Lone Tree, CO Ridgegate King Soopers AM Peak Ridgegate Pkwy and Peoria St

File Name: Ridgegate and Peoria AM

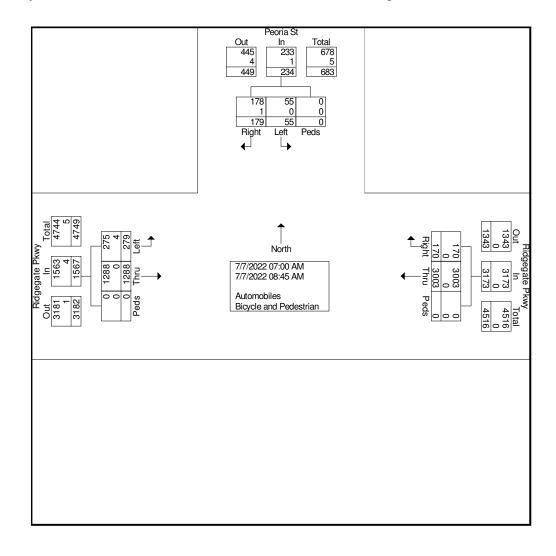
Site Code: IPO 609 Start Date: 7/7/2022

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		Ridgega	te Pkwy		iiiileu- Aul		te Pkwy	and redesi	IIaII	Peoi	ria St		
			oound				bound				bound		
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
07:00 AM	34	130	0	164	343	15	0	358	3	21	0	24	546
07:15 AM	30	169	0	199	397	21	0	418	6	22	0	28	645
07:30 AM	37	145	0	182	418	29	0	447	7	24	0	31	660
07:45 AM	41	173	0	214	421	20	0	441	11	19	0	30	685
Total	142	617	0	759	1579	85	0	1664	27	86	0	113	2536
												·	
08:00 AM	34	155	0	189	363	24	0	387	6	20	0	26	602
08:15 AM	38	168	0	206	349	18	0	367	10	25	0	35	608
08:30 AM	40	179	0	219	334	17	0	351	7	28	0	35	605
08:45 AM	25	169	0	194	378	26	0	404	5	20	0	25	623
Total	137	671	0	808	1424	85	0	1509	28	93	0	121	2438
												·	
Grand Total	279	1288	0	1567	3003	170	0	3173	55	179	0	234	4974
Apprch %	17.8	82.2	0		94.6	5.4	0		23.5	76.5	0		
Total %	5.6	25.9	0	31.5	60.4	3.4	0	63.8	1.1	3.6	0	4.7	
Automobiles	275	1288	0	1563	3003	170	0	3173	55	178	0	233	4969
% Automobiles	98.6	100	0	99.7	100	100	0	100	100	99.4	0	99.6	99.9
Bicycle and Pedestrian	4	0	0	4	0	0	0	0	0	1	0	1	5
% Bicycle and Pedestrian	1.4	0	0	0.3	0	0	0	0	0	0.6	0	0.4	0.1

Lone Tree, CO Ridgegate King Soopers


AM Peak

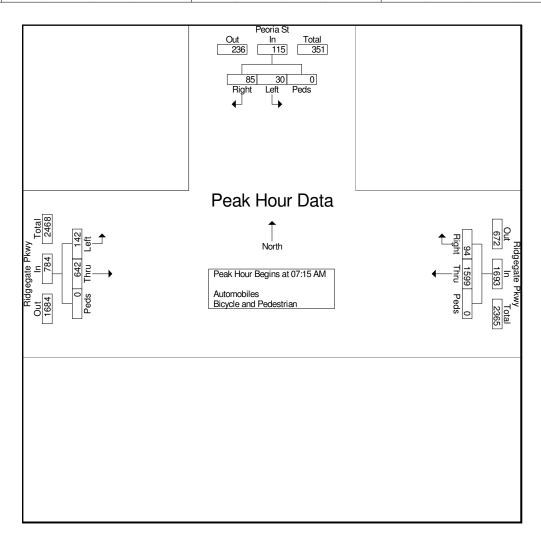
Ridgegate Pkwy and Peoria St

File Name: Ridgegate and Peoria AM

Site Code : IPO 609 Start Date : 7/7/2022

Page No : 2

Lone Tree, CO Ridgegate King Soopers AM Peak


Ridgegate Pkwy and Peoria St

File Name: Ridgegate and Peoria AM

Site Code: IPO 609 Start Date: 7/7/2022

Page No : 3

		Ridgeg	ate Pkwy			Ridgega	ate Pkwy			Peo	ria St		
		East	bound			West	bound			South	bound		
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:0	0 AM to	08:45 AM	- Peak 1 of	1	•						"	
Peak Hour for Entire	e Intersection	on Begins	s at 07:15	AM									
07:15 AM	30	169	0	199	397	21	0	418	6	22	0	28	645
07:30 AM	37	145	0	182	418	29	0	447	7	24	0	31	660
07:45 AM	41	173	0	214	421	20	0	441	11	19	0	30	685
08:00 AM	34	155	0	189	363	24	0	387	6	20	0	26	602
Total Volume	142	642	0	784	1599	94	0	1693	30	85	0	115	2592
% App. Total	18.1	81.9	0		94.4	5.6	0		26.1	73.9	0		
PHF	.866	.928	.000	.916	.950	.810	.000	.947	.682	.885	.000	.927	.946

Lone Tree, CO Ridgegate King Soopers PM Peak

Ridgegate Pkwy and Peoria St

File Name: Ridgegate and Peoria PM

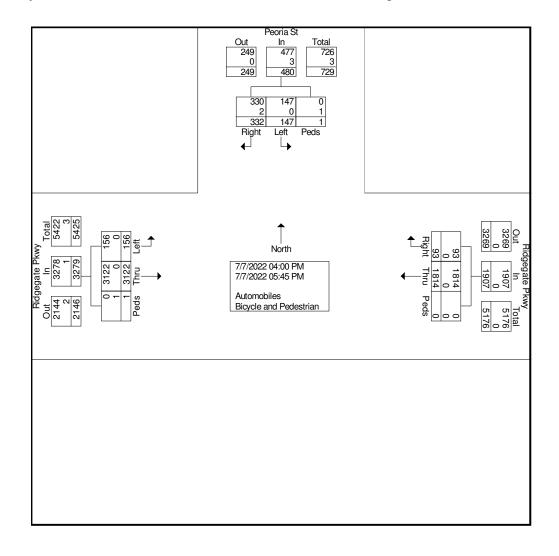
Site Code: IPO 609 Start Date: 7/7/2022

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		Ridgegg	ate Pkwy	Groups	iliteu- Aut	Ridgega		and redesi	IIaII	Pag	ria St		
		0 0	oound			0 0	bound				bound		
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
04:00 PM	14	354	0	368	217	11	0	228	17	40	0	57	653
04:15 PM	15	375	0	390	247	12	0	259	16	43	0	59	708
04:30 PM	27	387	0	414	227	10	0	237	11	44	0	55	706
04:45 PM	18	406	1	425	201	12	0	213	16	38	1	55	693
Total	74	1522	1	1597	892	45	0	937	60	165	1	226	2760
'				'					'			'	
05:00 PM	29	411	0	440	209	11	0	220	30	42	0	72	732
05:15 PM	19	420	0	439	256	13	0	269	22	50	0	72	780
05:30 PM	20	381	0	401	212	14	0	226	18	43	0	61	688
05:45 PM	14	388	0	402	245	10	0	255	17	32	0	49	706
Total	82	1600	0	1682	922	48	0	970	87	167	0	254	2906
,				'								'	
Grand Total	156	3122	1	3279	1814	93	0	1907	147	332	1	480	5666
Apprch %	4.8	95.2	0		95.1	4.9	0		30.6	69.2	0.2		
Total %	2.8	55.1	0	57.9	32	1.6	0	33.7	2.6	5.9	0	8.5	
Automobiles	156	3122	0	3278	1814	93	0	1907	147	330	0	477	5662
% Automobiles	100	100	0	100	100	100	0	100	100	99.4	0	99.4	99.9
Bicycle and Pedestrian	0	0	1	1	0	0	0	0	0	2	1	3	4
% Bicycle and Pedestrian	0	0	100	0	0	0	0	0	0	0.6	100	0.6	0.1

Lone Tree, CO Ridgegate King Soopers


PM Peak

Ridgegate Pkwy and Peoria St

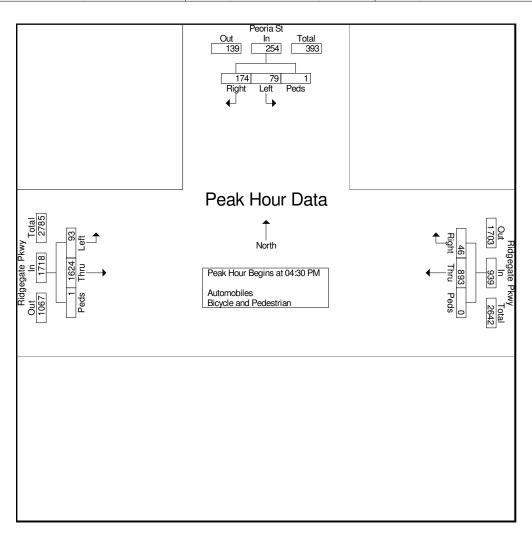
File Name: Ridgegate and Peoria PM

Site Code : IPO 609 Start Date : 7/7/2022

Page No : 2

Lone Tree, CO Ridgegate King Soopers

PM Peak


Ridgegate Pkwy and Peoria St

File Name: Ridgegate and Peoria PM

Site Code: IPO 609 Start Date: 7/7/2022

Page No : 3

		Ridgeg	ate Pkwy			Ridgega	ate Pkwy			Peo	ria St		
		East	bound			West	bound			South	nbound		
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:0	00 PM to	05:45 PM	- Peak 1 of	1	•				•			
Peak Hour for Entire	e Intersecti	on Begins	s at 04:30	PM									
04:30 PM	27	387	0	414	227	10	0	237	11	44	0	55	706
04:45 PM	18	406	1	425	201	12	0	213	16	38	1	55	693
05:00 PM	29	411	0	440	209	11	0	220	30	42	0	72	732
05:15 PM	19	420	0	439	256	13	0	269	22	50	0	72	780
Total Volume	93	1624	1	1718	893	46	0	939	79	174	1	254	2911
% App. Total	5.4	94.5	0.1		95.1	4.9	0		31.1	68.5	0.4		
PHF	.802	.967	.250	.976	.872	.885	.000	.873	.658	.870	.250	.882	.933

APPENDIX B

Future Traffic Projections and Adjacent Traffic Studies

DRCOG Traffic Projections: Ridgegate King Soopers

			Growth	Annual
Location	2020	2050	Factor	Growth
Ridgegate Parkway E/O Peoria St	23,000	43,000	1.87	2.11%

Traffic Impact Study

RidgeGate Couplet Apartments

Lone Tree, Colorado

Prepared for:

Century Communities

Kimley»Horn

TRAFFIC IMPACT STUDY

RidgeGate Couplet Apartments

Lone Tree, Colorado

Prepared for Century Communities

8390 E. Črescent Parkway Suite 650 Greenwood Village, Colorado 80111

Prepared by Kimley-Horn and Associates, Inc.

4582 South Ulster Street Suite 1500 Denver, Colorado 80237 (303) 228-2300

April 2023

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

1.0 EXECUTIVE SUMMARY

RidgeGate Couplet Apartments is proposed to be located within the eastern portion in between the eastbound (EB) and westbound (WB) travel lanes of RidgeGate Parkway, east of future Rhapsody Road, in Lone Tree, Colorado. The project is proposed to include 349 multifamily dwelling units. It is expected that RidgeGate Couplet Apartments will be completed in the next several years. Therefore, analysis was conducted for the 2025 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with the City of Lone Tree standards and requirements:

- RidgeGate Parkway WB & Rhapsody Road (#1)
- RidgeGate Parkway WB & West Road (#2)
- RidgeGate Parkway WB & East Road (#3)
- RidgeGate Parkway EB & Rhapsody Road (#4)
- RidgeGate Parkway EB & West Road (#5)
- RidgeGate Parkway EB & East Road (#6)

In addition, the proposed full movement West Access (#7) on the West Road and the proposed full movement East Access (#8) on the East Road were evaluated.

Regional access to the project will be provided by Interstate 25 (I-25), RidgeGate Parkway, and Chambers Road. Primary access will be provided by RidgeGate Parkway while direct access will be provided by a proposed full movement West Access (#7) along the proposed private north-south road to the west of the site—identified as West Road within this study—and a proposed full movement East Access (#8) along the proposed north-south road to the east of the site, identified as East Road herein.

RidgeGate Couplet Apartments is expected to generate approximately 1,586 weekday daily trips, with 129 of these trips occurring during the morning peak hour and 136 of these trips occurring during the afternoon peak hour.

Based on the analysis presented in this report, Kimley-Horn believes RidgeGate Couplet Apartments will be successfully incorporated into the existing and future roadway network. Analysis of the existing street network, the proposed project development, and expected traffic volumes resulted in the following recommendations:

2025 Recommendations

- Bicycle lanes and sidewalk are anticipated to be provided along each side of Rhapsody Road. Sidewalk is anticipated to be provided traveling north-south along the perimeter of the project site along West Road and East Road, in addition to sidewalk anticipated to be provided along the north and south ends of the project to connect West Road to East Road. Crosswalks are also anticipated to be provided in each direction at the RidgeGate Parkway WB and EB & Rhapsody Road intersections (#1 & #4). Crosswalks are also anticipated to be provided at the West Road and East Road intersections (#2, #3, #5, #6) to cross east-west across East Road and West Road. Sidewalk will also be provided onsite as appropriate to provide safe access to the apartment units from the parking and to and from other amenities anticipated to be provided by the apartment complex to residents.
- Rhapsody Road is proposed to be constructed as part of the RidgeGate King Soopers development with one through lane in each direction with on-street bicycle lanes and on-street parallel parking along both sides of the roadway. The RidgeGate Parkway WB & Rhapsody Road (#1) and the RidgeGate Parkway EB & Rhapsody Road (#4) intersections are anticipated to be signalized 'T'-intersections operating with full turning movements as appropriate on the one-way couplet. At these T-intersections, R3-1 No Right Turn signs should be installed at the approaches to RidgeGate Parkway and R6-1 "ONE WAY" signs should be posted along RidgeGate Parkway as appropriate to prevent vehicles from turning right and entering oncoming traffic. The RidgeGate Parkway WB & Rhapsody Road (#1) intersection should provide a westbound left turn lane with 190 feet in length and a 110-foot taper. A northbound left turn lane should also be provided with 120 feet in length and a 50-foot taper. The RidgeGate Parkway EB & Rhapsody Road (#4) intersection should provide an eastbound left turn lane 101 feet in length with a 75-foot taper. This intersection should also provide a

southbound left turn lane with 120 feet in length and a 50-foot taper. Any improvements to the Rhapsody Road intersections (#1 and #4) should be provided in construction of the RidgeGate King Soopers development. Of note, as Rhapsody Road is anticipated to provide north and south legs on either side of RidgeGate Parkway before 2045, it is recommended that sufficient pavement width be provided, and chevron striping be placed where the future southbound through and northbound through lanes will be placed.

- RidgeGate Parkway is anticipated to use the existing available pavement width to restripe the
 roadway to provide three through lanes in each direction within the study area during this
 horizon. It is recommended that the existing striped-out inside lane along RidgeGate Parkway
 in both directions be striped as the third through lane.
- Along RidgeGate Parkway WB, westbound left turn lanes should be provided at the West Road (#2) and East Road (#3) intersections. At the West Road (#2) intersection, a westbound left turn lane 190 feet in length with a 120-foot taper should be provided. The East Road (#3) intersection should also provide a westbound left turn lane 190 feet in length with a 120-foot taper. The northbound approach to each of these intersections are anticipated to be for northbound left turning movements and should be stop-controlled with R1-1 "STOP" signs placed at each northbound approach to these intersections. R3-1 No Right Turn signs should be placed underneath the "STOP" signs while R6-1 "ONE WAY" signs should be placed along RidgeGate Parkway WB as appropriate to prevent vehicles from turning right and entering oncoming traffic.
- Along RidgeGate Parkway EB, eastbound left turn lanes should be provided at the West Road (#5) and East Road (#6) intersections. Due to intersection spacing, the East Road (#5) intersection should provide an eastbound left turn lane 175 feet in length with a 75-foot taper. At the East Road (#6) intersection, an eastbound left turn lane with 190 feet in length and a 75-foot taper should be provided. The southbound approach to each of these intersections are anticipated to be for southbound left turning movements and should be stop-controlled with R1-1 "STOP" signs placed at each southbound approach to these intersections. R3-1 No Right Turn signs should be placed underneath the "STOP" signs while R6-1 "ONE WAY" signs should be placed along RidgeGate Parkway EB as appropriate to prevent vehicles from turning right and entering oncoming traffic.
- The East Road and West Road are both anticipated to operate well with one through lane in each direction with turning movements occurring from within the proposed through lanes.

• Two full movement accesses are proposed to be constructed with this project, with the West Access (#7) located along the West Road and the East Access (#8) located along the East Road. Each approach exiting the development should operate well with a shared left/right turn lane and should be stop-controlled with an R1-1 "STOP" sign.

2045 Recommendations

- The north and south legs of Rhapsody Road on either side of RidgeGate Parkway are anticipated to be constructed before the 2045 long-term horizon. When these legs are constructed, the two Rhapsody Road intersections (#1 and #4) will become four-leg signalized intersections. When this construction occurs, a westbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway WB & Rhapsody Road (#1) intersection while an eastbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway EB & Rhapsody Road (#4) intersection.
- The north and south legs of East Road on either side of RidgeGate Parkway are anticipated to be constructed before the 2045 long-term horizon. When these legs are constructed, the two East Road intersections (#3 and #6) will become four-leg signalized intersections. When this construction occurs, a westbound right turn lane 190 feet in length with a 120-foot taper should be provided at the RidgeGate Parkway WB & East Road (#3) intersection while the RidgeGate Parkway EB & East Road (#6) intersection is anticipated to operate well with eastbound right turning movements occurring from within the third eastbound through lane. The northbound and southbound approaches to each of these intersections along East Road are anticipated to operate well through the 2045 horizon with a shared lane for left/through or through/right turn lanes where appropriate.
- When the parcel to the west of the project site is developed, access along West Road should align with the West Access (#7) proposed in this project if an access to that development is anticipated along West Road. In like manner, when the parcel to the east of the project site is developed, access along East Road should align with the East Access (#8) constructed in this project if an access to that development is anticipated along East Road.

General Recommendations

 Any onsite or offsite improvements should be incorporated into the Civil Drawings and conform to standards of the City of Lone Tree and the Manual on Uniform Traffic Control Devices (MUTCD) – 2009 Edition.

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the *Trip Generation Manual*¹ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report average rate equations that apply to Multifamily Mid-Rise Housing (ITE Land Use Code 221) for traffic associated with the development.

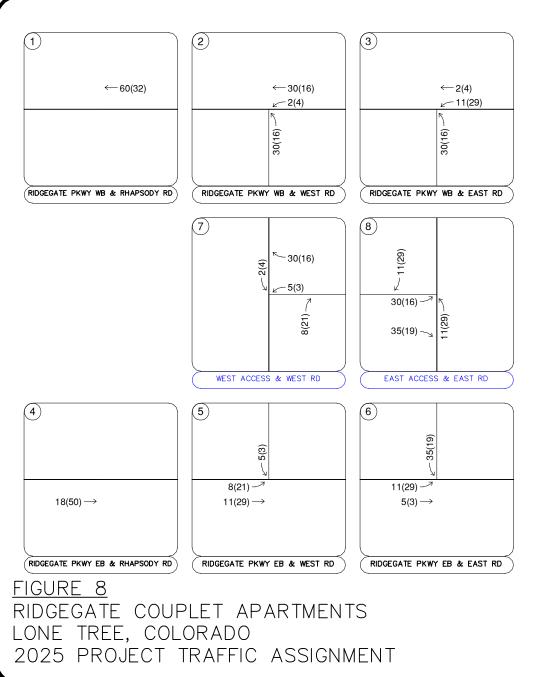
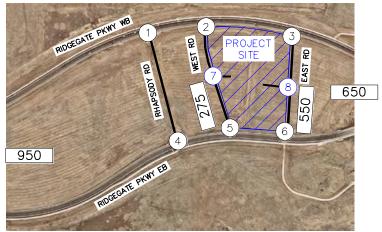
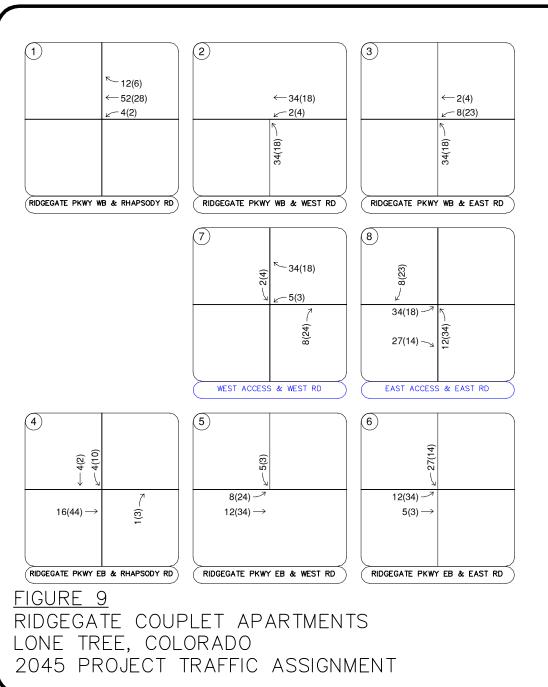

RidgeGate Couplet Apartments is expected to generate approximately 1,586 weekday daily trips, with 129 of these trips occurring during the morning peak hour and 136 of these trips occurring during the afternoon peak hour. Calculations were based on the procedure and information provided in the ITE *Trip Generation Manual*, 11th Edition – Volume 1: User's Guide and Handbook, 2021. **Table 1** summarizes the estimated trip generation for the RidgeGate Couplet Apartments. The trip generation worksheets for RidgeGate Couplet Apartments as well as the adjacent proposed future retail and affordable housing developments are included in **Appendix C**.

Table 1 – RidgeGate Couplet Apartments Traffic Generation


			Weekda	y Vehicl	e Trips		
Land Use and Size	Daily	AN	l Peak H	our	PM	Peak Ho	our
	Dally	ln	Out	Total	In	Out	Total
Multifamily Mid-Rise Housing (ITE 221) – 349 Dwelling Units	1,586	30	99	129	83	53	136

. ...

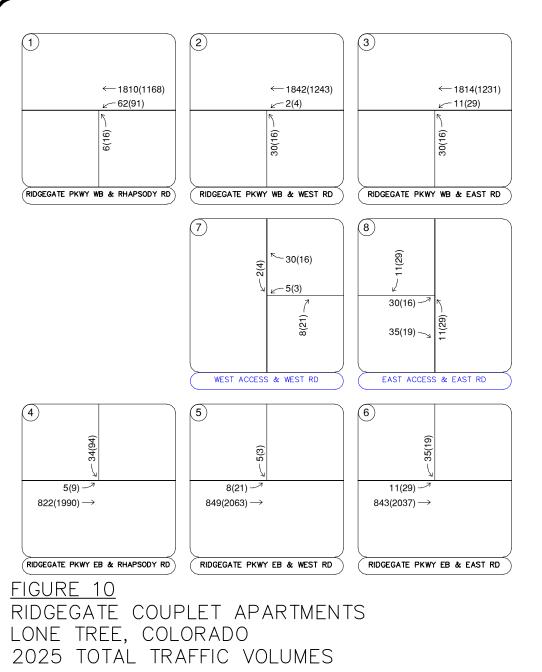
¹ Institute of Transportation Engineers, *Trip Generation Manual*, Eleventh Edition, Washington DC, 2021.


Study Area Key Intersection

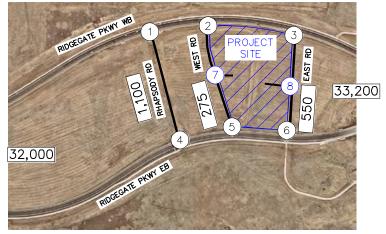
Project Access Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

Study Area Key Intersection

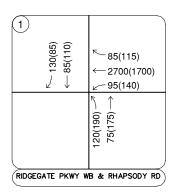


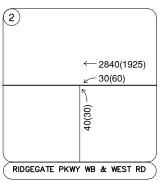
Project Access Intersection

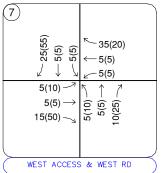


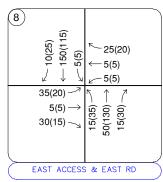
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

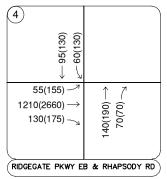
Study Area Key Intersection

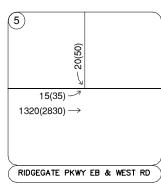



Project Access Intersection


XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes







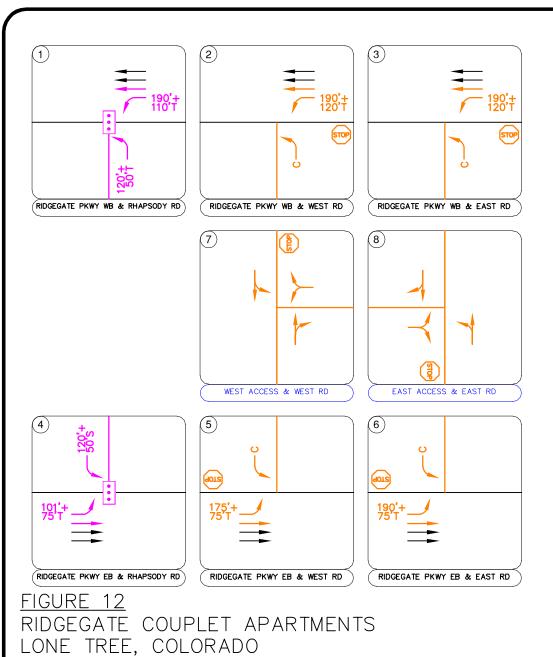
3	
^ 85(85)	← 45(110) ← 2725(1855) ← 75(60)
	$65(50) \rightarrow 45(115) \rightarrow$
RIDGEGATE PKWY	WB & EAST RD

(9) ← 70(35) ← 110(95)	
65(175) → 1260(2705) → 15(5) →	5(20) → 20(75) →
RIDGEGATE PKWY	EB & EAST RD

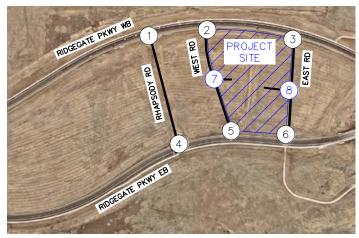
FIGURE 11 RIDGEGATE COUPLET APARTMENTS LONE TREE, COLORADO 2045 TOTAL TRAFFIC VOLUMES

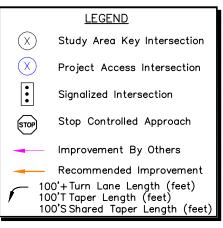
LEGEND

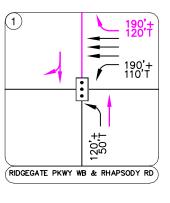
Study Area Key Intersection

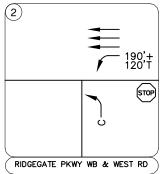

Project Access Intersection

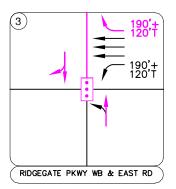
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

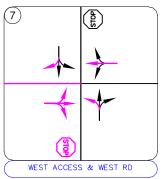

Estimated Daily Traffic Volume

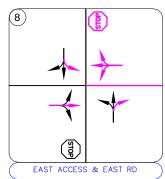


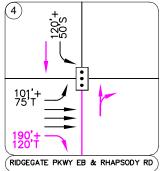

2025 RECOMMENDED GEOMETRY AND CONTROL

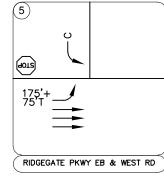


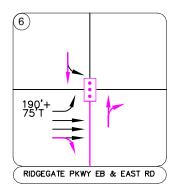
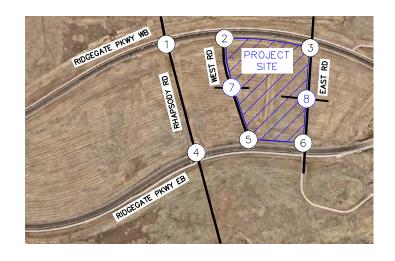
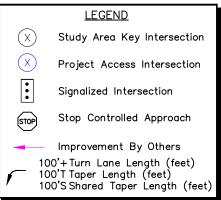


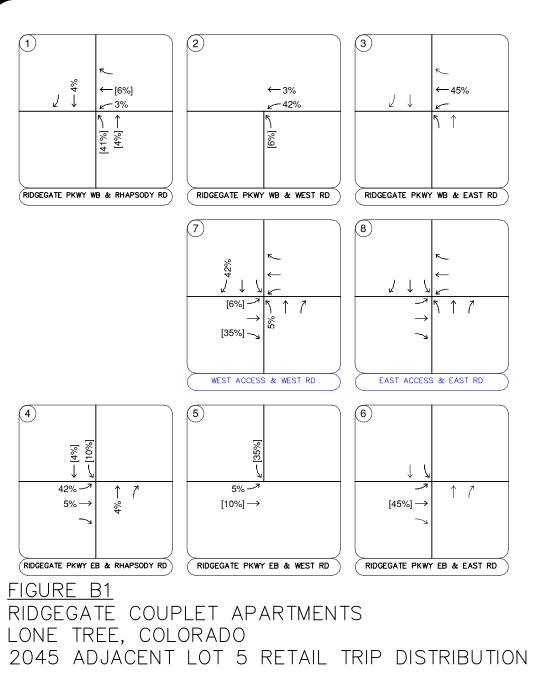


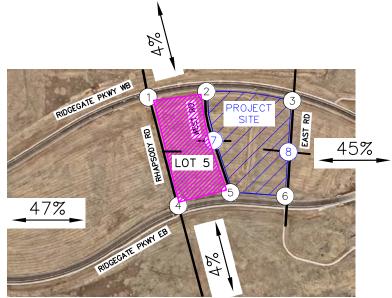


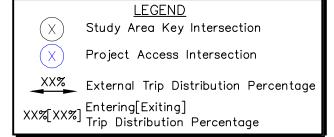


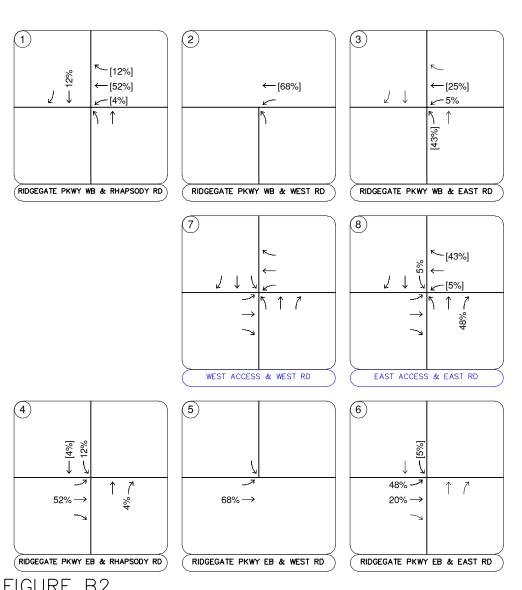


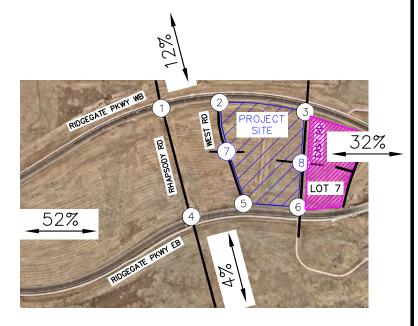




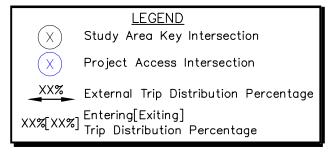

FIGURE 13
RIDGEGATE COUPLET APARTMENTS
LONE TREE, COLORADO
2045 RECOMMENDED GEOMETRY AND CONTROL

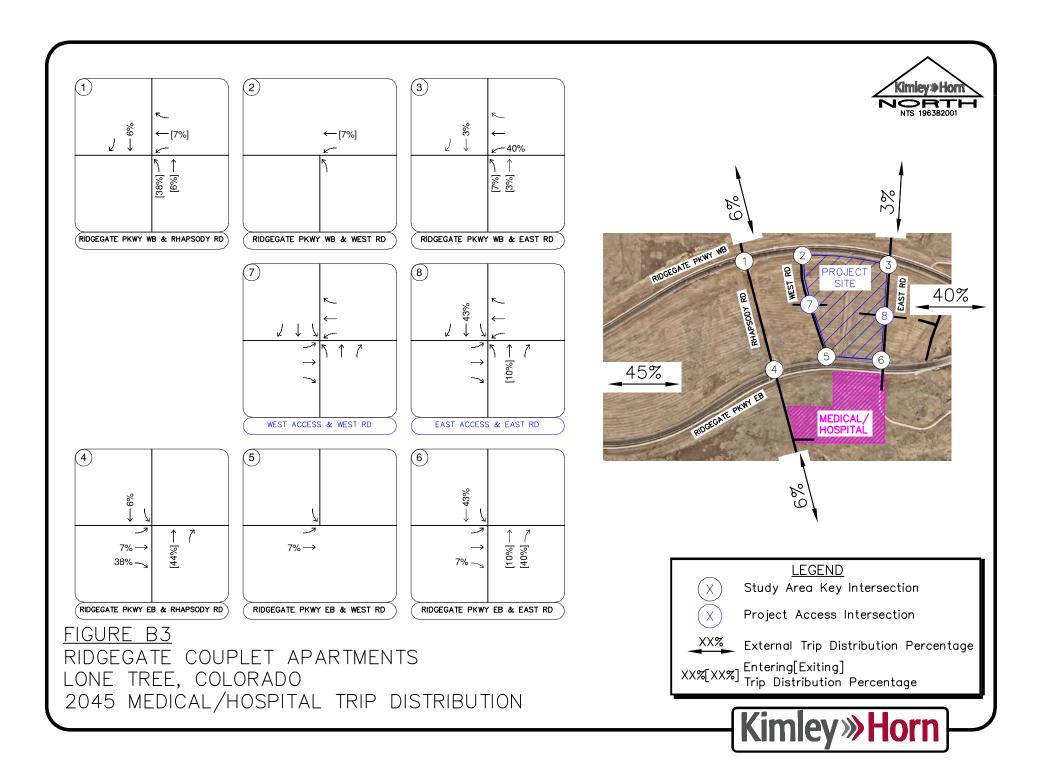


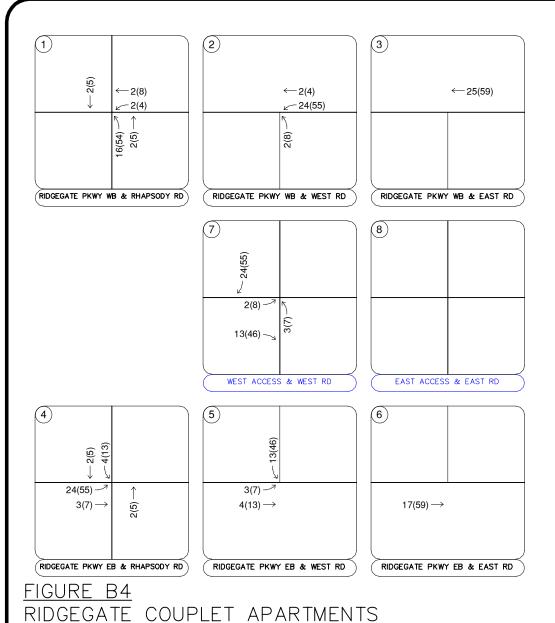










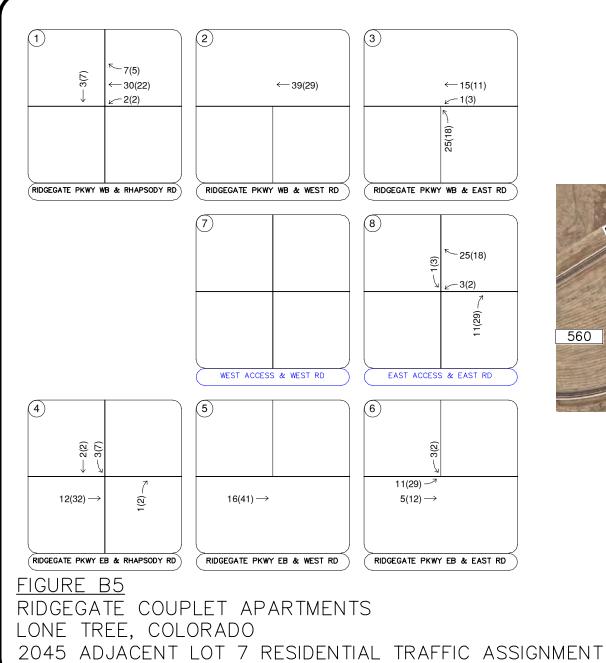


2045 ADJACENT LOT 5 RETAIL TRAFFIC ASSIGNMENT

LONE TREE, COLORADO

Project Access Intersection

XXX(XXX) Weekday AM(PM)

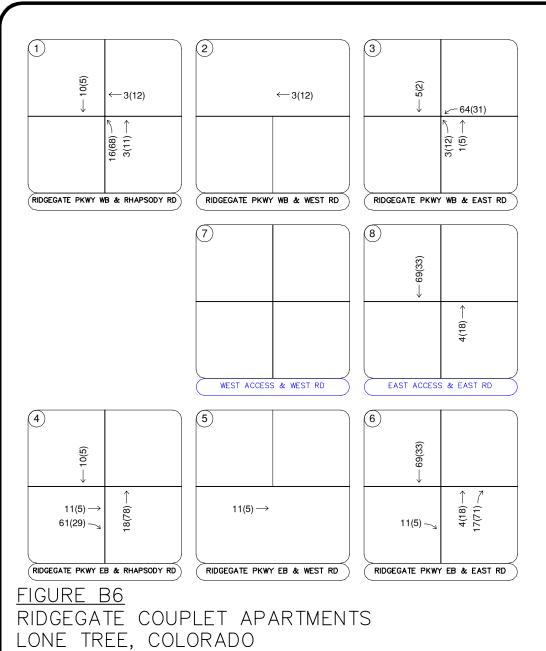

Peak Hour Traffic Volumes

XX,X00 Estimated Daily Traffic Volume

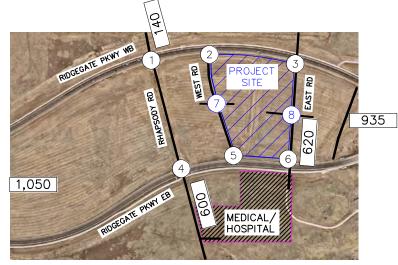


LEGEND

Study Area Key Intersection


Study Area Key Intersection

Project Access Intersection


XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

2045 MEDICAL/HOSPITAL TRAFFIC ASSIGNMENT

LEGEND

Study Area Key Intersection

Project Access Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

Estimated Daily Traffic Volume

RidgeGate Couplet

LONE TREE, CO

SITE PLAN NOTES

1. THE PROPERTY DESCRIBED HEREIN IS SUBJECT TO ALL APPLICABLE REQUIREMENTS OF THE LONE TREE ZONING CODE AND DESIGN STANDARDS, INCLUDING BUT NOT LIMITED TO, PROPERTY MAINTENANCE, LIGHTING, PARKING, SIGNAGE, LANDSCAPING AND OUTDOOR STORAGE, EXCEPT AS MAY OTHERWISE BE ADDRESSED IN AN APPROVED PLANNED DEVELOPMENT PLAN, SUB-AREA PLAN, OR OTHER APPLICABLE PLAN OR AGREEMENT APPROVED BY THE CITY.

2. THE APPLICANT ASSUMES RESPONSIBILITY TO ENSURE THE PROJECT IS COMPLETED IN ACCORDANCE WITH THE APPROVED SIP AND ANY ASSOCIATED MATERIALS SAMPLE BOARDS AND FURTHER ASSUMES THE RISK ASSOCIATED WITH ANY CHANGES OR OMISSIONS MADE WITHOUT PRIOR CITY APPROVAL. MODIFICATIONS TO STRUCTURES OR SITES MAY REQUIRE AN AMENDMENT TO THE SIP AS DETERMINED BY THE CITY'S COMMUNITY DEVELOPMENT DIRECTOR, PER SEC. 16-27-180. UNAUTHORIZED CHANGES OR OMISSIONS MADE WITHOUT PRIOR CITY APPROVAL CORRECTIVE ACTIONS, DELAY OF PERMITS OR CITATIONS FOR ZONING VIOLATIONS WITH ASSOCIATED FINES AND LEGAL MEASURES. BUILDING PLANS SHALL CONFORM TO THE APPROVED SIP.

3. WITHIN SITE TRIANGLES, AS SHOWN, LIMITED LANDSCAPING SHALL BE ALLOWED WITH NO SOLID STRUCTURES PERMITTED AS STATED IN THE CITY OF LONE TREE'S LANDSCAPE DESIGN GUIDELINES AND STANDARDS FOR LANDSCAPING. LANDSCAPING WITHIN THE SIGHT TRIANGLE SHALL BE MAINTAINED BY THE PROPERTY OWNER OR APPROPRIATE ASSOCIATION OR DISTRICT, AS MAY BE IDENTIFIED IN MAINTENANCE AGREEMENTS RECORDED WITH THE DOUGLAS COUNTY CLERK AND RECORDER'S OFFICE.

4. THE OWNER IS RESPONSIBLE FOR THE INSTALLATION OF ALL ROADWAY SIGNAGE, INCLUDING "NO PARKING/FIRE LANE" SIGNAGE, AS REQUIRED BY THE CITY PUBLIC WORKS DEPARTMENT AND/OR THE FIRE DISTRICT. SUCH SIGNAGE SHALL BE MAINTAINED BY THE PROPERTY OWNER OR APPROPRIATE ASSOCIATION OR DISTRICT, AS MAY BE IDENTIFIED IN MAINTENANCE AGREEMENTS RECORDED WITH THE DOUGLAS COUNTY CLERK AND RECORDER'S OFFICE.

5. SITE LANDSCAPING, SITE AMENITIES AND FURNISHINGS, AND ALL SITE IMPROVEMENTS INCLUDING, BUT NOT LIMITED TO, SIDEWALKS AND PARKING AREAS SHALL BE MAINTAINED IN A STATE OF GOOD REPAIR CONSISTENT WITH THE APPROVED SIP AND THE LONE TREE MUNICIPAL CODE AND DESIGN GUIDELINES AND STANDARDS. SUCH MAINTENANCE SHALL INCLUDE THE REGULAR MAINTENANCE OF PET WASTE STATIONS (WHEN PRESENT), TO INCLUDE WASTE COLLECTION AND WASTE BAG REPLACEMENT. LANDSCAPE PLANTINGS MUST BE ALIVE AND ALL IRRIGATION MUST BE FUNCTIONAL. ALL MAINTENANCE OBLIGATIONS SHALL BE COMPLETED BY THE PROPERTY OWNER OR APPROPRIATE ASSOCIATION OR DISTRICT, AS MAY BE IDENTIFIED IN MAINTENANCE AGREEMENTS RECORDED WITH THE DOUGLAS COUNTY CLERK AND RECORDER'S OFFICE.

6. THE CITY OF LONE TREE REQUIRES THAT MAINTENANCE ACCESS BE PROVIDED TO ALL STORM DRAINAGE FACILITIES TO ASSURE CONTINUOUS OPERATIONAL CAPABILITY OF THE SYSTEM. THE PROPERTY OWNER SHALL BE RESPONSIBLE FOR THE MAINTENANCE OF ALL DRAINAGE FACILITIES, INCLUDING INLETS, PIPES, CULVERTS, CHANNELS, DITCHES, HYDRAULIC STRUCTURES AND DETENTION BASINS LOCATED ON THEIR LAND UNLESS MODIFIED BY THE SITE IMPROVEMENT PLAN IMPROVEMENTS AGREEMENT. SHOULD THE OWNER FAIL TO ADEQUATELY MAINTAIN SAID FACILITIES, THE CITY OF LONE TREE SHALL HAVE THE RIGHT TO ENTER SAID LAND FOR THE PURPOSES OF OPERATIONS AND MAINTENANCE. ALL SUCH MAINTENANCE COSTS WILL BE ASSESSED TO THE PROPERTY OWNER OR THE RESPONSIBLE MAINTENANCE AUTHORITY.

LAND USE CHART

GROSS AREA	280,927 SF	(6.449 AC)	
TOTAL DWELLING UNITS	349		
GROSS DENSITY	54.12 DU/A0	C	
DWELLING UNIT BREAKDOWN			
UNIT TYPE:	DWELLING UNITS	TOTAL BEDROOMS	% (DU)
UNIT TYPE: ONE BEDROOM	DWELLING UNITS 223	TOTAL BEDROOMS 223	% (DU) 63.90
ONE BEDROOM	223	223	63.90

PROJECT PARKING		
	PROVIDED	*REQUIRED
OFF-STREET PARKING GARAGE	569	
OFF-STREET STANDARD	4	
ON-STREET DIAGONAL	14	644
ON-STREET PARALLEL	23	611
STANDARD DELIVERY AND LOADING	3	
RESIDENTIAL LOADING	2	
TOTAL	615	611

* REQUIRED SPACES ARE CALCULATED AS FOLLOWED: 1.5 SPACES PER DWELLING = 524 SPACES .25 SPACE PER DWELLING FOR GUESTS = 87 SPACES

PROJECT BIKE PARKING		
	PROVIDED	*REQUIRED
SURFACE MOUNTED BIKE PARKING	18	12
TOTAL	18	12

* REQUIRED SPACES ARE CALCULATED AS FOLLOWED:

"MINIMUM NUMBER OF BICYCLE PARKING SPACES SHALL BE PROVIDED EQUAL IN NUMBER TO PERCENT (2%) OF THE TOTAL NUMBER OF AUTOMOBILE PARKING SPACES PROVIDED"

THE TOTAL NUMBER OF AUTOMOBILE PARKING SPACES
-AUTOMOBILE PARKING SPACES PROVIDED = 615

-AUTOMOBILE PARKING SPACES PROVIDED = 615 - .02 X 615 = <u>12</u> REQUIRED BIKE PARKING SPACES

SHEET INDEX

Sheet Number	Sheet Title Cover				
2	Urban Context Plan				
3	Overall Site Plan				
4	North Site and Plan Enlargement				
5	_				
	South Site Plan Enlargement				
6	Streetscape Sections				
7	Site Amenity Details				
8	Site Amenity Details				
9	Site Amenity Details				
10	Overall Landscape Plan				
11	Landscape Enlargement				
12	Landscape Enlargement				
13	Landscape Notes & Details				
14	Grading Plan				
15	Utility Plan				
16	Level 01				
17	Level 02				
18	Level 03				
19	Level 04				
20	Level 05				
21	Roof Plan				
22	Interior Corner Units				
23	Site Sections				
24	Garage Sections				
25	Building Elevations (1 of 2)				
26	Building Elevations (2 of 2)				
27	3D Views (1 of 6)				
28	3D Views (2 of 6)				
29	3D Views (3 of 6)				
30	3D Views (4 of 6)				
31	, ,				
	3D Views (5 of 6)				
32	3D Views (6 of 6)				
33	Details				
34	Building Materials				
35	Shadow Analysis				
36	Winter Shadows on Level 03				
37	Photometric				
38	Photometric				
39	Photometric				
40	Photometric				
41	Lighting Cut-Sheet				
42	Lighting Cut-Sheet				
43	Lighting Cut-Sheet				
44	Lighting Cut-Sheet				
45	Lighting Cut-Sheet				
46	Lighting Cut-Sheet				

RIDGEGATE COUPLET

DESIGN DEVELOPMENT

PREPARED BY:

priorie 970.224.3826 | lax 970.223.0037 | www.inpleydes

RIPLEY DESIGN INC.
Sam Coutts
419 Canyon Ave. Suite 200
Fort Collins, CO 80521
p. 970.224.5828

DEVELOPER

f. 970.225.6657

CENTURY LIVING, LLC 8390 E Crescent Pkwy #650 Greenwood Village, CO 80111 p. 303.770.8300

ARCHITECT

Sarah Hunter 3660 Blake St. Suite 500 Denver, CO 80205 p. 303-389-6004

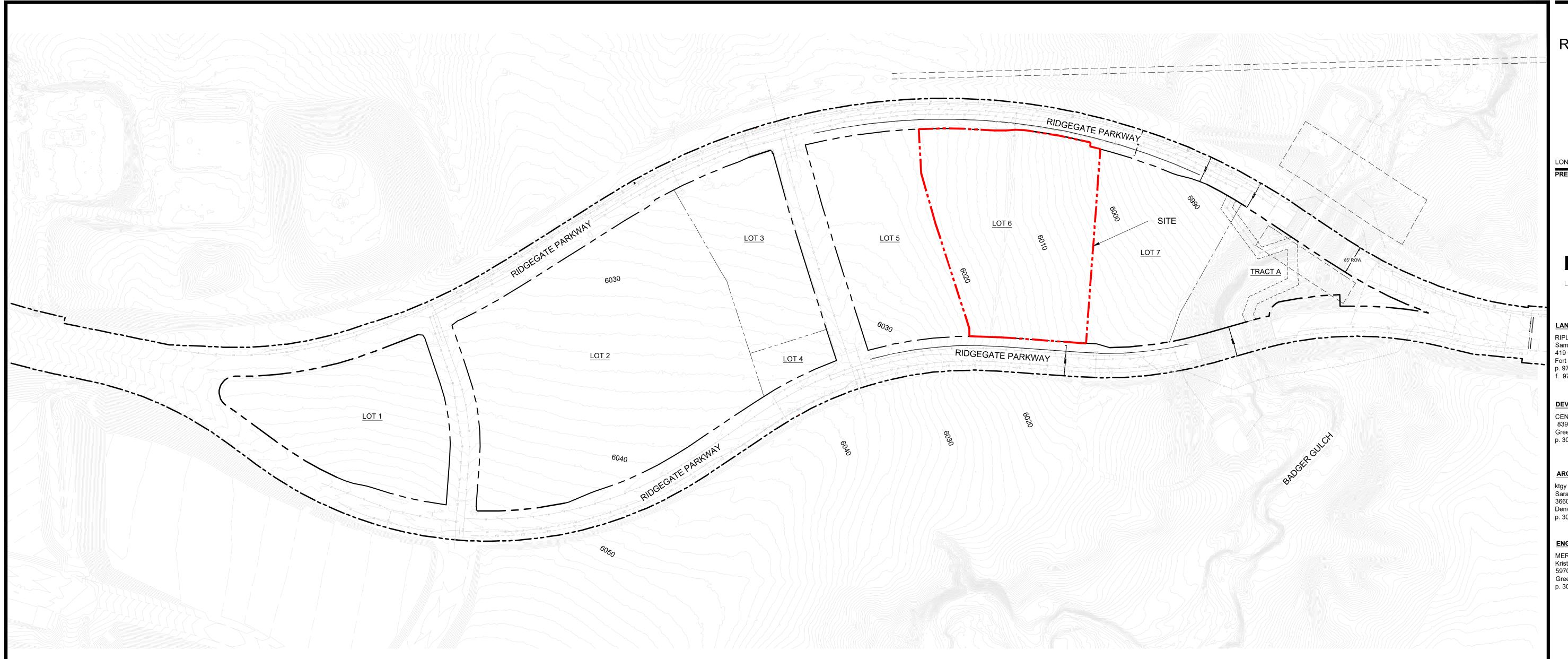
NGINEER

MERRICK & COMPANY Kristofer Wiest 5970 Greenwood Plaza Blvd Greenwood Village, CO 80111 p. 303.353.3695

ORIGINAL SIZE 24X30

.000		
No.	DESCRIPTION	DATE
01	DRC SD SUBMITTAL	10/20/202
02	DRC DD SUBMITTAL	12/12/202
03	DRC DD 2 SUBMITTAL	02/22/202
REVI	SIONS	
No.	DESCRIPTION	DATE

COVER


CEAL.

PROJECT No.: R22-035
DRAWN BY: EC/AG
REVIEWED BY: SC

DRAWING NUMBER:

1 OF 46

RIDGEGATE COUPLET

DESIGN DEVELOPMENT

LONE TREE, CO
PREPARED BY:

LANDSCAPE ARCHITECTURE, LAND PLANNING

419 Canyon Ave. Suite 200 Fort Collins, CO 80521
phone 970.224.5828 | fax 970.225.6657 | www.ripleydesigninc.com

LANDSCAPE ARCHITECT

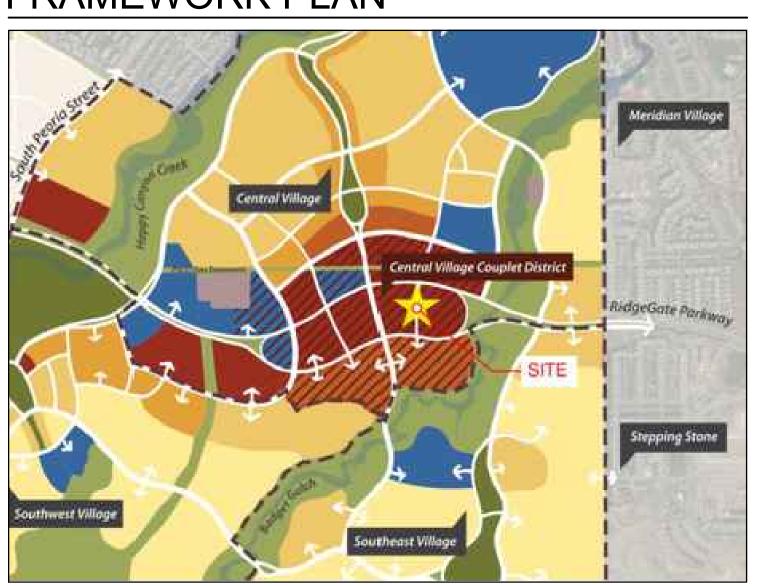
RIPLEY DESIGN INC. Sam Coutts 419 Canyon Ave. Suite 200 Fort Collins, CO 80521 p. 970.224.5828 f. 970.225.6657

DEVELOPER

CENTURY LIVING, LLC 8390 E Crescent Pkwy #650 Greenwood Village, CO 80111 p. 303.770.8300

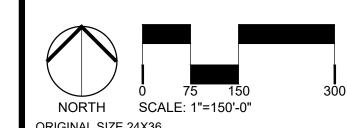
ARCHITECT

ktgy Sarah Hunter 3660 Blake St. Suite 500 Denver, CO 80205 p. 303-389-6004


ENGINEER

MERRICK & COMPANY Kristofer Wiest 5970 Greenwood Plaza Blvd Greenwood Village, CO 80111 p. 303.353.3695

PROJECT CONTEXT



FRAMEWORK PLAN

BLOCKFACE DIAGRAM

ORIGI	NAL SIZE 24X36	
ISSU	ED	
No.	DESCRIPTION	DATE
01	DRC SD SUBMITTAL	10/20/2022
02	DRC DD SUBMITTAL	12/12/2022
03	DRC DD 2 SUBMITTAL	02/22/2023
REVI	SIONS	
No.	DESCRIPTION	DATE

URBAN CONTEXT PLAN

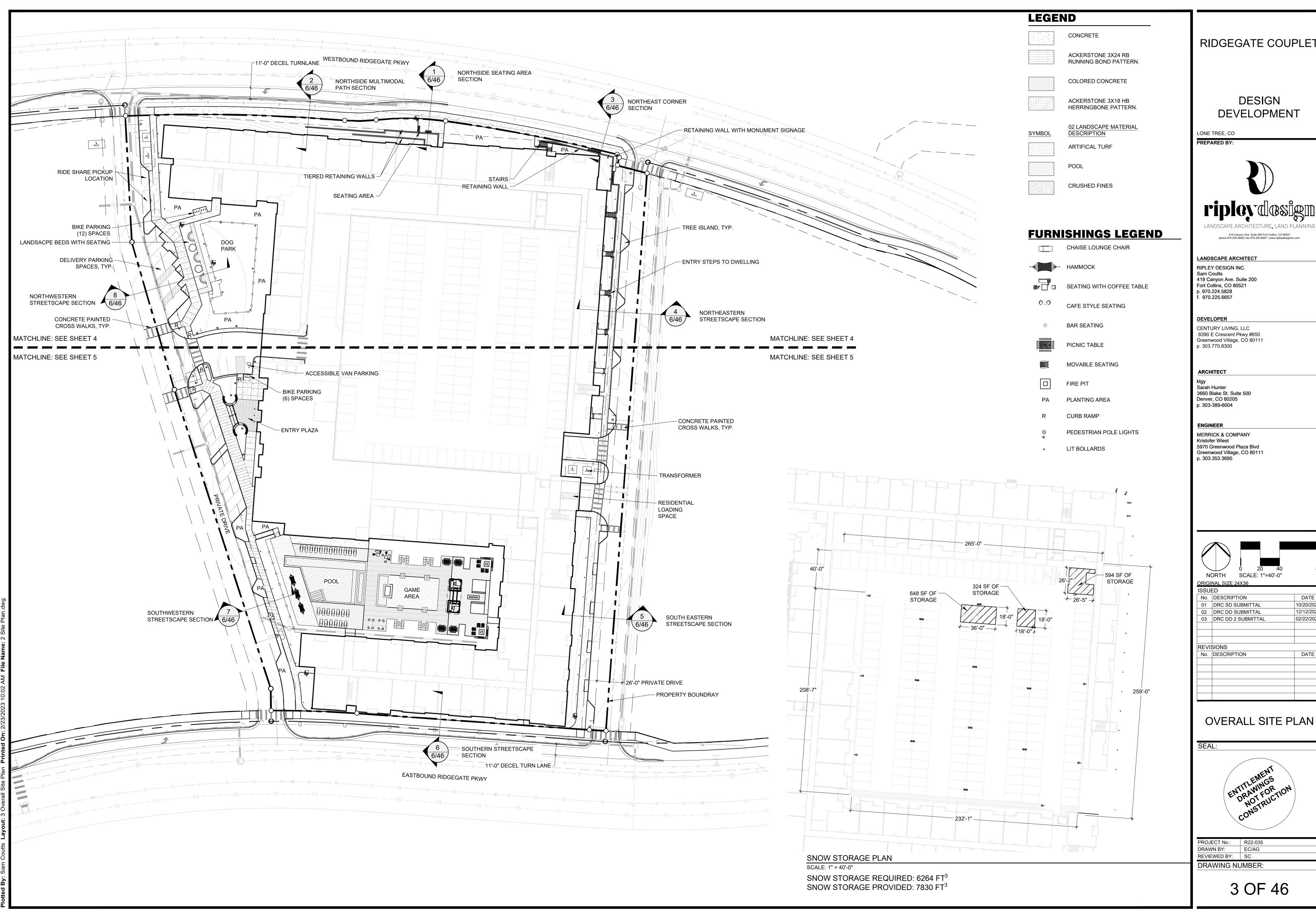
SEAL:

ENTITLEMENT

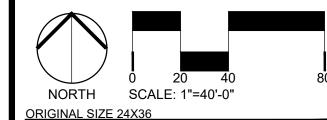
ENTITLEMENT

CONSTRUCTION

CONSTRUCTION

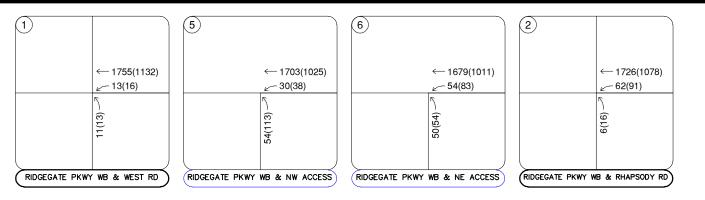

PROJECT No.: R22-035

DRAWN BY: EC/AG

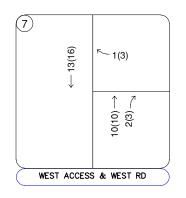

REVIEWED BY: SC

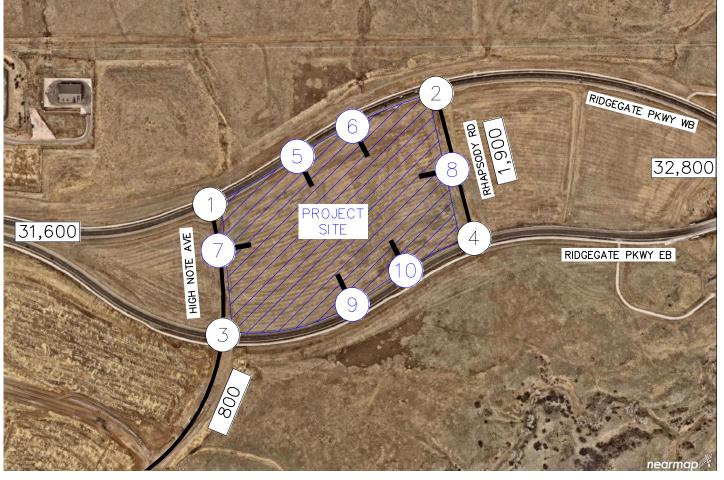
DRAWING NUMBER:

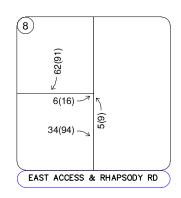

2 OF 46

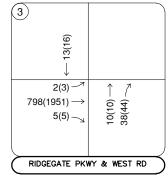


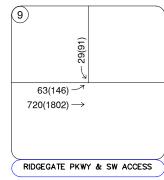
RIDGEGATE COUPLET

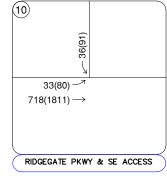


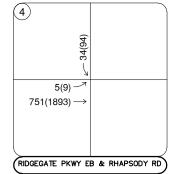

ISSUED				
No.	DESCRIPTION	DATE		
01	DRC SD SUBMITTAL	10/20/2022		
02	DRC DD SUBMITTAL	12/12/2022		
03	DRC DD 2 SUBMITTAL	02/22/2023		
REVISIONS				
No.	DESCRIPTION	DATE		





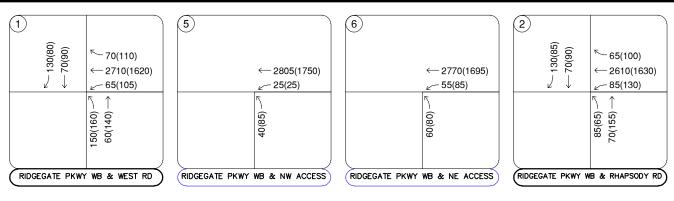




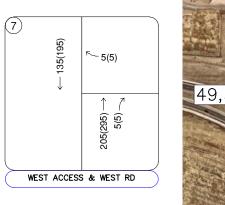


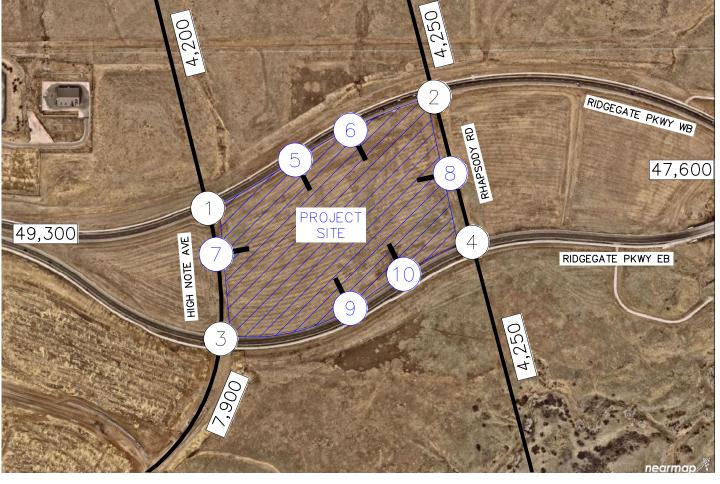
X Study Area Key Intersection

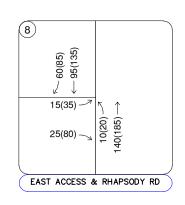
Project Access Intersection

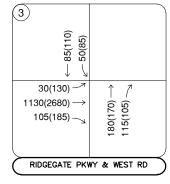

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

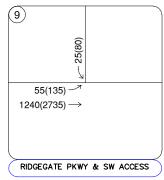
XX,X00 Estimated Daily Traffic Volume

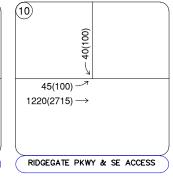

FIGURE 13

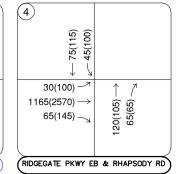



RIDGEGATE KING SOOPERS LONE TREE, COLORADO 2025 TOTAL TRAFFIC VOLUMES





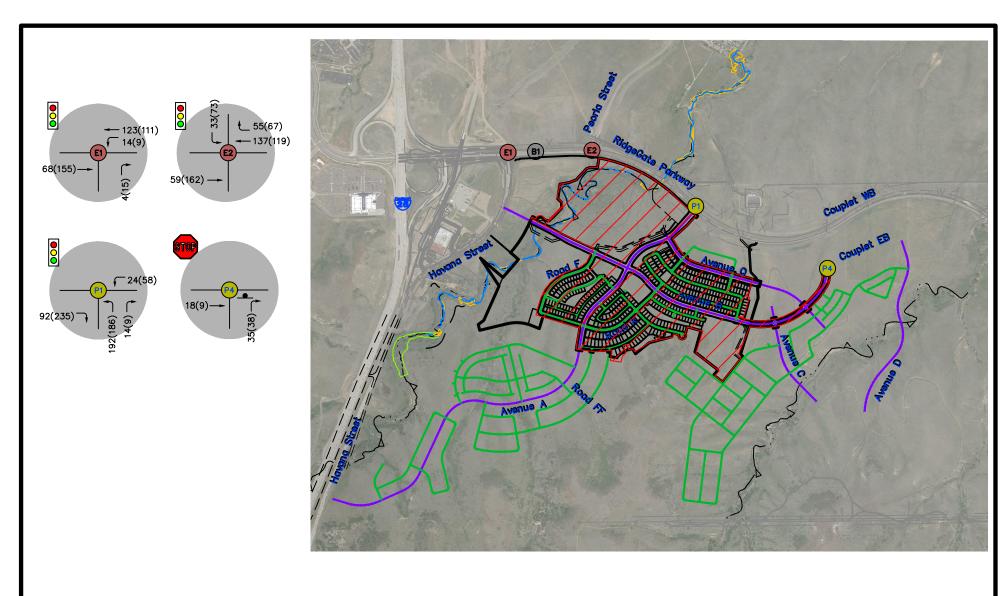




LEGEND

X Study Area Key Intersection

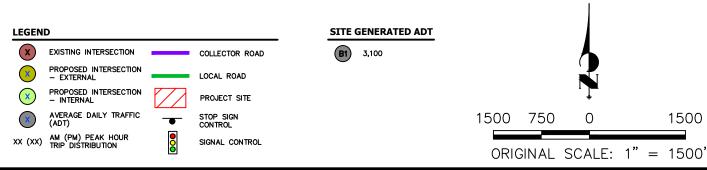
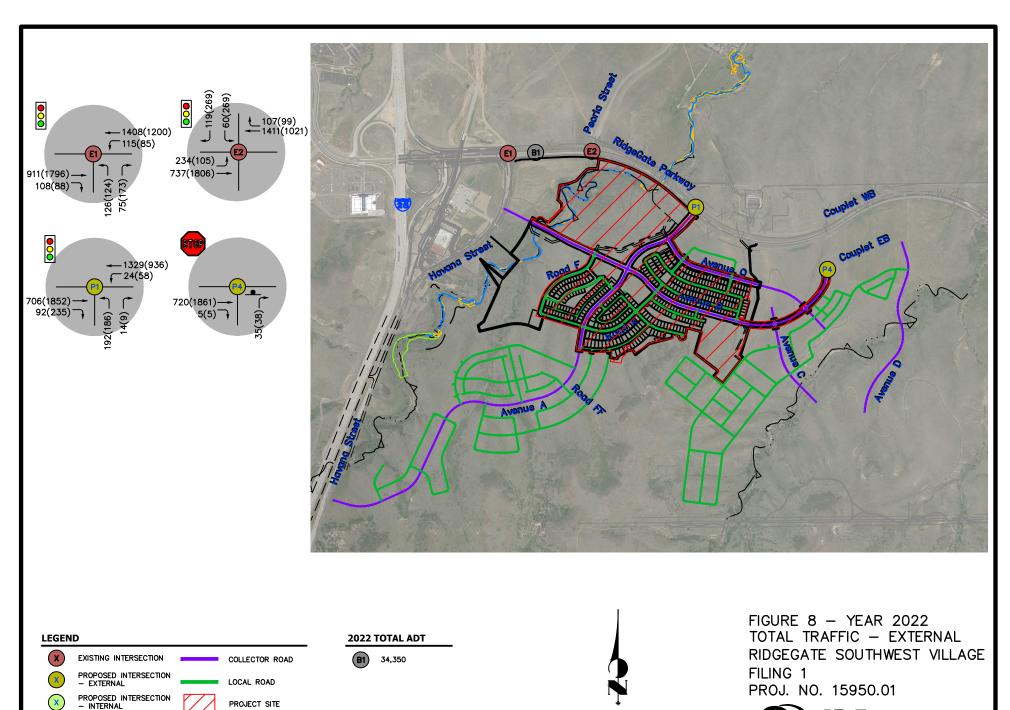
X Project Access Intersection

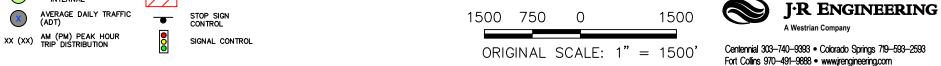

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

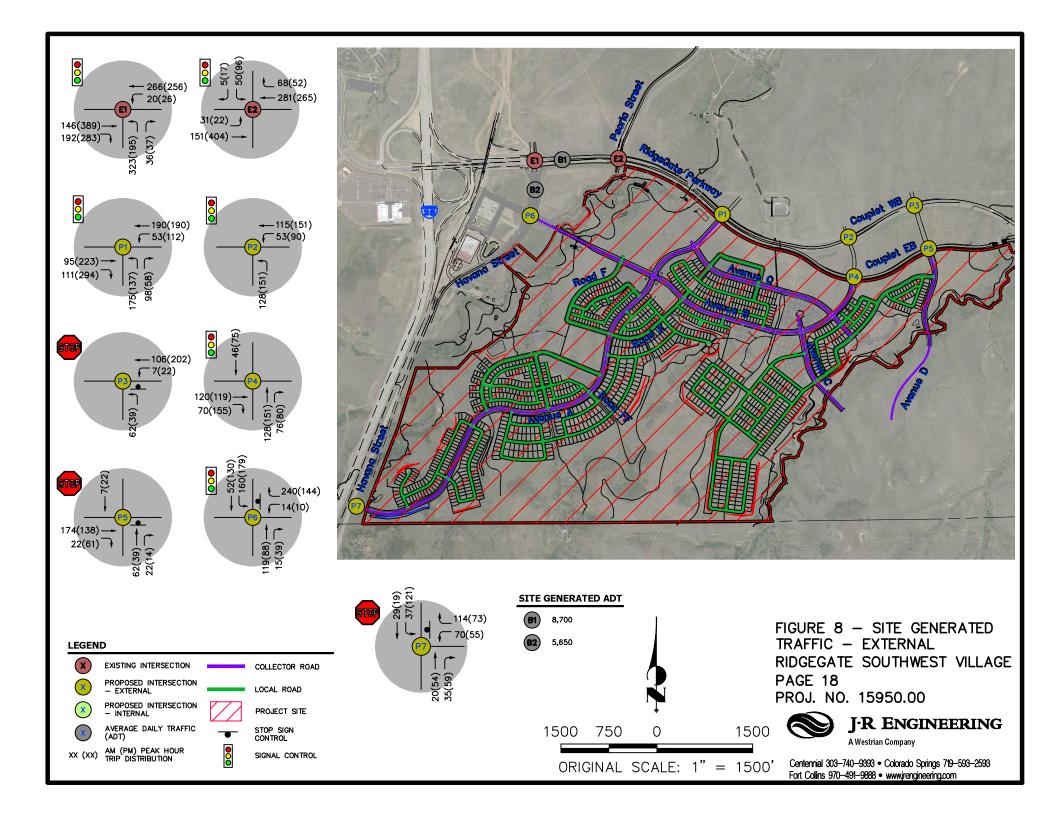
XX,X00 Estimated Daily Traffic Volume

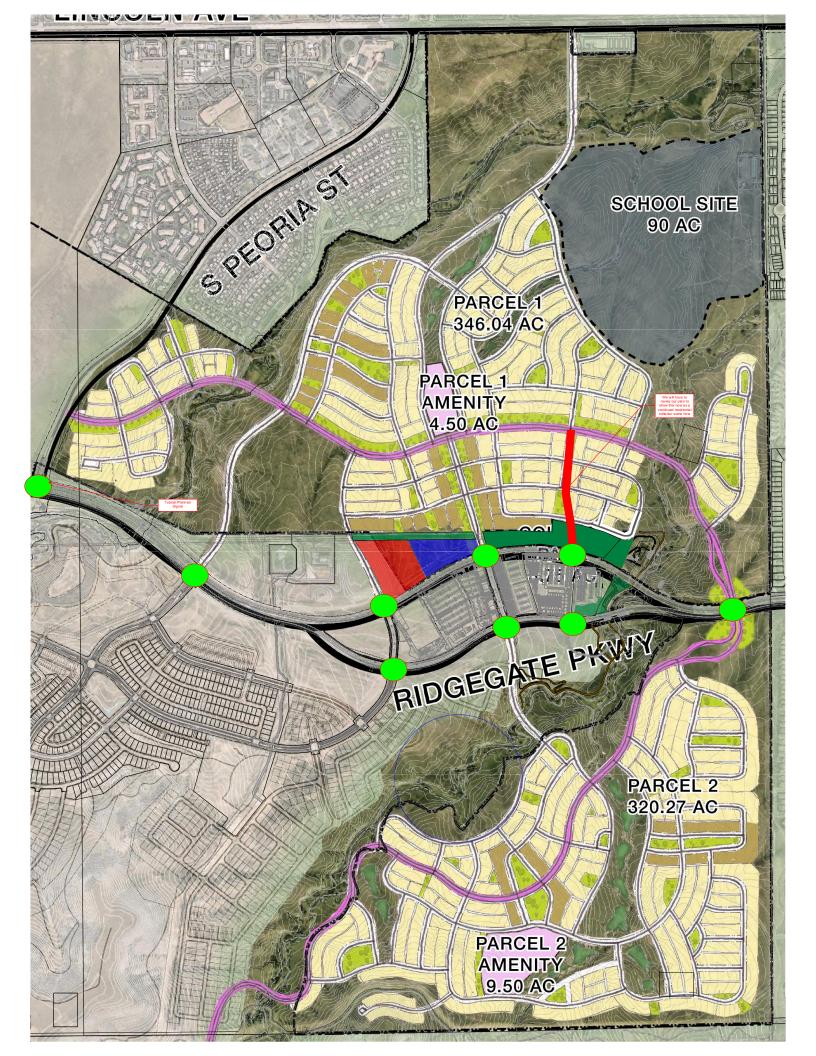
FIGURE 14

RIDGEGATE KING SOOPERS LONE TREE, COLORADO 2045 TOTAL TRAFFIC VOLUMES

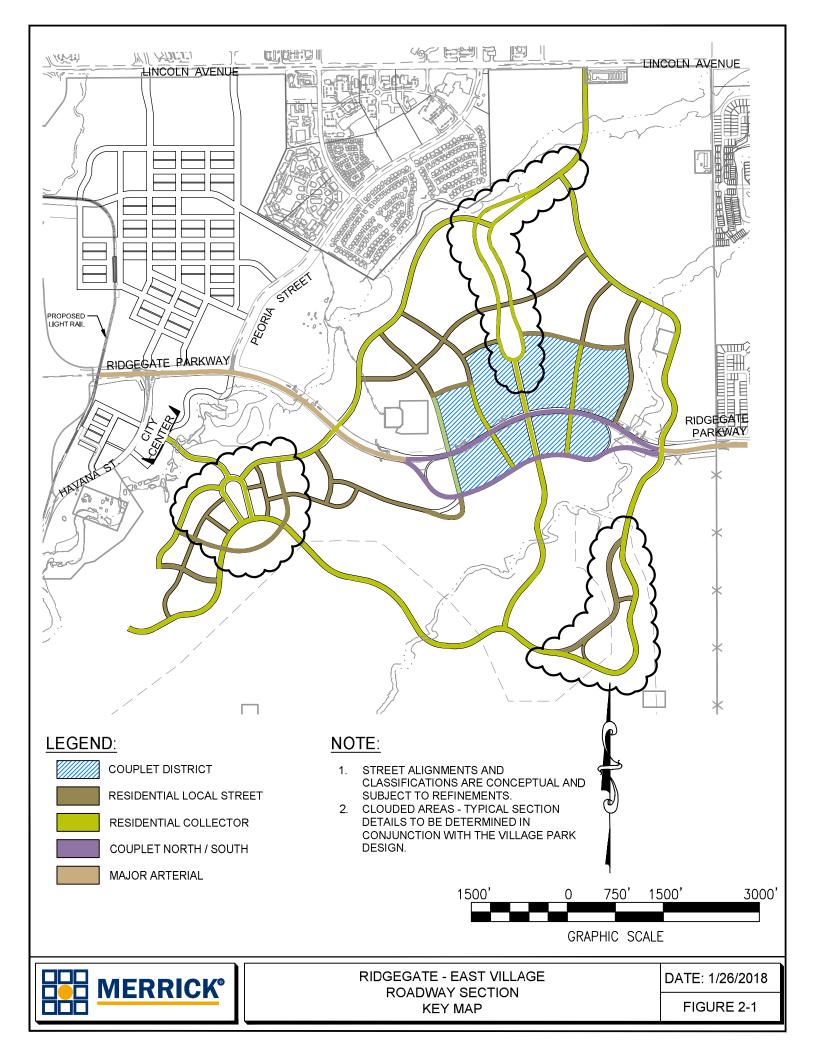

FIGURE 7 - YEAR 2022 SITE GENERATED TRAFFIC -**EXTERNAL** RIDGEGATE SOUTHWEST VILLAGE FILING 1 PROJ. NO. 15950.01

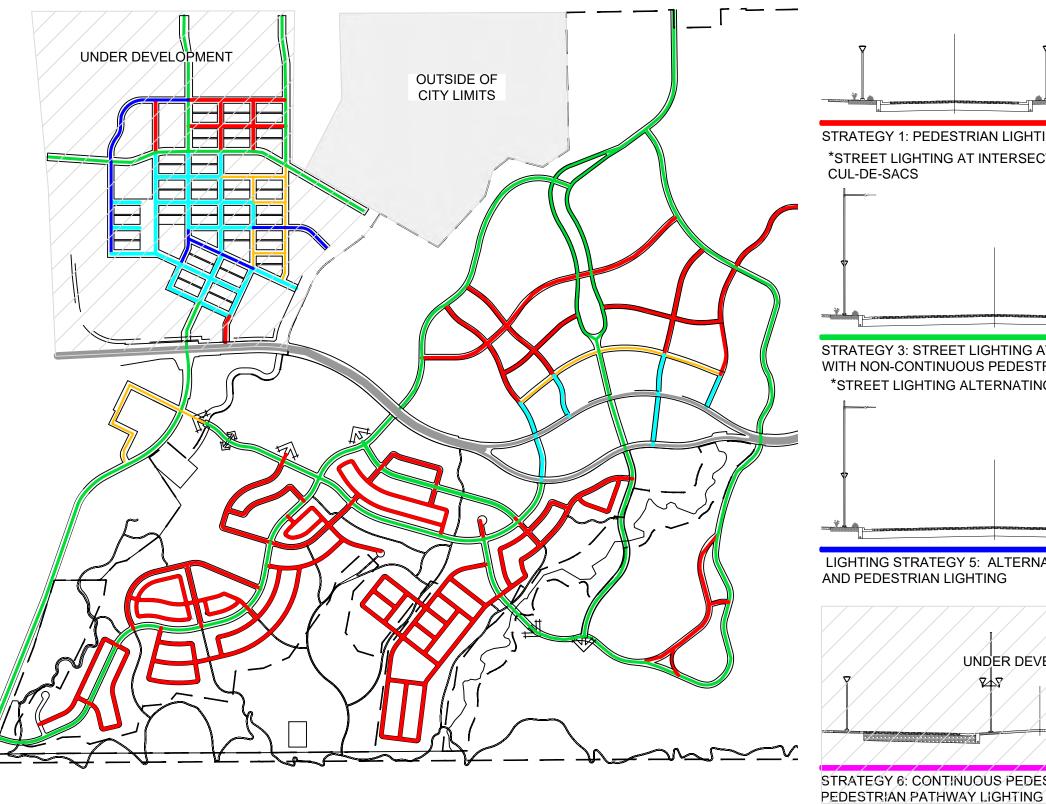


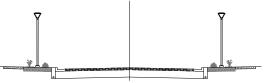

1500

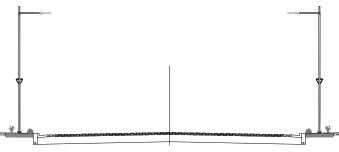
Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.irengineering.com

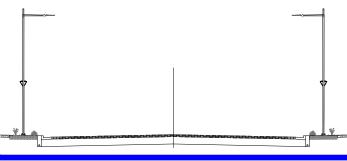
RIDGEGATE EAST


TECHNICAL SUPPLEMENT

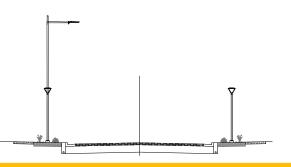

February 2018


Amended July 2022

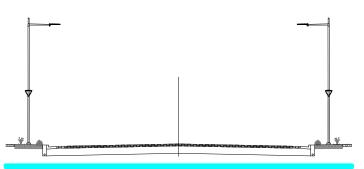


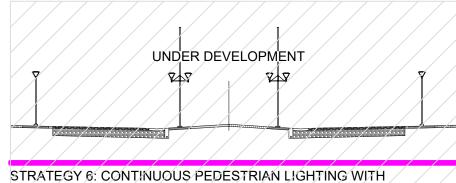

STRATEGY 1: PEDESTRIAN LIGHTING

*STREET LIGHTING AT INTERSECTIONS AND **CUL-DE-SACS**



STRATEGY 3: STREET LIGHTING AT INTERSECTIONS WITH NON-CONTINUOUS PEDESTRIAN LIGHTING


*STREET LIGHTING ALTERNATING 300' SPACING


LIGHTING STRATEGY 5: ALTERNATING STREET AND PEDESTRIAN LIGHTING

STRATEGY 2: CONTINUOUS PEDESTRIAN LIGHTING WITH STREET LIGHTS AT INTERSECTIONS

STRATEGY 4: STREET LIGHTING AT INTERSECTIONS WITH CONTINUOUS PEDESTRIAN LIGHTING

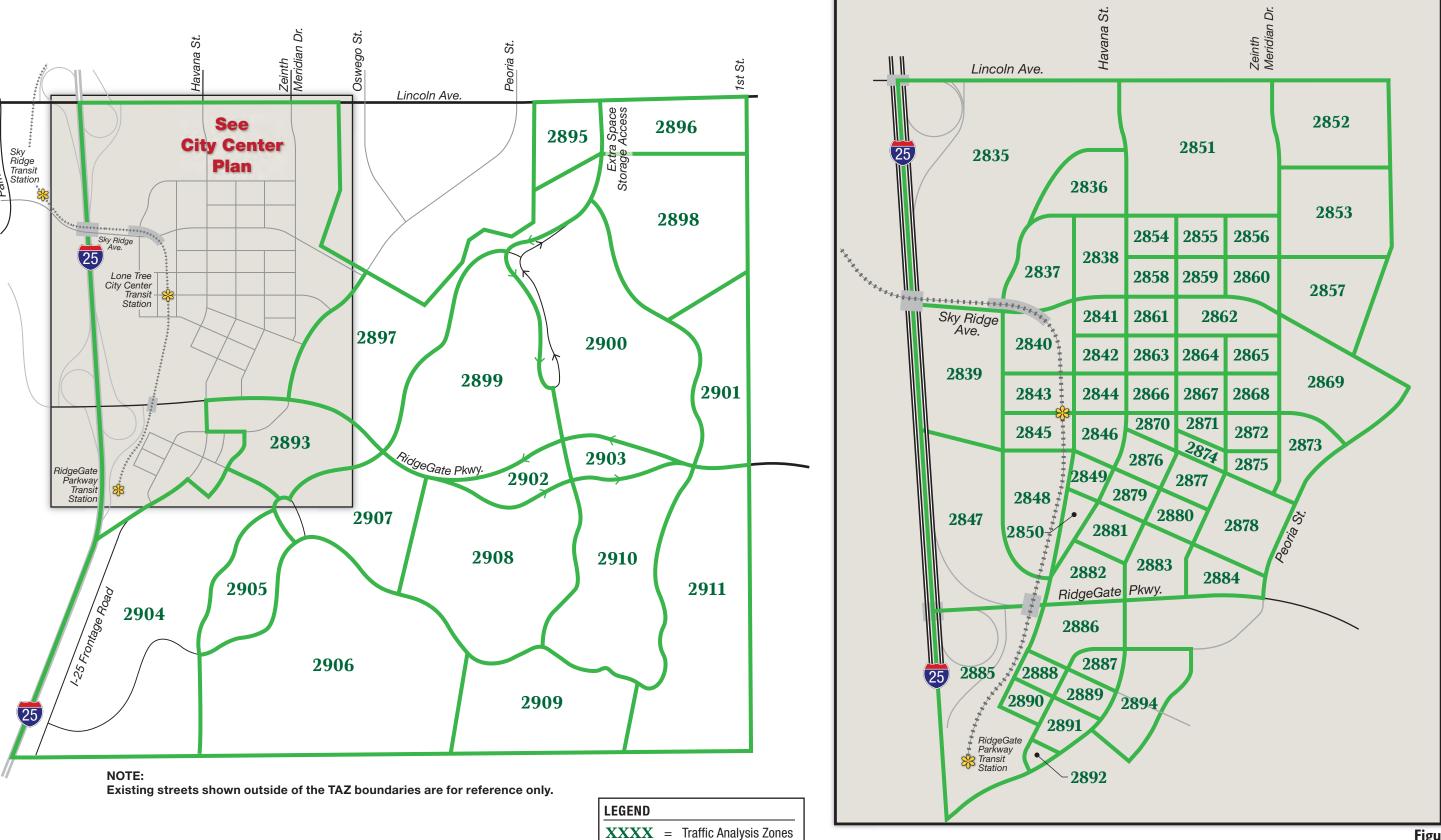
*CITY MODIFICATIONS JULY 2022

CLANTON & ASSOCIATES

LIGHTING DESIGN AND ENGINEERING

LIGHTING STRATEGY MAP

BL Drawn: Date: 2022-04-05


RidgeGate Development Lighting Strategy Map

Checked: DS

SK.01

Scale: N.T.S.

City Center Plan

Traffic Analysis Zone	Residential	Retail	Office
(TAZ)	Dwelling Units	(Sq Ft)	(Sq Ft)
2874	270	0	213,186
2875	64	0	0
2876	150	5,670	118,466
2877	238	0	188,004
2878	341	0	0
2879	127	16,536	99,925
2880	214	0	168,377
2881	238	0	187,925
2882	0	69,688	0
2883	0	75,776	0
2884	0	70,196	0
2885	0	0	0
2886	0	102,219	0
2887	0	25,012	0
2888	83	5,490	65,371
2889	119	2,745	93,246
2890	65	4,848	51,018
2891	119	2,745	93,246
2892	87	0	0
2893	84	106,709	0
2894	65	0	0
2895	610	209,183	99,611
2896	467	159,992	76,186
2897	391	0	0
2898	0	0	0
2899	1,519	143,800	68,476
2900	1,380	97,216	46,293
2901	709	0	0
2902	320	109,634	52,207
2903	283	96,942	46,163
2904	750	0	0
2905	189	3,087	1,470
2906	463	0	0
2907	839	91,179	43,418
2908	1,435	81,505	38,812
2909	381	0	0
2910	1,076	0	0
2911	1,311	0	0
Total	18,174	2,181,674	7,864,164

II. GENERAL THROUGH LANEAGE REQUIREMENTS

The updated travel demand model was used to evaluate build-out through laneage requirements on roadways internal to the RidgeGate East project. The travel demand model is a tool designed to produce daily volume forecasts on roadways and to incorporate a transit component that allows the transit network to be refined to capture the impacts of the planned Lone Tree City Center and RidgeGate Parkway light rail stations.

Figure 2 depicts the build-out through laneage requirements on roadways within the project area. The following summarizes the major findings of this analysis:

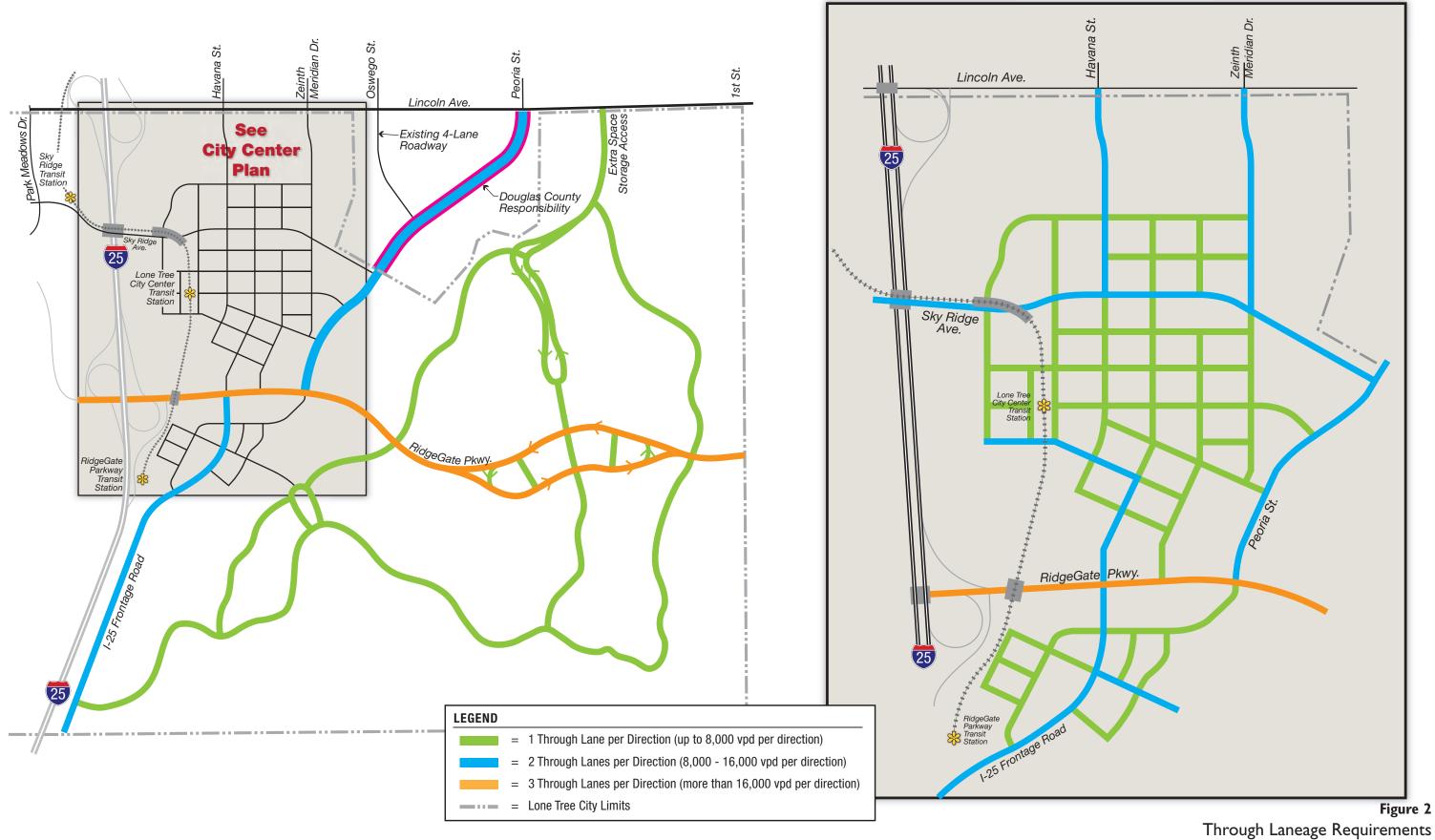

- RidgeGate Parkway within the project boundaries will need to have six through lanes given its east-west connectivity and regional access to the Town of Parker.
- Four-lane roadway segments are primarily located along those streets that are considered
 critical access routes into the City Center and that provide access to the roadway network
 outside the RidgeGate East boundary. Portions of Sky Ridge Avenue, Peoria Street, Zenith
 Meridian Drive, and Havana Street will each require four through travel lanes. Also, an
 unnamed east-west roadway in the southern portion of the City Center was identified as a
 four-lane roadway as it is anticipated to serve significant vehicular volumes destined for the
 Corporate Office zoning identified in the southwest corner of the City Center planning area.
- Other streets within RidgeGate East have traffic volume projections that will allow them to have a two-lane roadway cross-section.

Figure 2 only represents the number of through lanes needed within RidgeGate East; it does not identify intersection geometry and auxiliary lane requirements. **Section III** of this memorandum details the intersection geometry and auxiliary lane needs. Additionally, intersections that are constructed in-between the major intersections that are included in this report may require auxiliary lanes, specifically left turn lanes.

III. INTERSECTION TRAFFIC CONTROL AND GEOMETRY

An evaluation was conducted to understand the likely traffic control needs for RidgeGate East and to understand the laneage requirements on intersection approaches. **Figure 3** identifies the intersections that were included in this analysis. This evaluation does not make any judgment or recommendation about other intersections throughout the development or provide any details about requirements outside the project boundaries due to the high-level planning nature of this study. As future development occurs within the site, ongoing analysis and refinement of the network traffic control and laneage requirements will need to occur to determine the appropriate intersection characteristics.

City Center Plan

raffic Analysis - UPDATE 16-231 9/28/16

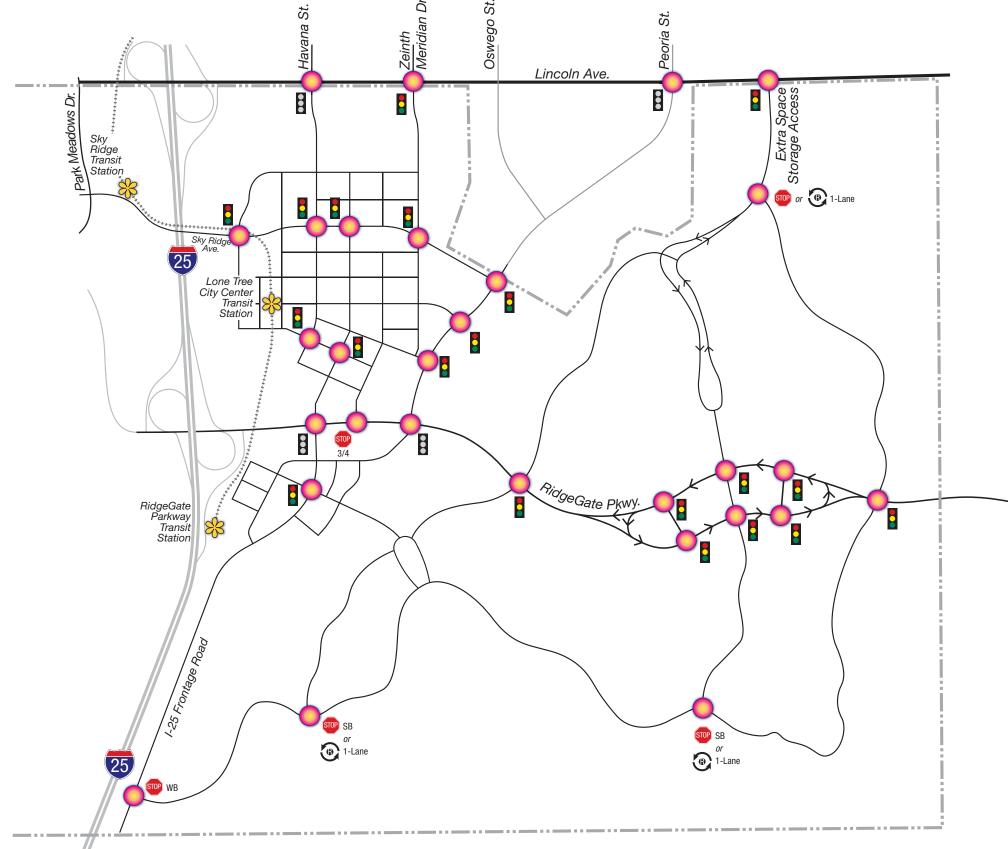
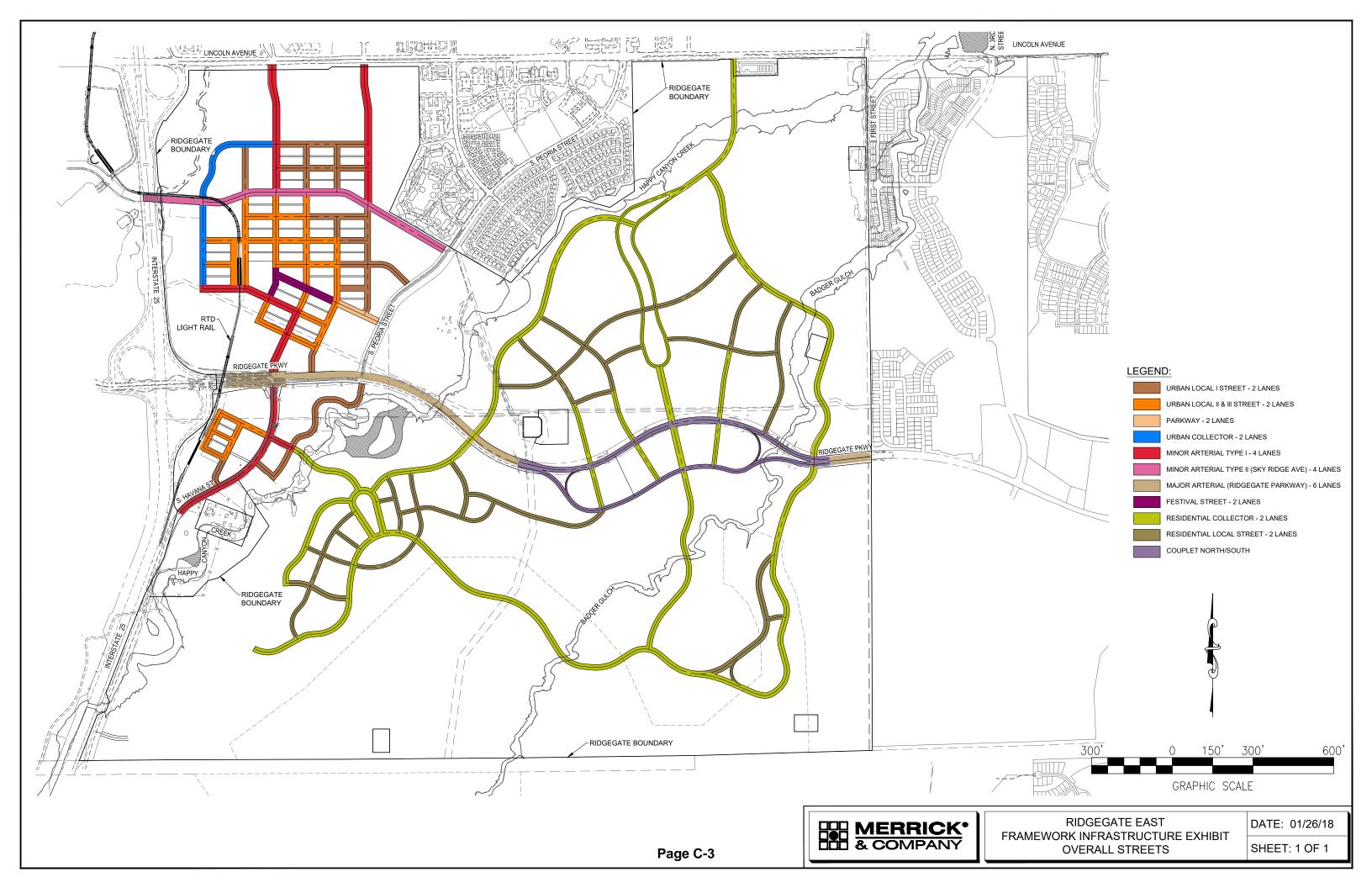


Figure 5
Traffic Control

LEGEND

= Study Intersection

= Existing Signalized Intersection


= Signalized Intersection

= Roundabout Intersection

= Stop Controled Intersection

____ = Lone Tree City Limits

APPENDIX C

Trip Generation Worksheets

Project	RidgeGate Senior Affordable											
Subject	Trip Generation for Se	nior Adult Ho	using - Multifamily									
Designed by	TJD	Date	July 07, 2023	Job No.	196804000							
Checked by		Date		Sheet No.	of							

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rate Equations

Land Use Code - Senior Adult Housing - Multifamily (252)

Independent Variable - Dwelling Units (X)

X = 165

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (200 Series Page 416)

Average Weekday Directional Distribution: 34% ent. 66% exit. Average Vehicle Trip Ends (T) = 0.20 (X)T = (T) = 0.20 *(165.0)entering 22 exiting 11 22 33

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (200 Series Page 417)

Average Weekday Directional Distribution: 56% ent. exit. (T) = 0.25 (X)T = 41 Average Vehicle Trip Ends (T) = 0.25 *(165.0)entering 18 exiting 23 18 41

Weekday (200 Series Page 415)

Average Weekday Directional Distribution: 50% ent. 50% exit. (T) = 3.24 (X)T = Average Vehicle Trip Ends (T) = 3.24 *(165.0)268 entering 268 exiting 268 536 268

APPENDIX D

Intersection Analysis Worksheets

Lane Group		•	←	4			
Lane Configurations	Lane Group	WBI	WBT	NBL	Ø4		
Traffic Volume (vph) 73 1927 68 Turn Type Perm NA Perm Protected Phases 6 4 Bernitted Phases 6 8 Delector Phase 6 8 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 22.5 22.5 22.5 22.5 Total Split (s) 72.2% 72.2% 27.8% 28% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 Alf.Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Act LETIC Green (s) 60.5 60.5 20.5 We Ratio 0.07 0.61 0.23 We Ratio 0.07 0.61 0.23 We Ratio 0.07 0.61 0.23 Work Ratio 0.07 0.00 0.0 Total Delay 5.3 9.2 16.2 Loss A A B B Approach Delay 9.0 Approach LOS A B Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Olfset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum w/c Ratic: 0.61 Intersection Signal Delay: 9.3 Intersection Signal Delay: 9.3 Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & Ridge-Gate Pkwy WB							
Future Volume (vph) 73 1927 68 Turn Type Perm NA Perm Protected Phases 6 8 8 Detector Phase 6 6 8 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Initial (s) 5.0 5.0 5.0 5.0 Total Split (s) 65.0 65.0 25.0 25.0 Total Split (s) 65.0 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 4.5 4.5 4.5 4.5 Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Act Effect Green (s) 60.5 60.5 20.5 Actuated g/C Ratio 0.67 0.67 0.23 Vic Ratio 0.07 0.61 0.23 Control Delay 5.3 9.2 16.2 Control Delay 5.3 9.2 16.2 Control Delay 5.3 9.2 16.2 Control Delay 9.0 A B Approach Delay 9.0 A B Approach Delay 9.0 A B Approach Delay 9.0 Actuated Cycle Length: 90 Actuated Cycle Length: 91 Actuated Cycle Length: 91 Actuated Cycle Length: 91 Actuated Cycle Length: 91 Actuated Cycle Length: 92 Actuated Cycle Length: 93 Intersection Cos: Actuated Cycle Length: 91 Actuated Cycle Length: 93 Intersection Cycle Ength: 93 Intersection Cycle Ength: 93 Intersection Cycle Ength: 94 Actuated Cycle Length: 94 Actu							
Trunt Type Perm NA Perm Protected Phases 6 4 Permitted Phases 6 8 Detector Phase 6 6 8 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 22.5 22.5 22.5 22.5 7.0 Minimum Split (s) 25.0 25.0 25.0 7.0 Minimum Split (s) 65.0 65.0 65.0 25.0 25.0 7.0 Minimum Split (s) 72.2% 72.2% 27.8% 28% 7.8 28% 7.8 28% 7.8 28% 7.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2							
Protected Phases 6 8 Permitted Phases 6 8 Detector Phase 6 6 8 Switch Phase Switch							
Permitted Phases 6 8 8 Detector Phase 6 6 8 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Initial (s) 5.0 5.0 5.0 5.0 Minimum Initial (s) 5.0 5.0 5.0 5.0 Minimum Split (s) 22.5 22.5 22.5 22.5 22.5 Total Split (s) 65.0 65.0 25.0 25.0 25.0 Total Split (s) 72.2% 72.2% 27.8% 28% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 Uo Total Lost Time (s) 4.5 4.5 4.5 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Max Act Effet Green (s) 60.5 60.5 20.5 Actuated g/C Ratio 0.67 0.67 0.23 Wice Ratio 0.07 0.61 0.23 Control Delay 5.3 9.2 16.2 Oueue Delay 0.0 0.0 0.0 Uo Total Lost Delay 5.3 9.2 16.2 LoS A B B Approach Delay 9.0 Natural Cycle: 55 Control Type: Actuated Cycle Length: 90 Actuated Cycle Length: 90 Actuated Cycle Length: 90 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Grapacity Utilization 56.8% Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & Ridge-Gale Pkwy WB		1 01111		1 01111	4		
Detector Phase Switch Phase Switch Phase Switch Phase Switch Phase Switch Phase Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 22.5 22.5 22.5 22.5 7.0		6		8	•		
Switch Phase Minimum Initial (s) Minimum Initial (s) Minimum Initial (s) Minimum Spit (s) 22.5 22.5 22.5 22.5 Total Spit (s) Total Spit (s) 72.2% 72.2% 27.8% 28% Yellow Time (s) 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) 1.0 1.0 Lost Time (s) 1.0 1.0 Lost Time Adjust (s) 1.0 1.0 1.0 Lost Time Adjust (s) 1.0 1.0 Lost Time Adjust (s) 1.0 1.0 1.0 Lost Time Adjust (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			6				
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 Minimum Spiti (s) 22.5 22.5 22.5 22.5 22.5 Total Spiti (s) 65.0 65.0 65.0 25.0 25.0 Total Spiti (s) 72.2% 72.2% 27.8% 28% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 Lead/Lag Lead/Lag Optimize? Recall Mode							
Minimum Split (s)		5.0	5.0	5.0	5.0		
Total Split (%)							
Total Split (%) 72.2% 72.2% 22.8% 28% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 Lead/Lag Lead/Lag Optimize? Recall Mode CMax CMax Max Max Act Effct Green (s) 60.5 60.5 20.5 Actuated g/C Ratio 0.67 0.67 0.23 W/c Ratio 0.07 0.61 0.23 Control Delay 5.3 9.2 16.2 Control Delay 5.3 9.2 16.2 LOS A A B Approach Delay 9.0 Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Socondinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% I CU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & Ridge-Gate Pkwy WB							
Yellow Time (s)							
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Max Act Effet Green (s) 60.5 60.5 20.5 Actuated g/C Ratio 0.67 0.67 0.23 V/C Ratio 0.07 0.61 0.23 Control Delay 5.3 9.2 16.2 Queue Delay 0.0 0.0 0.0 Total Delay 5.3 9.2 16.2 LOS A A B Approach Delay 5.3 9.2 16.2 LOS A A B Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Lost Time Adjust (s)							
Total Lost Time (s)					1.0		
Lead/Lag Optimize? Recall Mode							
Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Act Effct Green (s) 60.5 60.5 20.5 Actuated g/C Ratio 0.67 0.23 v/c Ratio 0.07 0.61 0.23 Ontrol Delay 5.3 9.2 16.2 Queue Delay 0.0 0.0 0.0 Total Delay 5.3 9.2 16.2 LOS A A B A A B Approach Delay 9.0 A A B A A B A A B A A A B A <td>` ,</td> <td>4.5</td> <td>4.5</td> <td>4.5</td> <td></td> <td></td> <td></td>	` ,	4.5	4.5	4.5			
Recall Mode							
Act Effct Green (s) 60.5 60.5 20.5 Actuated g/C Ratio 0.67 0.67 0.23 v/c Ratio 0.07 0.61 0.23 Control Delay 5.3 9.2 16.2 Cueue Delay 0.0 0.0 0.0 Total Delay 5.3 9.2 16.2 LOS A A B Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection Capacity Utilization 56.8% Intersection Capacity Utilization 56.8% Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		C May	C May	May	May		
Actuated g/C Ratio 0.67 0.67 0.23 v/c Ratio 0.07 0.61 0.23 Control Delay 5.3 9.2 16.2 Queue Delay 0.0 0.0 0.0 Total Delay 5.3 9.2 16.2 LOS A A B Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection Capacity Utilization 56.8% Intersection Capacity Utilization 56.8% Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB					IVIAA		
v/c Ratio 0.07 0.61 0.23 Control Delay 5.3 9.2 16.2 Queue Delay 0.0 0.0 Total Delay 5.3 9.2 16.2 LOS A A B Approach Delay 9.0 A Approach LOS A A Intersection Summary Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection LOS: A Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Control Delay 5.3 9.2 16.2 Queue Delay 0.0 0.0 0.0 Total Delay 5.3 9.2 16.2 LOS A A B Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Oueue Delay 0.0 0.0 0.0 0.0 Total Delay 5.3 9.2 16.2 LOS A A B Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Total Delay 5.3 9.2 16.2 LOS A A B Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Approach Delay 9.0 Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Approach LOS A Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		А		D			
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Cycle Length: 90 Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB	Approach LOS		А				
Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB	Intersection Summary						
Actuated Cycle Length: 90 Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB	Cycle Length: 90						
Offset: 9 (10%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Natural Cycle: 55 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB			6:WBTL,	Start of C	Green		
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		ordinated					
Intersection Signal Delay: 9.3 Intersection LOS: A Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB ### ### ### ### ### ### ### ### ### #							
Intersection Capacity Utilization 56.8% ICU Level of Service B Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		9.3			In	tersection LOS: A	
Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB			6				
Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB						D EGVOT OF COTVIDE B	
Ø4 25 s Ø6 (R)	arjoio i orioù (min) 10						
Ø4 25 s Ø6 (R)	Splits and Phases: 1: Rh	hapsody Ro	ad & Rid	geGate P	kwv WB		
25 s				9			11
							▼ Ø4
							25 s
	7 (AC (D)						√ † _a ,
	65 s						

	۶	→	*	•	←	•	1	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	↑ ↑₽		ሻ	↑			Դ	
Traffic Volume (veh/h)	0	0	0	73	1927	0	68	0	0	0	0	0
Future Volume (veh/h)	0	0	0	73	1927	0	68	0	0	0	0	0
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				79	2095	0	74	0	0	0	0	0
Peak Hour Factor				0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				1197	3432	0	486	426	0	0	426	0
Arrive On Green				0.67	0.67	0.00	0.23	0.00	0.00	0.00	0.00	0.00
Sat Flow, veh/h				1781	5274	0	1781	1870	0	0	1870	0
Grp Volume(v), veh/h				79	2095	0	74	0	0	0	0	0
Grp Sat Flow(s), veh/h/ln				1781	1702	0	1781	1870	0	0	1870	0
Q Serve(g_s), s				1.4	20.5	0.0	3.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s				1.4	20.5	0.0	3.0	0.0	0.0	0.0	0.0	0.0
Prop In Lane				1.00		0.00	1.00		0.00	0.00		0.00
Lane Grp Cap(c), veh/h				1197	3432	0	486	426	0	0	426	0
V/C Ratio(X)				0.07	0.61	0.00	0.15	0.00	0.00	0.00	0.00	0.00
Avail Cap(c_a), veh/h				1197	3432	0	486	426	0	0	426	0
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	1.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d), s/veh				5.1	8.2	0.0	28.0	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh				0.1	0.8	0.0	0.7	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh				0.0	0.0 5.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.4	5.7	0.0	1.4	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh	1			5.2	9.0	0.0	28.7	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh						0.0 A	28.7 C	0.0 A				
LnGrp LOS				A	A 2174	A			A	A	A	A
Approach Vol, veh/h					2174			74				
Approach LOS					8.9			28.7			0.0	
Approach LOS					А			С				
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				25.0		65.0		25.0				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				20.5		60.5		20.5				
Max Q Clear Time (g_c+I1), s				0.0		22.5		5.0				
Green Ext Time (p_c), s				0.0		22.6		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			9.5									
HCM 6th LOS			А									

	•	←	•			
Lane Group	WBL	WBT	NBL	Ø4		
Lane Configurations	ሻ	ተተኈ				
Traffic Volume (vph)	119	1244	56			
Future Volume (vph)	119	1244	56			
Turn Type	Perm	NA	Perm			
Protected Phases		6		4		
Permitted Phases	6		8			
Detector Phase	6	6	8			
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0		
Minimum Split (s)	22.5	22.5	22.5	22.5		
Total Split (s)	61.0	61.0	29.0	29.0		
Total Split (%)	67.8%	67.8%	32.2%	32%		
Yellow Time (s)	3.5	3.5	3.5	3.5		
All-Red Time (s)	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0			
Total Lost Time (s)	4.5	4.5	4.5			
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	Max	Max		
Act Effct Green (s)	56.5	56.5	24.5			
Actuated g/C Ratio	0.63	0.63	0.27			
v/c Ratio	0.12	0.42	0.16			
Control Delay	7.1	9.0	12.5			
Queue Delay	0.0	0.0	0.0			
Total Delay	7.1	9.0	12.5			
LOS	Α	Α	В			
Approach Delay		8.8				
Approach LOS		Α				
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 22 (24%), Reference	ed to phase	e <mark>6:WBT</mark> L	., Start of	Green		
Natural Cycle: 45						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.42						
Intersection Signal Delay: 9					tersection LOS: A	
Intersection Capacity Utiliza	ation 63.39	6		IC	U Level of Service B	
Analysis Period (min) 15						
Splits and Phases: 1: Rh	apsody Ro	ad & Rid	geGate Pl	kwy WB		
						↓ Ø4
						29 s
4-						≪†
▼ Ø6 (R)						7 Ø8
61 s						29 s

	۶	→	•	•	←	4	4	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	↑ ↑₽		7	↑			₽	
Traffic Volume (veh/h)	0	0	0	119	1244	0	56	0	0	0	0	0
Future Volume (veh/h)	0	0	0	119	1244	0	56	0	0	0	0	0
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				129	1352	0	61	0	0	0	0	0
Peak Hour Factor				0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				1118	3205	0	565	509	0	0	509	0
Arrive On Green				0.63	0.63	0.00	0.27	0.00	0.00	0.00	0.00	0.00
Sat Flow, veh/h				1781	5274	0	1781	1870	0	0	1870	0
Grp Volume(v), veh/h				129	1352	0	61	0	0	0	0	0
Grp Sat Flow(s),veh/h/ln				1781	1702	0	1781	1870	0	0	1870	0
Q Serve(g_s), s				2.6	12.1	0.0	2.3	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s				2.6	12.1	0.0	2.3	0.0	0.0	0.0	0.0	0.0
Prop In Lane				1.00		0.00	1.00		0.00	0.00		0.00
Lane Grp Cap(c), veh/h				1118	3205	0	565	509	0	0	509	0
V/C Ratio(X)				0.12	0.42	0.00	0.11	0.00	0.00	0.00	0.00	0.00
Avail Cap(c_a), veh/h				1118	3205	0	565	509	0	0	509	0
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d), s/veh				6.7	8.5	0.0	24.7	0.0	0.0	0.0	0.0	0.0
Incr Delay (d2), s/veh				0.2	0.4	0.0	0.4	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.9	3.6	0.0	1.0	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh				6.9	8.9	0.0	25.1	0.0	0.0	0.0	0.0	0.0
LnGrp LOS				A	A	A	С	Α	Α	A	A	A
Approach Vol, veh/h					1481			61			0	
Approach Delay, s/veh					8.7			25.1			0.0	
Approach LOS					Α			С				
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				29.0		61.0		29.0				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				24.5		56.5		24.5				
Max Q Clear Time (q_c+l1), s				0.0		14.1		4.3				
Green Ext Time (p_c), s				0.0		12.6		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			9.4									
HCM 6th LOS			Α									

	•	←	•			
Lane Group	WBL	WBT	NBL	Ø4		
Lane Configurations	ሻ	† †	ሻ			
Traffic Volume (vph)	73	1941	68			
Future Volume (vph)	73	1941	68			
Turn Type	Perm	NA	Perm			
Protected Phases	I CIIII	6	I CIIII	4		
Permitted Phases	6	U	8	7		
Detector Phase	6	6	8			
Switch Phase	U	U	0			
Minimum Initial (s)	5.0	5.0	5.0	5.0		
Minimum Split (s)	22.5	22.5	22.5	22.5		
				25.0		
Total Split (s)	65.0	65.0	25.0			
Total Split (%)	72.2%	72.2%	27.8%	28%		
Yellow Time (s)	3.5	3.5	3.5	3.5		
All-Red Time (s)	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0			
Total Lost Time (s)	4.5	4.5	4.5			
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	Max	Max		
Act Effct Green (s)	60.5	60.5	20.5			
Actuated g/C Ratio	0.67	0.67	0.23			
v/c Ratio	0.06	0.60	0.22			
Control Delay	5.2	9.0	16.3			
Queue Delay	0.0	0.0	0.0			
Total Delay	5.2	9.0	16.3			
LOS	Α	Α	В			
Approach Delay		8.9				
Approach LOS		Α				
••						
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90		/ AMDTI	Charl of C	\		
Offset: 9 (10%), Reference	d to phase	6:WBIL,	Start of G	reen		
Natural Cycle: 55						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.60					" 100 1	
Intersection Signal Delay: 9					ersection LOS: A	
Intersection Capacity Utiliza	ation 57.1%	6		IC	U Level of Service B	
Analysis Period (min) 15						
Splits and Phases: 1: Rh	napsody Ro	ad & Rid	geGate Pl	kwy WB		
	, .,		<u> </u>	<u> </u>		
						▼ Ø4
						25 s
₩ Ø6 (R)						¶¶ø8
7 ∀ 20 (K) 65 s						25 s

Movement EBL EBT EBR WBL WBL WBL NBL NBL NBR SBL SBR SBR Lane Configurations Tarfitic Volume (veh/th) 0 0 0 73 1941 0 68 0 0 0 0 0 0 0 0 0 0 0 0 0		♪	-	•	•	—	•	•	†	~	/	+	✓
Iraffic Volume (vehh) 0 0 0 73 1941 0 68 0 </th <th>Movement</th> <th>EBL</th> <th>EBT</th> <th>EBR</th> <th>WBL</th> <th>WBT</th> <th>WBR</th> <th>NBL</th> <th>NBT</th> <th>NBR</th> <th>SBL</th> <th>SBT</th> <th>SBR</th>	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (veh/h)	Lane Configurations				7	↑ ↑₽		7	↑			₽	
Initial Q (Ob), veh	Traffic Volume (veh/h)	0	0	0	73	1941	0	68	0	0	0	0	0
Ped-Bike Adj(A_pbT)	Future Volume (veh/h)	0	0	0	73	1941	0	68	0	0	0	0	
Parking Bus. Adj	Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Nork Zone On Approach	Ped-Bike Adj(A_pbT)							1.00					
Adj Slat Flow, veh/hi/n 1870 1870 1870 1870 1870 0 0 0 1870 1870 Adj Flow Rate, veh/h 77 2043 0 72 0 <td< td=""><td></td><td></td><td></td><td></td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td></td<>					1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 77 2043 0 72 0 0 0 0 Peak Hour Factor 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00													
Peak Hour Factor 0.95 0							1870		1870	0	0		1870
Percent Heavy Veh, % 2 2 2 2 2 2 0 0 2 2													_
Cap, veh/h 1197 3432 0 486 426 0 0 426 0 Arrive On Green 0.67 0.67 0.67 0.00 0.23 0.00											0.95	0.95	
Arrive On Green 0.67 0.67 0.00 0.23 0.00 0.0													
Sat Flow, veh/h													
Grp Volume(v), veh/h 77 2043 0 72 0 0 0 0 Grp Sal Flow(s), veh/h/ln 1781 1702 0 1781 1870 0 0 1870 0 Q Serve(g_s), s 1.3 19.7 0.0 2.9 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 1.3 19.7 0.0 2.9 0.0 0.0 0.0 0.0 0.0 Prop In Lane 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 1197 3432 0 486 426 0 0 426 0 V/C Ratio(X) 0.06 0.60 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 4 v/C Ratio(X) 0.06 0.06 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00													
Grp Sat Flow(s), veh/h/ln 1781 1702 0 1781 1870 0 0 1870 0 Q Serve(g_S), s 1.3 19.7 0.0 2.9 0.0 <t< td=""><td>Sat Flow, veh/h</td><td></td><td></td><td></td><td>1781</td><td>5274</td><td>0</td><td>1781</td><td>1870</td><td>0</td><td>0</td><td>1870</td><td>0</td></t<>	Sat Flow, veh/h				1781	5274	0	1781	1870	0	0	1870	0
C Serve(g_s), s	Grp Volume(v), veh/h				77	2043	0	72	0	0	0	0	
Cycle Q Clear(g_c), s 1.3 19.7 0.0 2.9 0.0 0.0 0.0 0.0 Prop In Lane 1.00 0.00 1.00 0.00 </td <td>Grp Sat Flow(s), veh/h/ln</td> <td></td> <td></td> <td></td> <td>1781</td> <td>1702</td> <td>0</td> <td>1781</td> <td>1870</td> <td>0</td> <td>0</td> <td>1870</td> <td>0</td>	Grp Sat Flow(s), veh/h/ln				1781	1702	0	1781	1870	0	0	1870	0
Prop In Lane	Q Serve(g_s), s				1.3	19.7	0.0	2.9	0.0	0.0	0.0	0.0	
Lane Grp Cap(c), veh/h 1197 3432 0 486 426 0 0 426 0 V/C Ratio(X) 0.06 0.60 0.00 0.15 0.00 0.0	Cycle Q Clear(g_c), s					19.7	0.0	2.9	0.0	0.0	0.0	0.0	
V/C Ratio(X) 0.06 0.60 0.00 0.15 0.00 0.00 0.00 0.00 Avail Cap(c_a), veh/h 1197 3432 0 486 426 0 0 426 0 HCM Platoon Ratio 1.00 0.00 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.0 <	Prop In Lane						0.00	1.00		0.00	0.00		0.00
Avail Cap(c_a), veh/h	Lane Grp Cap(c), veh/h				1197	3432	0	486	426	0	0	426	0
HCM Platon Ratio 1.00 1.	V/C Ratio(X)					0.60	0.00	0.15	0.00	0.00	0.00		0.00
Upstream Filter(I) 1.00 1.00 0.00 1.00 0.00 <td>Avail Cap(c_a), veh/h</td> <td></td> <td></td> <td></td> <td>1197</td> <td>3432</td> <td>0</td> <td>486</td> <td>426</td> <td>0</td> <td>0</td> <td>426</td> <td>0</td>	Avail Cap(c_a), veh/h				1197	3432	0	486	426	0	0	426	0
Uniform Delay (d), s/veh 5.1 8.1 0.0 28.0 0.0 <td></td>													
Incr Delay (d2), s/veh													
Initial Q Delay(d3),s/veh													
%ile BackOfQ(50%),veh/ln 0.4 5.5 0.0 1.3 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 5.2 8.8 0.0 28.6 0.0 0.0 0.0 0.0 0.0 LnGrp LOS A A A C A							0.0						
Unsig. Movement Delay, s/veh 5.2 8.8 0.0 28.6 0.0 0.													
LnGrp Delay(d),s/veh 5.2 8.8 0.0 28.6 0.0	%ile BackOfQ(50%),veh/ln				0.4	5.5	0.0	1.3	0.0	0.0	0.0	0.0	0.0
LnGrp LOS A A A C A	3	l											
Approach Vol, veh/h 2120 72 0 Approach Delay, s/veh 8.7 28.6 0.0 Approach LOS A C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 25.0 65.0 25.0 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3						8.8			0.0	0.0			0.0
Approach Delay, s/veh 8.7 28.6 0.0 Approach LOS A C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 25.0 65.0 25.0 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 20.5 60.5 20.5 Max Q Clear Time (g_c+I1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3	LnGrp LOS				Α	Α	A	С		Α	Α	Α	A
Approach LOS A C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 25.0 65.0 25.0 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 60.5 20.5 Max Q Clear Time (g_c+I1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3	Approach Vol, veh/h					2120			72			0	
Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 25.0 65.0 25.0 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3						8.7			28.6			0.0	
Phs Duration (G+Y+Rc), s 25.0 65.0 25.0 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 20.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3	Approach LOS					А			С				
Phs Duration (G+Y+Rc), s 25.0 65.0 25.0 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 20.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3	Timer - Assigned Phs				4		6		8				
Max Green Setting (Gmax), s 20.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3					25.0		65.0		25.0				
Max Green Setting (Gmax), s 20.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3							4.5		4.5				
Max Q Clear Time (g_c+l1), s 0.0 21.7 4.9 Green Ext Time (p_c), s 0.0 22.1 0.1 Intersection Summary HCM 6th Ctrl Delay 9.3					20.5		60.5		20.5				
Intersection Summary HCM 6th Ctrl Delay 9.3					0.0		21.7		4.9				
HCM 6th Ctrl Delay 9.3	Green Ext Time (p_c), s				0.0		22.1		0.1				
HCM 6th Ctrl Delay 9.3	Intersection Summary												
, and the state of				9.3									

Timings 1: Rhapsody Road & RidgeGate Pkwy WB

	•	←	4			
Lane Group	WBL	WBT	NBL	Ø4		
Lane Configurations	*	↑ ↑↑	ሻ			
Traffic Volume (vph)	119	1256	56			
Future Volume (vph)	119	1256	56			
Turn Type	Perm	NA	Perm			
Protected Phases		6		4		
Permitted Phases	6		8			
Detector Phase	6	6	8			
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0		
Minimum Split (s)	22.5	22.5	22.5	22.5		
Total Split (s)	61.0	61.0	29.0	29.0		
Total Split (%)	67.8%	67.8%	32.2%	32%		
Yellow Time (s)	3.5	3.5	3.5	3.5		
All-Red Time (s)	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0			
Total Lost Time (s)	4.5	4.5	4.5			
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	Max	Max		
Act Effct Green (s)	56.5	56.5	24.5			
Actuated g/C Ratio	0.63	0.63	0.27			
v/c Ratio	0.12	0.42	0.16			
Control Delay	7.1	9.0	12.2			
Queue Delay	0.0	0.0	0.0			
Total Delay	7.1	9.0	12.2			
LOS	А	А	В			
Approach Delay		8.8				
Approach LOS		А				
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 22 (24%), Reference	ed to phase	e <mark>6:WBT</mark> L	., Start of	Green		
Natural Cycle: 45						
Control Type: Actuated-Coo	ordinated					
Maximum v/c Ratio: 0.42						
Intersection Signal Delay: 9	0.0			In	tersection LOS: A	
Intersection Capacity Utiliza	ation 63.5%	6		IC	CU Level of Service B	
Analysis Period (min) 15						
Splits and Phases: 1: Rh	apsody Ro	ad & Rid	geGate Pl	kwy WB		
						♥ Ø4
						29 8
Ø6 (R)						¶¶ø8
61s						29 s

Novement EBL EBT EBR WBL WBL WBL NBL NBT NBR SBL SBR SBR Lane Configurations Tariffic Volume (veh/h) 0 0 0 119 1256 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0		۶	→	•	•	-	4	1	†	<i>></i>	/	+	4
Traffic Volume (vehth) 0 0 0 119 1256 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vehth)					7				↑			₽	
Initial Q (Ob), veh		0		0			0						0
Ped-Bikic Adj(A_pbT)		0	0	0									
Parking Bus, Adj						0			0			0	
Mork Zöne On Approach													
Adj Staf Flow, veh/hi/ln 1870 1870 1870 1870 1870 0 0 0 0 1870 1870 Adj Flow Rate, veh/h 128 1351 0 60 <					1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 128 1351 0 60 0 0 0 0 0 Peak Hour Factor 0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							40=0	4070					40=6
Peak Hour Factor 0.93 0.													
Percent Heavy Veh, % 2 2 2 2 2 0 0 2 2 2													
Cap, veh/h 1118 3205 0 565 509 0 0 509 0 Arrive On Green 0.63 0.63 0.00 0.27 0.00													
Arrive On Green 0.63 0.63 0.00 0.27 0.00 0.0													
Sat Flow, veh/h 1781 5274 0 1781 1870 0 1870 0 Gry Volume(v), veh/h 128 1351 0 60 0													
Grp Volume(v), veh/h 128 1351 0 60 0 </td <td></td>													
Grp Sat Flow(s), veh/h/ln 1781 1702 0 1781 1870 0 0 1870 0 C Serve(g_S), s 2.6 12.1 0.0 2.3 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Q Serve(g_s), s 2.6 12.1 0.0 2.3 0.0													
Cycle Q Clear(g_c), s 2.6 12.1 0.0 2.3 0.0 0.0 0.0 0.0 Prop In Lane 1.00 0.00 1.00 0.00 </td <td></td>													
Prop In Lane 1.00 0.00 1.00 0.00													
Lane Grp Cap(c), veh/h 1118 3205 0 565 509 0 509 0 V/C Ratio(X) 0.11 0.42 0.00 0.11 0.00	,0- ,					12.1			0.0			0.0	
V/C Ratio(X) 0.11 0.42 0.00 0.11 0.00 0.00 0.00 0.00 Avail Cap(c_a), veh/h 1118 3205 0 565 509 0 0 509 0 HCM Platoon Ratio 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0						2205			EOO			EOO	
Avail Cap(c_a), veh/h													
HCM Platon Ratio													
Upstream Filter(I) 1.00 1.00 0.00 1.00 0.00 <td></td>													
Uniform Delay (d), s/veh 6.7 8.5 0.0 24.7 0.0 <td></td>													
Incr Delay (d2), s/veh													
Initial Q Delay(d3),s/veh													
%ile BackOfQ(50%),veh/ln 0.9 3.6 0.0 1.0 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Unsig. Movement Delay, s/veh 6.9 8.9 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 A A A A A A A A A A A A A A A A A A A													
LnGrp Delay(d),s/veh 6.9 8.9 0.0 25.0 0.0													
LnGrp LOS A A A C A					6.9	8.9	0.0	25.0	0.0	0.0	0.0	0.0	0.0
Approach Vol, veh/h 1479 60 0 Approach Delay, s/veh 8.7 25.0 0.0 Approach LOS A C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 29.0 61.0 29.0 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 24.5 56.5 24.5 Max Q Clear Time (g_c+11), s 0.0 14.1 4.3 Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4						А							
Approach Delay, s/veh 8.7 25.0 0.0 Approach LOS A C Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 29.0 61.0 29.0 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 24.5 56.5 24.5 Max Q Clear Time (g_c+I1), s 0.0 14.1 4.3 Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4	Approach Vol, veh/h					1479			60			0	
Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 29.0 61.0 29.0 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 24.5 56.5 24.5 Max Q Clear Time (g_c+l1), s 0.0 14.1 4.3 Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4	• •								25.0			0.0	
Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 29.0 61.0 29.0 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 24.5 56.5 24.5 Max Q Clear Time (g_c+l1), s 0.0 14.1 4.3 Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4						Α			С				
Phs Duration (G+Y+Rc), s 29.0 61.0 29.0 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 24.5 56.5 24.5 Max Q Clear Time (g_c+I1), s 0.0 14.1 4.3 Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4					4		6		8				
Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 24.5 56.5 24.5 Max Q Clear Time (g_c+l1), s 0.0 14.1 4.3 Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4													
Max Green Setting (Gmax), s 24.5 56.5 24.5 Max Q Clear Time (g_c+l1), s 0.0 14.1 4.3 Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4	• • •												
Max Q Clear Time (g_c+l1), s 0.0 14.1 4.3 Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4													
Green Ext Time (p_c), s 0.0 12.5 0.1 Intersection Summary HCM 6th Ctrl Delay 9.4													
HCM 6th Ctrl Delay 9.4													
HCM 6th Ctrl Delay 9.4	Intersection Summary												
				9.4									
	,												

Timings 1: Rhapsody Road & RidgeGate Pkwy WB

	•	+	4	1	†	↓	
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	
Lane Configurations	ሻ	ተተተ	7	ሻ	†	ĵ»	
Traffic Volume (vph)	93	2670	78	120	75	82	
Future Volume (vph)	93	2670	78	120	75	82	
Turn Type	Perm	NA	Perm	Perm	NA	NA	
Protected Phases		6			8	4	
Permitted Phases	6		6	8			
Detector Phase	6	6	6	8	8	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	61.0	61.0	61.0	29.0	29.0	29.0	
Total Split (%)	67.8%	67.8%	67.8%	32.2%	32.2%	32.2%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	7.0	7.0	7.0	7.0	7.0	7.0	
Lead-Lag Optimize?							
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	56.5	56.5	56.5	24.5	24.5	24.5	
Actuated g/C Ratio	0.63	0.63	0.63	0.27	0.27	0.27	
v/c Ratio	0.03	0.88	0.03	0.27	0.27	0.49	
Control Delay	2.2	9.1	0.06	24.7	14.7	31.6	
	0.0	0.0	0.2	0.0	0.0	0.0	
Queue Delay	2.2	9.1	0.0	24.7	14.7	31.6	
Total Delay LOS		9.1 A		24.7 C		31.0 C	
	А		А	C	В		
Approach Delay		8.6			20.8	31.6	
Approach LOS		А			С	С	
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 14 (16%), Reference		e 6:WBTI	. Start of	Green			
Natural Cycle: 65	ou to phas	0.11.511	z, otart or	Croon			
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.88	ordinated						
Intersection Signal Delay:	10 0			lı	ntarsactio	n LOS: B	
Intersection Capacity Utiliz		/_				of Service	, D
Analysis Period (min) 15	.au011 01.07	0		11	co Level	or Service	: ט
Analysis Penou (IIIII) 15							
Cality and Dhases 1. Di	hancady Da	od 0 Did	ao Cata D	loung M/D			
Splits and Phases: 1: R	hapsody Ro	iau & Kiu	geGale P	KWY WB			
45							
∮ Ø6 (R)							
61s							

	۶	→	•	•	—	•	•	†	~	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	^	7	ሻ	†			f)	
Traffic Volume (veh/h)	0	0	0	93	2670	78	120	75	0	0	82	130
Future Volume (veh/h)	0	0	0	93	2670	78	120	75	0	0	82	130
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				98	2811	85	126	82	0	0	89	141
Peak Hour Factor				0.95	0.95	0.92	0.95	0.92	0.95	0.92	0.92	0.92
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				1118	3205	995	261	509	0	0	177	281
Arrive On Green				0.21	0.21	0.21	0.45	0.45	0.00	0.00	0.27	0.27
Sat Flow, veh/h				1781	5106	1585	1151	1870	0	0	652	1033
Grp Volume(v), veh/h				98	2811	85	126	82	0	0	0	230
Grp Sat Flow(s), veh/h/ln				1781	1702	1585	1151	1870	0	0	0	1684
Q Serve(g_s), s				4.0	48.0	3.9	8.9	2.3	0.0	0.0	0.0	10.4
Cycle Q Clear(g_c), s				4.0	48.0	3.9	19.3	2.3	0.0	0.0	0.0	10.4
Prop In Lane				1.00		1.00	1.00		0.00	0.00		0.61
Lane Grp Cap(c), veh/h				1118	3205	995	261	509	0	0	0	459
V/C Ratio(X)				0.09	0.88	0.09	0.48	0.16	0.00	0.00	0.00	0.50
Avail Cap(c_a), veh/h				1118	3205	995	261	509	0	0	0	459
HCM Platoon Ratio				0.33	0.33	0.33	1.67	1.67	1.00	1.00	1.00	1.00
Upstream Filter(I)				0.50	0.50	0.50	0.96	0.96	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				14.9	32.3	14.8	27.8	18.5	0.0	0.0	0.0	27.6
Incr Delay (d2), s/veh				0.1	1.9	0.1	6.0	0.7	0.0	0.0	0.0	3.9
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				1.4	21.9	1.2	2.5	1.1	0.0	0.0	0.0	4.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh				14.9	34.2	14.9	33.8	19.1	0.0	0.0	0.0	31.5
LnGrp LOS				В	С	В	<u>C</u>	В	A	A	A	<u>C</u>
Approach Vol, veh/h					2994			208			230	
Approach Delay, s/veh					33.1			28.0			31.5	
Approach LOS					С			С			С	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				29.0		61.0		29.0				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				24.5		56.5		24.5				
Max Q Clear Time (g_c+I1), s				12.4		50.0		21.3				
Green Ext Time (p_c), s				1.0		6.2		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			32.7									
HCM 6th LOS			С									

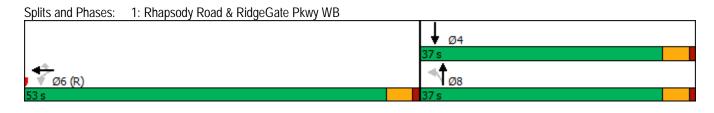
Lane Group WBL WBT WBR NBL NBT SBT Lane Configurations		√	-	•	•	†	+
Lane Configurations	Lane Group	WBL	WBT	WBR	NBL	NBT	SBT
Traffic Volume (vph)							
Future Volume (vph) 138 1678 110 190 175 103 Turn Type Perm NA Perm Perm NA NA Protected Phases 6 6 6 8 Detector Phase 6 6 6 8 Detector Phase 6 6 6 8 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 22.5 22.5 22.5 22.5 22.5 22.5 Total Split (s) 53.0 53.0 53.0 37.0 37.0 37.0 Total Split (%) 58.9% 58.9% 58.9% 41.1% 41.1% 41.1% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Cost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 4.5 4.5 4.5 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max Max Max None Act Effct Green (s) 48.5 48.5 32.5 32.5 32.5 Actuated g/C Ratio 0.54 0.54 0.54 0.36 0.36 0.36 v/c Ratio 0.16 0.66 0.13 0.53 0.28 0.32 Control Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A A A B B C Approach Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A A B B C Approach Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A B C Approach Delay 7.6 14.1 21.3 Approach LOS A B C Approach Delay 7.6 14.1 21.3 Approach LOS A B C Intersection Summary Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Capacity Utilization 83.0% Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Turn Type Perm NA Perm Perm NA NA Perm Protected Phases 6 6 6 8 Permitted Phases 6 6 6 8 Switch Phase 6 6 6 8 Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.							
Protected Phases 6 6 8 8 Permitted Phases 6 6 6 8 Detector Phase 6 6 6 8 8 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 22.5 22.5 22.5 22.5 22.5 22.5 22.5 Total Split (s) 53.0 53.0 53.0 37.0 37.0 37.0 Total Split (s) 58.9% 58.9% 58.9% 41.1% 41.1% 41.1% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5							
Permitted Phases							
Detector Phase Switch Phase Minimum Initial (s) Solution Phase Sol		6		6	8		
Switch Phase Minimum Initial (s) 5.0 3.0 37.0 <th< td=""><td></td><td></td><td>6</td><td></td><td></td><td>8</td><td>4</td></th<>			6			8	4
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.							
Minimum Split (s)		5.0	5.0	5.0	5.0	5.0	5.0
Total Split (s) 53.0 53.0 53.0 37.0 37.0 37.0 Total Split (%) 58.9% 58.9% 58.9% 41.1% 41.1% 41.1% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max Max Max None Act Effct Green (s) 48.5 48.5 48.5 32.5 32.5 32.5 Actuated g/C Ratio 0.54 0.54 0.54 0.36 0.36 0.36 v/c Ratio 0.16 0.66 0.13 0.53 0.28 0.32 Control Delay 3.8 8.4 0.6 16.9 11.2 21.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A A B B B C Approach LoS A A A B B C C Approach LoS A B C Intersection Summary Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15	` ,						
Total Split (%) 58.9% 58.9% 58.9% 41.1% 41.1% 41.1% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5							
Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max C-Max Max Max None Act Effct Green (s) 48.5 48.5 48.5 32.5 32.5 32.5 Actuated g/C Ratio 0.54 0.54 0.54 0.36 0.36 0.36 v/c Ratio 0.16 0.66 0.13 0.53 0.28 0.32 Control Delay 3.8 8.4 0.6 16.9 11.2 21.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A A A B B B C Approach Delay 7.6 14.1 21.3 Approach LOS A B C C Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection LOS: A Intersection Capacity Utilization 83.0% Reidge-Gate Pkwy WB							
All-Red Time (s)							
Lost Time Adjust (s)	. ,						
Total Lost Time (s)	` ,						
Lead/Lag Lead-Lag Optimize? Recall Mode							
Lead-Lag Optimize? Recall Mode	, ,	4.3	4.3	4.3	4.3	4.3	4.3
Recall Mode							
Act Effct Green (s)		C May	C May	C May	Max	Max	Mono
Actuated g/C Ratio							
v/c Ratio 0.16 0.66 0.13 0.53 0.28 0.32 Control Delay 3.8 8.4 0.6 16.9 11.2 21.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A B B C Approach Delay 7.6 14.1 21.3 Approach LOS A B C Intersection Summary Cycle Length: 90 B C Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection LOS: A Intersection LOS: A Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Control Delay 3.8 8.4 0.6 16.9 11.2 21.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A A B B C Approach Delay 7.6 14.1 21.3 Approach LOS A B C Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection LOS: A Intersection Capacity Utilization 83.0% Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Oueue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A A B B B C Approach Delay 7.6 14.1 21.3 Approach LOS A B C Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection LOS: A Intersection Capacity Utilization 83.0% ICU Level of Service Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Total Delay 3.8 8.4 0.6 16.9 11.2 21.3 LOS A A A B B C Approach Delay 7.6 14.1 21.3 Approach LOS A B C Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB	-						
LOS A A A B B B C Approach Delay 7.6 14.1 21.3 Approach LOS A B C Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB	•						
Approach Delay 7.6 14.1 21.3 Approach LOS A B C Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection LOS: A Intersection Capacity Utilization 83.0% ICU Level of Service I Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Approach LOS A B C Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		Α		Α	В		
Intersection Summary Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Cycle Length: 90 Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB	Approach LOS		Α			В	С
Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB	Intersection Summary						
Actuated Cycle Length: 90 Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service I Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB	Cycle Length: 90						
Offset: 21 (23%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB							
Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service Intersection (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		ed to phase	e 6:WBTI	Start of	Green		
Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB				,			
Maximum v/c Ratio: 0.66 Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		ordinated					
Intersection Signal Delay: 9.6 Intersection Capacity Utilization 83.0% ICU Level of Service E Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		, an acou					
Intersection Capacity Utilization 83.0% Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB		.6			lı	ntersectio	n LOS: A
Analysis Period (min) 15 Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB			6				
Splits and Phases: 1: Rhapsody Road & RidgeGate Pkwy WB					<u> </u>	CO LOVOI	OI OOI VICE
→ 37s	rinary sis i onou (min) 10						
→ 37 s	Splits and Phases: 1: Rha	apsody Ro	ad & Rid	geGate P	kwy WB		
1				<u> </u>			
Ø6 (R)							
▼ Ø6 (R)							37
▼ Ø (R)	→ αc (n)						- [∢
IN S. P.	7 Ø6 (K)						27

	•	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	↑ ↑↑	7	ሻ	•			₽	
Traffic Volume (veh/h)	0	0	0	138	1678	110	190	175	0	0	103	85
Future Volume (veh/h)	0	0	0	138	1678	110	190	175	0	0	103	85
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				148	1804	120	204	190	0	0	112	92
Peak Hour Factor				0.93	0.93	0.92	0.93	0.92	0.93	0.92	0.92	0.92
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				960	2752	854	405	675	0	0	343	282
Arrive On Green				0.18	0.18	0.18	0.60	0.60	0.00	0.00	0.36	0.36
Sat Flow, veh/h				1781	5106	1585	1178	1870	0	0	950	780
Grp Volume(v), veh/h				148	1804	120	204	190	0	0	0	204
Grp Sat Flow(s), veh/h/ln				1781	1702	1585	1178	1870	0	0	0	1730
Q Serve(g_s), s				6.3	29.6	5.7	11.8	4.4	0.0	0.0	0.0	7.7
Cycle Q Clear(g_c), s				6.3	29.6	5.7	19.5	4.4	0.0	0.0	0.0	7.7
Prop In Lane				1.00	27.0	1.00	1.00	7.7	0.00	0.00	0.0	0.45
Lane Grp Cap(c), veh/h				960	2752	854	405	675	0.00	0.00	0	625
V/C Ratio(X)				0.15	0.66	0.14	0.50	0.28	0.00	0.00	0.00	0.33
Avail Cap(c_a), veh/h				960	2752	854	405	675	0.00	0.00	0.00	625
HCM Platoon Ratio				0.33	0.33	0.33	1.67	1.67	1.00	1.00	1.00	1.00
Upstream Filter(I)				0.33	0.33	0.33	0.91	0.91	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				19.7	29.2	19.4	18.2	12.3	0.00	0.00	0.00	20.8
Incr Delay (d2), s/veh				0.3	0.9	0.3	4.0	0.9	0.0	0.0	0.0	0.3
Initial Q Delay(d3),s/veh				0.0	0.9	0.0	0.0	0.9	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				2.5	13.4	2.0	2.9	1.8	0.0	0.0	0.0	3.1
				2.3	13.4	2.0	2.9	1.0	0.0	0.0	0.0	3.1
Unsig. Movement Delay, s/veh				19.9	30.2	19.7	22.2	12.2	0.0	0.0	0.0	21 1
LnGrp Delay(d),s/veh					30.2 C			13.2	0.0			21.1
LnGrp LOS				В		В	С	B	A	A	A	<u>C</u>
Approach Vol, veh/h					2072			394			204	
Approach Delay, s/veh					28.8			17.9			21.1	
Approach LOS					С			В			С	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				37.0		53.0		37.0				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				32.5		48.5		32.5				
Max Q Clear Time (g_c+l1), s				9.7		31.6		21.5				
Green Ext Time (p_c), s				1.2		11.7		1.4				
Intersection Summary												
HCM 6th Ctrl Delay			26.6									
HCM 6th LOS			С									
Notes												

User approved pedestrian interval to be less than phase max green.

₩ Ø6 (R)

Timings 1: Rhapsody Road & RidgeGate Pkwy WB


	€	-	•	4	†	ļ	
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	
Lane Configurations	7	ተተተ	7	7	†	ĵ.	
Traffic Volume (vph)	95	2685	80	120	75	85	
Future Volume (vph)	95	2685	80	120	75	85	
Turn Type	Perm	NA	Perm	Perm	NA	NA	
Protected Phases		6			8	4	
Permitted Phases	6		6	8			
Detector Phase	6	6	6	8	8	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	61.0	61.0	61.0	29.0	29.0	29.0	
Total Split (%)	67.8%	67.8%	67.8%	32.2%	32.2%	32.2%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	1.0	1.0	1.0	1.0	1.0	1.0	
Lead-Lag Optimize?							
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	56.5	56.5	56.5	24.5	24.5	24.5	
Actuated g/C Ratio	0.63	0.63	0.63	0.27	0.27	0.27	
v/c Ratio	0.09	0.89	0.08	0.50	0.16	0.48	
Control Delay	3.7	9.2	0.6	26.3	17.4	31.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	3.7	9.2	0.6	26.3	17.4	31.4	
LOS	3.7 A	Α.Ζ	Α	20.3 C	17.4	C C	
Approach Delay	Л	8.8	Λ.	C	22.9	31.4	
Approach LOS		0.0 A			22.7 C	C C	
		Α			C	C	
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 3 (3%), Referenced	to phase 6	:WBTL, S	Start of G	reen			
Natural Cycle: 65							
Control Type: Actuated-Coo	ordinated						
Maximum v/c Ratio: 0.89							
Intersection Signal Delay: 1	1.1			lı	ntersectio	n LOS: B	
Intersection Capacity Utiliza		6		[(CU Level	of Service	E
Analysis Period (min) 15							
•	apsody Ro	ad & Did	noCato D	kww M/D			
Spins and Fridses. 1: Kil	apsouy RC	iau & KIU	yedale P	NWY WD			11
							♦ Ø4
							29 s

↑p₈

	۶	→	•	•	-	4	1	†	<i>></i>	/	+	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ተተተ	7	ሻ	↑			₽	
Traffic Volume (veh/h)	0	0	0	95	2685	80	120	75	0	0	85	130
Future Volume (veh/h)	0	0	0	95	2685	80	120	75	0	0	85	130
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				100	2826	84	126	79	0	0	89	137
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				1118	3205	995	264	509	0	0	181	278
Arrive On Green				0.21	0.21	0.21	0.36	0.36	0.00	0.00	0.27	0.27
Sat Flow, veh/h				1781	5106	1585	1155	1870	0	0	664	1022
Grp Volume(v), veh/h				100	2826	84	126	79	0	0	0	226
Grp Sat Flow(s), veh/h/ln				1781	1702	1585	1155	1870	0	0	0	1686
Q Serve(g_s), s				4.1	48.3	3.8	9.0	2.6	0.0	0.0	0.0	10.1
Cycle Q Clear(g_c), s				4.1	48.3	3.8	19.2	2.6	0.0	0.0	0.0	10.1
Prop In Lane				1.00	2205	1.00	1.00	F00	0.00	0.00	0	0.61
Lane Grp Cap(c), veh/h				1118	3205	995	264	509	0	0	0	459
V/C Ratio(X)				0.09	0.88	0.08	0.48	0.16	0.00	0.00	0.00	0.49
Avail Cap(c_a), veh/h				1118 0.33	3205	995 0.33	264	509	1.00	1.00	1.00	459
HCM Platoon Ratio				0.50	0.33	0.50	1.33 0.97	1.33 0.97	1.00	1.00	1.00	1.00 1.00
Upstream Filter(I) Uniform Delay (d), s/veh				14.9	32.4	14.8	31.7	21.7	0.00	0.00	0.00	27.5
Incr Delay (d2), s/veh				0.1	2.0	0.1	5.9	0.6	0.0	0.0	0.0	3.7
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				1.4	22.0	1.2	2.8	1.2	0.0	0.0	0.0	4.5
Unsig. Movement Delay, s/veh	<u> </u>			1.4	22.0	1.2	2.0	1.2	0.0	0.0	0.0	4.5
LnGrp Delay(d),s/veh	ı			15.0	34.4	14.9	37.6	22.3	0.0	0.0	0.0	31.3
LnGrp LOS				В	C	В	D	C	Α	A	Α	C
Approach Vol, veh/h					3010			205	<u> </u>	<u>^\</u>	226	
Approach Delay, s/veh					33.3			31.7			31.3	
Approach LOS					C			C C			C C	
						,					0	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				29.0		61.0		29.0				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				24.5		56.5		24.5				
Max Q Clear Time (g_c+l1), s				12.1		50.3		21.2				
Green Ext Time (p_c), s				1.0		5.9		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			33.0									
HCM 6th LOS			С									

1: Rhapsody Road & RidgeGate Pkwy WB

1. Khapsody Road	a a raag	ocato				
	•	←	*	4	†	ļ
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT
Lane Configurations	*	^	7	ሻ	†	f)
Traffic Volume (vph)	140	1690	115	190	175	105
Future Volume (vph)	140	1690	115	190	175	105
Turn Type	Perm	NA	Perm	Perm	NA	NA
Protected Phases		6			8	4
Permitted Phases	6		6	8		
Detector Phase	6	6	6	8	8	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	53.0	53.0	53.0	37.0	37.0	37.0
Total Split (%)	58.9%	58.9%	58.9%	41.1%	41.1%	41.1%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max
Act Effct Green (s)	48.5	48.5	48.5	32.5	32.5	32.5
Actuated g/C Ratio	0.54	0.54	0.54	0.36	0.36	0.36
v/c Ratio	0.16	0.66	0.14	0.53	0.28	0.32
Control Delay	6.2	8.1	0.6	24.3	19.1	21.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.2	8.1	0.6	24.3	19.1	21.3
LOS	Α	Α	Α	С	В	С
Approach Delay		7.5			21.8	21.3
Approach LOS		Α			С	С
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90)					
Offset: 3 (3%), Referenced		:WBTL, S	Start of G	reen		
Natural Cycle: 50	•					
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.66						
Intersection Signal Delay:	10.7			Ir	ntersectio	n LOS: B
Intersection Capacity Utiliz		, 0		[(CU Level	of Service
Analysis Period (min) 15						

	۶	→	•	•	←	•	1	†	~	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	ተተተ	7	ሻ	†			₽	
Traffic Volume (veh/h)	0	0	0	140	1690	115	190	175	0	0	105	85
Future Volume (veh/h)	0	0	0	140	1690	115	190	175	0	0	105	85
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				151	1817	124	204	188	0	0	113	91
Peak Hour Factor				0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				960	2752	854	405	675	0	0	346	279
Arrive On Green				0.18	0.18	0.18	0.60	0.60	0.00	0.00	0.36	0.36
Sat Flow, veh/h				1781	5106	1585	1178	1870	0	0	959	772
Grp Volume(v), veh/h				151	1817	124	204	188	0	0	0	204
Grp Sat Flow(s), veh/h/ln				1781	1702	1585	1178	1870	0	0	0	1731
Q Serve(g_s), s				6.5	29.8	5.9	11.8	4.3	0.0	0.0	0.0	7.7
Cycle Q Clear(g_c), s				6.5	29.8	5.9	19.5	4.3	0.0	0.0	0.0	7.7
Prop In Lane				1.00	.==.	1.00	1.00		0.00	0.00		0.45
Lane Grp Cap(c), veh/h				960	2752	854	405	675	0	0	0	625
V/C Ratio(X)				0.16	0.66	0.15	0.50	0.28	0.00	0.00	0.00	0.33
Avail Cap(c_a), veh/h				960	2752	854	405	675	0	0	0	625
HCM Platoon Ratio				0.33	0.33	0.33	1.67	1.67	1.00	1.00	1.00	1.00
Upstream Filter(I)				0.76	0.76	0.76	0.91	0.91	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				19.7	29.3	19.5	18.2	12.3	0.0	0.0	0.0	20.8
Incr Delay (d2), s/veh				0.3	1.0	0.3	4.0	0.9	0.0	0.0	0.0	1.4
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				2.6	13.5	2.1	2.9	1.8	0.0	0.0	0.0	3.3
Unsig. Movement Delay, s/veł LnGrp Delay(d),s/veh	1			20.0	30.3	19.8	22.2	13.2	0.0	0.0	0.0	22.2
1 3 1				20.0 B	30.3 C	19.8 B	22.2 C	13.2 B		0.0 A	0.0 A	22.2 C
LnGrp LOS				D		D			A	A		
Approach Vol, veh/h					2092			392			204	
Approach LOS					28.9			17.9			22.2	
Approach LOS					С			В			С	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				37.0		53.0		37.0				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				32.5		48.5		32.5				
Max Q Clear Time (g_c+l1), s				9.7		31.8		21.5				
Green Ext Time (p_c), s				1.2		11.7		1.4				
Intersection Summary												
HCM 6th Ctrl Delay			26.8									
HCM 6th LOS			С									

Intersection						
Int Delay, s/veh	0.3					
		ED0	MDI	MOT	ND	NICO
Movement	EBT	EBR			NBL	NBR
Lane Configurations			`	^	ች	
Traffic Vol, veh/h	0	0	12	1931	32	0
Future Vol, veh/h	0	0	12	1931	32	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	150	-	0	-
Veh in Median Storage,	# 1	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	13	2099	35	0
N / a i a u / N / i u a u			Ma!a#2		1!1	
Major/Minor		ľ	Major2		/linor1	
Conflicting Flow All			0	0	866	-
Stage 1			-	-	0	-
Stage 2			-	-	866	-
Critical Hdwy			5.34	-	5.74	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	6.04	-
Follow-up Hdwy			3.12	-	3.82	-
Pot Cap-1 Maneuver			-	-	362	0
Stage 1			-	-	-	0
Stage 2			-	-	337	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	-	362	-
Mov Cap-2 Maneuver				_	362	_
Stage 1			_	_	-	_
Stage 2			_	_	337	_
Stuge 2					337	
Approach			WB		NB	
HCM Control Delay, s					16	
HCM LOS					С	
Niman Lana/Niaian Nimal		UDI1	WDI	WDT		
Minor Lane/Major Mvmt	l ľ	VBLn1	WBL	WBT		
Capacity (veh/h)		362	-	-		
HCM Lane V/C Ratio		0.096	-	-		
HCM Control Delay (s)		16	-	-		
HCM Lane LOS		С	-	-		
HCM 95th %tile Q(veh)		0.3	-	-		

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	LUI	LDIN	<u> </u>	↑	inde j	אטוו
Traffic Vol, veh/h	0	0	31	1311	17	0
Future Vol, veh/h	0	0	31	1311	17	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	Jiop -	None
Storage Length	_	-	150	-	0	-
Veh in Median Storage		-	-	0	0	_
Grade, %	, π 1	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	34	1425	18	0
IVIVIIIL I IOVV	U	U	34	1423	10	U
Major/Minor		N	Major2	N	/linor1	
Conflicting Flow All			0	0	638	-
Stage 1			-	-	0	-
Stage 2			-	-	638	-
Critical Hdwy			5.34	-	5.74	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	6.04	-
Follow-up Hdwy			3.12	-	3.82	-
Pot Cap-1 Maneuver			-	-	469	0
Stage 1			-	-	-	0
Stage 2			-	-	445	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	-	469	-
Mov Cap-2 Maneuver			-	-	469	-
Stage 1			-	_	-	-
Stage 2			_	_	445	_
otago L						
Approach			WB		NB	
HCM Control Delay, s					13	
HCM LOS					В	
Minor Lane/Major Mvm	† 1	NBLn1	WBL	WBT		
Capacity (veh/h)	. 1	469	TTDL	1101		
HCM Lane V/C Ratio		0.039		-		
HCM Control Delay (s)		13	-	-		
HCM Lane LOS		13 B	-	-		
HCM 95th %tile Q(veh)		0.1	-	-		
HOW FOUT TOUTE Q(VEH)		U. I		-		

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations			ነ ነ	^	ሻ	
Traffic Vol, veh/h	0	0	16	1931	46	0
Future Vol, veh/h	0	0	16	1931	46	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	150	-	0	-
Veh in Median Storage,	# 1	_	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	17	2033	48	0
WWW. TOW	U	U	17	2000	70	U
Major/Minor		N	Major2		/linor1	
Conflicting Flow All			0	0	847	-
Stage 1			-	-	0	-
Stage 2			-	-	847	-
Critical Hdwy			5.34	-	5.74	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	6.04	-
Follow-up Hdwy			3.12	-	3.82	-
Pot Cap-1 Maneuver			-	-	370	0
Stage 1			-	-	-	0
Stage 2			-	-	345	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	-	370	-
Mov Cap-2 Maneuver			-	_	370	_
Stage 1			_	_	-	_
Stage 2			_	_	345	_
Oluge 2					0 10	
Approach			WB		NB	
HCM Control Delay, s					16.2	
HCM LOS					С	
Minor Lane/Major Mvmt		NBLn1	WBL	WBT		
	. I		WDL	VVDI		
Capacity (veh/h)		370	-	-		
HCM Cantral Palau (a)		0.131	-	-		
HCM Long LOS		16.2	-	-		
HCM Lane LOS		C	-	-		
HCM 95th %tile Q(veh)		0.4	-	-		

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	בטו	LUK	VVDL	↑	NDL	אטוז
Traffic Vol, veh/h	0	0	39	1311	29	0
Future Vol, veh/h	0	0	39	1311	29	0
<u> </u>	0	0	0	0	0	0
Conflicting Peds, #/hr						
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	150	None	-	None
Storage Length	-	-	150	-	0	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	42	1410	31	0
Major/Minor		N	Major2	N	/linor1	
			0	0	648	
Conflicting Flow All			U			-
Stage 1			-	-	0	-
Stage 2			-	-	648	-
Critical Hdwy			5.34	-	5.74	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	6.04	-
Follow-up Hdwy			3.12	-	3.82	-
Pot Cap-1 Maneuver			-	-	464	0
Stage 1			-	-	-	0
Stage 2			-	-	439	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	-	464	-
Mov Cap-2 Maneuver			-	_	464	_
Stage 1			_	_	-	_
Stage 2			_	_	439	_
Stage 2					707	
Approach			WB		NB	
HCM Control Delay, s					13.3	
HCM LOS					В	
Minor Long /Maria - NA		JDI 1	MDI	MPT		
Minor Lane/Major Mvm	t ľ	NBLn1	WBL	WBT		
Capacity (veh/h)		464	-	-		
HCM Lane V/C Ratio		0.067	-	-		
HCM Control Delay (s)		13.3	-	-		
HCM Lane LOS		В	-	-		
HCM 95th %tile Q(veh)		0.2	-	-		
· · ·						

2. 14/0 110dd & 1110	•	+	•	•	†		
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	
Lane Configurations	ሻ	^	7		4	1>	
Traffic Volume (vph)	74	2710	45	40	45	85	
Future Volume (vph)	74	2710	45	40	45	85	
Turn Type	Perm	NA	Perm	Perm	NA	NA	
Protected Phases		6			8	4	
Permitted Phases	6		6	8			
Detector Phase	6	6	6	8	8	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	67.5	67.5	67.5	22.5	22.5	22.5	
Total Split (%)	75.0%	75.0%	75.0%	25.0%	25.0%	25.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5		4.5	4.5	
Lead/Lag	7.0	1.0	1.0		1.0	1.0	
Lead-Lag Optimize?							
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	63.0	63.0	63.0	IVIGA	18.0	18.0	
Actuated g/C Ratio	0.70	0.70	0.70		0.20	0.20	
v/c Ratio	0.06	0.80	0.04		0.30	0.49	
Control Delay	4.4	11.5	1.7		37.0	36.7	
Queue Delay	0.0	0.0	0.0		0.0	0.0	
Total Delay	4.4	11.5	1.7		37.0	36.7	
LOS	Α.Τ	В	Α		D	D	
Approach Delay	Л	11.2	А		37.0	36.7	
Approach LOS		В			D	D	
•		Б			D	D	
ntersection Summary							
Cycle Length: 90	<u> </u>						
Actuated Cycle Length: 90		- / WDTI	Ctt-6	0			
Offset: 87 (97%), Referen	iced to phas	e 6:WBII	L, Start of	Green			
Natural Cycle: 70	P						
Control Type: Actuated-Co	oordinated						
Maximum v/c Ratio: 0.80	10.0					- 100 5	
Intersection Signal Delay:		,				n LOS: B	. D
Intersection Capacity Utili	zation 77.6%	ó		[(U Level	of Service	
Analysis Period (min) 15							
Splits and Phases: 2: N	I/S Road & I	RidgeGat	e Pkwy W	/B			
		_	<u> </u>				1 24
							♥ Ø4
4							22.5 s
Ø6 (R)							1 08
67.5 s							22.5 s

	۶	→	*	•	←	4	1	†	~	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ተተተ	7		र्स			ĵ∍	
Traffic Volume (veh/h)	0	0	0	74	2710	45	40	45	0	0	85	80
Future Volume (veh/h)	0	0	0	74	2710	45	40	45	0	0	85	80
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				78	2853	47	42	47	0	0	89	31
Peak Hour Factor				0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				1247	3574	1110	162	161	0	0	265	92
Arrive On Green				0.70	0.70	0.70	0.20	0.20	0.00	0.00	0.20	0.20
Sat Flow, veh/h				1781	5106	1585	514	807	0	0	1326	462
Grp Volume(v), veh/h				78	2853	47	89	0	0	0	0	120
Grp Sat Flow(s), veh/h/ln				1781	1702	1585	1322	0	0	0	0	1787
Q Serve(g_s), s				1.2	34.2	0.8	1.9	0.0	0.0	0.0	0.0	5.2
Cycle Q Clear(g_c), s				1.2	34.2	0.8	7.1	0.0	0.0	0.0	0.0	5.2
Prop In Lane				1.00		1.00	0.47		0.00	0.00		0.26
Lane Grp Cap(c), veh/h				1247	3574	1110	323	0	0	0	0	357
V/C Ratio(X)				0.06	0.80	0.04	0.28	0.00	0.00	0.00	0.00	0.34
Avail Cap(c_a), veh/h				1247	3574	1110	323	0	0	0	0	357
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				4.2	9.2	4.2	31.3	0.0	0.0	0.0	0.0	30.9
Incr Delay (d2), s/veh				0.1	2.0 0.0	0.1	2.1	0.0	0.0	0.0	0.0	2.5
Initial Q Delay(d3),s/veh				0.0	9.1	0.0	0.0 1.9	0.0	0.0	0.0	0.0	0.0 2.5
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh				0.4	9.1	0.2	1.9	0.0	0.0	0.0	0.0	2.5
LnGrp Delay(d),s/veh				4.3	11.1	4.2	33.4	0.0	0.0	0.0	0.0	33.4
LnGrp LOS				4.5 A	11.1 B	4.Z A	33.4 C	0.0 A	0.0 A	0.0 A	0.0 A	33.4 C
				A	2978	A	<u> </u>	89	A	A	120	
Approach Vol, veh/h					10.8			33.4			33.4	
Approach LOS								33.4 C			33.4 C	
Approach LOS					В			C			C	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				22.5		67.5		22.5				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				18.0		63.0		18.0				
Max Q Clear Time (g_c+I1), s				7.2		36.2		9.1				
Green Ext Time (p_c), s				0.4		23.8		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			12.3									
HCM 6th LOS			В									

	•	←	•	4	†	↓
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT
Lane Configurations	ሻ	ተተተ	7		सी	ĵ.
Traffic Volume (vph)	57	1844	110	32	115	85
Future Volume (vph)	57	1844	110	32	115	85
Turn Type	Perm	NA	Perm	Perm	NA	NA
Protected Phases		6			8	4
Permitted Phases	6		6	8		
Detector Phase	6	6	6	8	8	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	62.0	62.0	62.0	28.0	28.0	28.0
Total Split (%)	68.9%	68.9%	68.9%	31.1%	31.1%	31.1%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5		4.5	4.5
Lead/Lag						
Lead-Lag Optimize?	0.14	0.14	0.14			N.4
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max
Act Effct Green (s)	57.5	57.5	57.5		23.5	23.5
Actuated g/C Ratio	0.64	0.64	0.64		0.26	0.26
v/c Ratio	0.05	0.61	0.11		0.36	0.38
Control Delay	6.3	10.6	1.5		25.6	27.6
Queue Delay	0.0	0.0	0.0		0.0	0.0
Total Delay	6.3	10.6	1.5		25.6	27.6
LOS Approach Dolov	А	10 O	А		C	C
Approach LOS		10.0 B			25.6 C	27.6 C
Approach LOS		В			C	C
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 1 (1%), Referenced	to phase 6	:WBTL, S	Start of G	reen		
Natural Cycle: 55						
Control Type: Actuated-Cod	ordinated					
Maximum v/c Ratio: 0.61						
Intersection Signal Delay: 1					ntersectio	
Intersection Capacity Utiliza	ation 64.1%	ó -		Į(CU Level	of Service
Analysis Period (min) 15						
Splits and Phases: 2: N/S	S Road & F	RidaeGat	e Pkwv W	/B		
	<u> </u>	nagovan	o			
45 (n)						
∮ ∮ Ø6 (R)						

	۶	→	*	•	←	•	1	†	<i>></i>	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ተተተ	7		र्स			ĵ»	
Traffic Volume (veh/h)	0	0	0	57	1844	110	32	115	0	0	85	80
Future Volume (veh/h)	0	0	0	57	1844	110	32	115	0	0	85	80
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				61	1983	118	34	124	0	0	91	86
Peak Hour Factor				0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				1138	3262	1013	112	374	0	0	231	218
Arrive On Green				0.64	0.64	0.64	0.09	0.09	0.00	0.00	0.26	0.26
Sat Flow, veh/h				1781	5106	1585	243	1433	0	0	884	836
Grp Volume(v), veh/h				61	1983	118	158	0	0	0	0	177
Grp Sat Flow(s), veh/h/ln				1781	1702	1585	1677	0	0	0	0	1720
Q Serve(g_s), s				1.2	20.6	2.6	0.3	0.0	0.0	0.0	0.0	7.6
Cycle Q Clear(g_c), s				1.2	20.6	2.6	8.0	0.0	0.0	0.0	0.0	7.6
Prop In Lane				1.00	2212	1.00	0.22		0.00	0.00		0.49
Lane Grp Cap(c), veh/h				1138	3262	1013	486	0	0	0	0	449
V/C Ratio(X)				0.05	0.61	0.12	0.32	0.00	0.00	0.00	0.00	0.39
Avail Cap(c_a), veh/h				1138	3262	1013	486	0	0	0	0	449
HCM Platoon Ratio				1.00	1.00	1.00	0.33	0.33	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	1.00	1.00	0.99	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				6.1	9.6	6.3	33.7	0.0	0.0	0.0	0.0	27.4
Incr Delay (d2), s/veh				0.1	0.9	0.2	1.8	0.0	0.0	0.0	0.0	2.6
Initial Q Delay(d3),s/veh				0.0	0.0 6.2	0.0	0.0 3.6	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%), veh/ln	h			0.4	0.2	0.8	3.0	0.0	0.0	0.0	0.0	3.4
Unsig. Movement Delay, s/ve LnGrp Delay(d),s/veh	n n			6.2	10.4	6.6	35.4	0.0	0.0	0.0	0.0	30.0
1 3 . ,				0.2 A	10.4 B		35.4 D	0.0 A		0.0 A		30.0 C
LnGrp LOS				A		A	U		A	A	A	
Approach Vol, veh/h					2162			158			177	
Approach LOS					10.1			35.4			30.0	
Approach LOS					В			D			С	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				28.0		62.0		28.0				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				23.5		57.5		23.5				
Max Q Clear Time (g_c+I1), s	5			9.6		22.6		10.0				
Green Ext Time (p_c), s				0.8		20.6		0.6				
Intersection Summary												
HCM 6th Ctrl Delay			13.1									
HCM 6th LOS			В									

	•	+	•	4	†	↓	
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	
Lane Configurations	, j	ተተተ	7		ર્ન	f)	
Traffic Volume (vph)	80	2710	45	55	45	85	
Future Volume (vph)	80	2710	45	55	45	85	
Turn Type	Perm	NA	Perm	Perm	NA	NA	
Protected Phases		6			8	4	
Permitted Phases	6		6	8			
Detector Phase	6	6	6	8	8	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	67.5	67.5	67.5	22.5	22.5	22.5	
Total Split (%)	75.0%	75.0%	75.0%	25.0%	25.0%	25.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5		4.5	4.5	
Lead/Lag							
Lead-Lag Optimize?		_	_				
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	63.0	63.0	63.0		18.0	18.0	
Actuated g/C Ratio	0.70	0.70	0.70		0.20	0.20	
v/c Ratio	0.07	0.80	0.04		0.42	0.51	
Control Delay	4.4	11.5	1.6		36.4	37.2	
Queue Delay	0.0	0.0	0.0		0.0	0.0	
Total Delay	4.4	11.5	1.6		36.4	37.2	
LOS	А	В	А		D	D	
Approach Delay		11.2			36.4	37.2	
Approach LOS		В			D	D	
ntersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 82 (91%), Referen	ced to phase	e 6:WBTI	_, Start of	Green			
Natural Cycle: 70							
Control Type: Actuated-Co	oordinated						
Maximum v/c Ratio: 0.80	10.4					100.5	
ntersection Signal Delay:		,				n LOS: B	D
ntersection Capacity Utiliz	zation /8.4%	′о 		[(U Level	of Service	ט :
Analysis Period (min) 15							
Splits and Phases: 2: N	/S Road & I	RidgeGat	e Pkwy W	/B			
					<u> </u>		₩ Ø4
							22.5 s
4 \$							≼†
∮ Ø6 (R)							√ Ø8

	•	→	•	•	←	•	4	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	↑ ↑↑	7		र्स			₽	
Traffic Volume (veh/h)	0	0	0	80	2710	45	55	45	0	0	85	80
Future Volume (veh/h)	0	0	0	80	2710	45	55	45	0	0	85	80
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				84	2853	49	58	49	0	0	92	87
Peak Hour Factor				0.95	0.95	0.92	0.95	0.92	0.95	0.92	0.92	0.92
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				1247	3574	1110	145	106	0	0	177	167
Arrive On Green				0.70	0.70	0.70	0.20	0.20	0.00	0.00	0.20	0.20
Sat Flow, veh/h				1781	5106	1585	418	528	0	0	884	836
Grp Volume(v), veh/h				84	2853	49	107	0	0	0	0	179
Grp Sat Flow(s), veh/h/ln				1781	1702	1585	946	0	0	0	0	1720
Q Serve(g_s), s				1.3	34.2	0.9	4.1	0.0	0.0	0.0	0.0	8.4
Cycle Q Clear(g_c), s				1.3	34.2	0.9	12.4	0.0	0.0	0.0	0.0	8.4
Prop In Lane				1.00	J4.2	1.00	0.54	0.0	0.00	0.00	0.0	0.49
Lane Grp Cap(c), veh/h				1247	3574	1110	251	0	0.00	0.00	0	344
V/C Ratio(X)				0.07	0.80	0.04	0.43	0.00	0.00	0.00	0.00	0.52
Avail Cap(c_a), veh/h				1247	3574	1110	251	0.00	0.00	0.00	0.00	344
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				4.3	9.2	4.2	34.6	0.0	0.0	0.0	0.0	32.1
Incr Delay (d2), s/veh				0.1	2.0	0.1	5.2	0.0	0.0	0.0	0.0	5.5
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.0	9.1	0.0	2.5	0.0	0.0	0.0	0.0	3.9
Unsig. Movement Delay, s/veh				0.4	7.1	0.2	2.0	0.0	0.0	0.0	0.0	3.7
LnGrp Delay(d),s/veh				4.4	11.1	4.3	39.8	0.0	0.0	0.0	0.0	37.7
LnGrp LOS				4.4 A	В	4.3 A	39.0 D	Α	Α	0.0 A	Α	37.7 D
•				A		A	<u> </u>		A	A		D
Approach Vol, veh/h					2986			107			179	
Approach Delay, s/veh					10.8			39.8			37.7	
Approach LOS					В			D			D	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				22.5		67.5		22.5				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				18.0		63.0		18.0				
Max Q Clear Time (g_c+l1), s				10.4		36.2		14.4				
Green Ext Time (p_c), s				0.5		23.8		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			13.2									
HCM 6th LOS			В									
Notes												

User approved pedestrian interval to be less than phase max green.

₩ Ø6 (R)

	•	←	4	1	†	↓	
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	
Lane Configurations	7	^	7		€Î	(Î	
Traffic Volume (vph)	65	1845	110	45	115	85	
Future Volume (vph)	65	1845	110	45	115	85	
Turn Type	Perm	NA	Perm	Perm	NA	NA	
Protected Phases		6			8	4	
Permitted Phases	6		6	8			
Detector Phase	6	6	6	8	8	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	62.0	62.0	62.0	28.0	28.0	28.0	
Total Split (%)	68.9%	68.9%	68.9%	31.1%	31.1%	31.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5		4.5	4.5	
Lead/Lag							
Lead-Lag Optimize? Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	57.5	57.5	57.5	IVIAX	23.5	23.5	
Actuated g/C Ratio	0.64	0.64	0.64		0.26	0.26	
v/c Ratio	0.04	0.61	0.04		0.20	0.20	
Control Delay	6.3	10.6	1.5		25.1	27.7	
Queue Delay	0.0	0.0	0.0		0.0	0.0	
Total Delay	6.3	10.6	1.5		25.1	27.7	
LOS	0.5 A	В	Α		23.1 C	C C	
Approach Delay		10.0			25.1	27.7	
Approach LOS		Α			23.1 C	C C	
		7.					
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90			<u> </u>	_			
Offset: 83 (92%), Reference	ed to phase	e 6:WBTL	₋ , Start of	Green			
Natural Cycle: 55							
Control Type: Actuated-Coo	ordinated						
Maximum v/c Ratio: 0.61	0.0					100 0	
Intersection Signal Delay: 1		,			ntersectio		
Intersection Capacity Utiliza	ation 64.8%	o .		Į(JU Level	of Service	e C
Analysis Period (min) 15							
Splits and Phases: 2: N/S	S Road & F	RidgeGat	e Pkwy W	/B			

↑p₈

	۶	→	*	•	←	4	1	†	<i>></i>	/	 	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ተተተ	7		र्स			Դ	
Traffic Volume (veh/h)	0	0	0	65	1845	110	45	115	0	0	85	80
Future Volume (veh/h)	0	0	0	65	1845	110	45	115	0	0	85	80
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1870	1870	1870	1870	1870	0	0	1870	1870
Adj Flow Rate, veh/h				70	1984	120	48	125	0	0	92	87
Peak Hour Factor				0.93	0.93	0.92	0.93	0.92	0.93	0.92	0.92	0.92
Percent Heavy Veh, %				2	2	2	2	2	0	0	2	2
Cap, veh/h				1138	3262	1013	130	311	0	0	231	218
Arrive On Green				0.64	0.64	0.64	0.09	0.09	0.00	0.00	0.26	0.26
Sat Flow, veh/h				1781	5106	1585	302	1192	0	0	884	836
Grp Volume(v), veh/h				70	1984	120	173	0	0	0	0	179
Grp Sat Flow(s), veh/h/ln				1781	1702	1585	1494	0	0	0	0	1720
Q Serve(g_s), s				1.3	20.7	2.7	3.3	0.0	0.0	0.0	0.0	7.7
Cycle Q Clear(g_c), s				1.3	20.7	2.7	11.0	0.0	0.0	0.0	0.0	7.7
Prop In Lane				1.00		1.00	0.28	_	0.00	0.00	_	0.49
Lane Grp Cap(c), veh/h				1138	3262	1013	441	0	0	0	0	449
V/C Ratio(X)				0.06	0.61	0.12	0.39	0.00	0.00	0.00	0.00	0.40
Avail Cap(c_a), veh/h				1138	3262	1013	441	0	0	0	0	449
HCM Platoon Ratio				1.00	1.00	1.00	0.33	0.33	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00
Uniform Delay (d), s/veh				6.1	9.6	6.3	34.9	0.0	0.0	0.0	0.0	27.4
Incr Delay (d2), s/veh				0.1	0.9	0.2	2.6	0.0	0.0	0.0	0.0	2.6
Initial Q Delay(d3),s/veh				0.0	0.0 6.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0 3.4
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh	`			0.4	0.2	0.8	4.3	0.0	0.0	0.0	0.0	3.4
LnGrp Delay(d),s/veh	l			6.2	10.4	6.6	37.5	0.0	0.0	0.0	0.0	30.1
LnGrp LOS				0.2 A	10.4 B	0.0 A	37.3 D	0.0 A	0.0 A	0.0 A	0.0 A	30.1 C
				A	2174	A	<u> </u>	173	A	A	179	
Approach Polev, s/veh					10.1			37.5			30.1	
Approach LOS											30.1 C	
Approach LOS					В			D			C	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				28.0		62.0		28.0				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				23.5		57.5		23.5				
Max Q Clear Time (g_c+l1), s				9.7		22.7		13.0				
Green Ext Time (p_c), s				0.8		20.6		0.6				
Intersection Summary												
HCM 6th Ctrl Delay			13.4									
HCM 6th LOS			В									

o. Mapoody Mod	<u>a a raag</u> ◆	- Journal of the second	<u> </u>	•		1	
		→	*	ı	•	*	
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT	
Lane Configurations	ሻ	ተተተ	7	₽	7	↑	
Traffic Volume (vph)	5	875	22	62	36	7	
Future Volume (vph)	5	875	22	62	36	7	
Turn Type	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		8		4	
Permitted Phases	2		2		4		
Detector Phase	2	2	2	8	4	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	56.0	56.0	56.0	34.0	34.0	34.0	
Total Split (%)	62.2%	62.2%	62.2%	37.8%	37.8%	37.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	51.5	51.5	51.5	29.5	29.5	29.5	
Actuated g/C Ratio	0.57	0.57	0.57	0.33	0.33	0.33	
v/c Ratio	0.00	0.33	0.03	0.15	0.09	0.01	
Control Delay	8.4	10.5	3.5	17.5	16.7	16.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	8.4	10.5	3.5	17.5	16.7	16.1	
LOS	0.4 A	10.5 B	3.5 A	17.5 B	В	В	
Approach Delay	A	10.3	A	17.5	D	16.6	
Approach LOS		10.3 B		17.5 B		10.0	
•		D		D		D	
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 0 (0%), Reference	d to phase 2	2:EBTL, S	start of Gr	een			
Natural Cycle: 45							
Control Type: Actuated-Co	oordinated						
Maximum v/c Ratio: 0.33							
Intersection Signal Delay:						n LOS: B	
Intersection Capacity Utiliz	zation 56.8%	6		l(CU Level	of Service	е В
Analysis Period (min) 15							
Splits and Phases: 3: R	Rhapsody Ro	ad & Rid	geGate P	kwy EB			
							1 1
J 🔝 Ø2 (R)							▼ Ø4
56 s							34 s
							T ø8
							24 6

	۶	→	•	•	←	4	1	†	~	/	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7					₽		7	•	
Traffic Volume (veh/h)	5	875	22	0	0	0	0	62	22	36	7	0
Future Volume (veh/h)	5	875	22	0	0	0	0	62	22	36	7	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	5	951	24				0	67	24	39	8	0
Peak Hour Factor	0.92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1019	2922	907				0	431	154	461	613	0
Arrive On Green	0.57	0.57	0.57				0.00	0.33	0.33	0.33	0.33	0.00
Sat Flow, veh/h	1781	5106	1585				0	1315	471	1306	1870	0
Grp Volume(v), veh/h	5	951	24				0	0	91	39	8	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1585				0	0	1786	1306	1870	0
Q Serve(g_s), s	0.1	8.8	0.6				0.0	0.0	3.2	2.0	0.3	0.0
Cycle Q Clear(g_c), s	0.1	8.8	0.6				0.0	0.0	3.2	5.2	0.3	0.0
Prop In Lane	1.00		1.00				0.00	_	0.26	1.00		0.00
Lane Grp Cap(c), veh/h	1019	2922	907				0	0	585	461	613	0
V/C Ratio(X)	0.00	0.33	0.03				0.00	0.00	0.16	0.08	0.01	0.00
Avail Cap(c_a), veh/h	1019	2922	907				0	0	585	461	613	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	8.3	10.1	8.4				0.0	0.0	21.4	23.3	20.4	0.0
Incr Delay (d2), s/veh	0.0	0.3	0.1				0.0	0.0	0.6	0.4	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%), veh/ln	0.0	2.9	0.2				0.0	0.0	1.4	0.6	0.1	0.0
Unsig. Movement Delay, s/veh		10.4	0.4				0.0	0.0	22.0	22 /	20 F	0.0
LnGrp Delay(d),s/veh	8.3	10.4 B	8.4				0.0	0.0	22.0 C	23.6 C	20.5 C	0.0
LnGrp LOS	A		A				A	A 01	C	<u> </u>		A
Approach Vol, veh/h		980						91			47	
Approach LOS		10.4						22.0			23.1	
Approach LOS		В						С			С	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		56.0		34.0				34.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		51.5		29.5				29.5				
Max Q Clear Time (g_c+I1), s		10.8		7.2				5.2				
Green Ext Time (p_c), s		7.4		0.1				0.4				
Intersection Summary												
HCM 6th Ctrl Delay			11.8									
HCM 6th LOS			В									

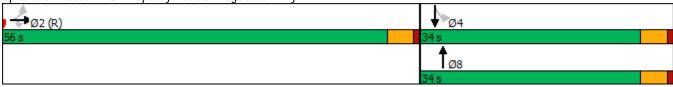
	۶	→	•	†	/	+	
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT	
Lane Configurations	*	ተተተ	7	eî	¥	†	
Traffic Volume (vph)	10	2119	61	39	100	22	
Future Volume (vph)	10	2119	61	39	100	22	
Turn Type	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		8		4	
Permitted Phases	2		2		4		
Detector Phase	2	2	2	8	4	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	65.0	65.0	65.0	25.0	25.0	25.0	
Total Split (%)	72.2%	72.2%	72.2%	27.8%	27.8%	27.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	т.Ј	Т.Ј	Т.Ј	Т.Ј	т.Ј	т. Ј	
Lead-Lag Optimize?							
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	60.5	60.5	60.5	20.5	20.5	20.5	
Actuated g/C Ratio	0.67	0.67	0.67	0.23	0.23	0.23	
v/c Ratio	0.07	0.67	0.07	0.23	0.23	0.23	
Control Delay	4.9	10.1	1.5	24.9	26.7	21.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	4.9	10.1	1.5	24.9	26.7	21.4	
LOS	4.9 A	В	1.5 A	24.9 C	20.7 C	21.4 C	
	А	9.8	А	24.9	C	25.7	
Approach LOS		9.0 A		24.9 C		23.7 C	
Approach LOS		А		C		C	
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 0 (0%), Referenced	to phase 2	e:EBTL, S	Start of Gr	een			
Natural Cycle: 60							
Control Type: Actuated-Coo	ordinated						
Maximum v/c Ratio: 0.67							
Intersection Signal Delay: 1					ntersectio		
Intersection Capacity Utiliza	ation 61.99	6		I	CU Level	of Service	В
Analysis Period (min) 15							
Splits and Phases: 3: Rh	apsody Ro	ad & Rid	geGate P	kwy EB			
	,		<u>J </u>	<u> </u>			\
▼ Ø2 (R)							▼ Ø4
65 s							25 s
							↑ ø8
							25 s

	۶	→	*	•	←	4	1	†	/	/	ţ	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7					ĵ»		7	•	
Traffic Volume (veh/h)	10	2119	61	0	0	0	0	39	14	100	22	0
Future Volume (veh/h)	10	2119	61	0	0	0	0	39	14	100	22	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	11	2303	66				0	42	15	109	24	0
Peak Hour Factor	0.92	0.92	0.92				0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1197	3432	1066				0	300	107	352	426	0
Arrive On Green	0.67	0.67	0.67				0.00	0.23	0.23	0.23	0.23	0.00
Sat Flow, veh/h	1781	5106	1585				0	1316	470	1346	1870	0
Grp Volume(v), veh/h	11	2303	66				0	0	57	109	24	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1585				0	0	1786	1346	1870	0
Q Serve(g_s), s	0.2	24.2	1.3				0.0	0.0	2.3	6.3	0.9	0.0
Cycle Q Clear(g_c), s	0.2	24.2	1.3				0.0	0.0	2.3	8.6	0.9	0.0
Prop In Lane	1.00	2.100	1.00				0.00		0.26	1.00		0.00
Lane Grp Cap(c), veh/h	1197	3432	1066				0	0	407	352	426	0
V/C Ratio(X)	0.01	0.67	0.06				0.00	0.00	0.14	0.31	0.06	0.00
Avail Cap(c_a), veh/h	1197	3432	1066				0	0	407	352	426	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	4.9	8.8	5.0				0.0	0.0	27.7	31.2	27.2	0.0
Incr Delay (d2), s/veh	0.0	1.1	0.1				0.0	0.0	0.7	2.3	0.3	0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln	0.0	0.0	0.0				0.0	0.0	0.0 1.0	0.0 2.2	0.0	0.0
		6.8	0.4				0.0	0.0	1.0	2.2	0.4	0.0
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh	4.9	9.9	5.2				0.0	0.0	28.4	33.4	27.4	0.0
LnGrp LOS	4.9 A	9.9 A	3.2 A				0.0 A	0.0 A	20.4 C	33.4 C	27.4 C	
	A		A				A	57		<u> </u>	133	A
Approach Vol, veh/h		2380 9.7						28.4			32.3	
Approach LOS								28.4 C			32.3 C	
Approach LOS		A									C	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		65.0		25.0				25.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		60.5		20.5				20.5				
Max Q Clear Time (g_c+I1), s		26.2		10.6				4.3				
Green Ext Time (p_c), s		23.9		0.3				0.2				
Intersection Summary												
HCM 6th Ctrl Delay			11.3									_
HCM 6th LOS			В									

	•	→	•	†	-	ļ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Configurations	¥	ተተተ	7	£	J.	†
Traffic Volume (vph)	5	882	22	62	36	7
Future Volume (vph)	5	882	22	62	36	7
Turn Type	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2		8		4
Permitted Phases	2		2		4	
Detector Phase	2	2	2	8	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	56.0	56.0	56.0	34.0	34.0	34.0
Total Split (%)	62.2%	62.2%	62.2%	37.8%	37.8%	37.8%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max
Act Effct Green (s)	51.5	51.5	51.5	29.5	29.5	29.5
Actuated g/C Ratio	0.57	0.57	0.57	0.33	0.33	0.33
v/c Ratio	0.00	0.32	0.03	0.15	0.09	0.01
Control Delay	8.4	10.4	3.6	17.4	16.6	16.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	8.4	10.4	3.6	17.4	16.6	16.1
LOS	А	В	Α	В	В	В
Approach Delay		10.3		17.4		16.5
Approach LOS		В		В		В
Intersection Summary						
Cycle Length: 90						

Cycle Length: 90 Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green

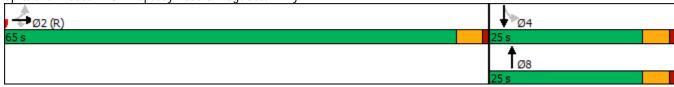

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.32

Intersection Signal Delay: 11.1 Intersection LOS: B
Intersection Capacity Utilization 57.1% ICU Level of Service B

Analysis Period (min) 15


	۶	→	•	•	←	4	1	†	<i>></i>	/	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተተ	7					₽		7	•	
Traffic Volume (veh/h)	5	882	22	0	0	0	0	62	22	36	7	0
Future Volume (veh/h)	5	882	22	0	0	0	0	62	22	36	7	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	5	928	23				0	65	23	38	7	0
Peak Hour Factor	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1019	2922	907				0	432	153	463	613	0
Arrive On Green	0.57	0.57	0.57				0.00	0.33	0.33	0.33	0.33	0.00
Sat Flow, veh/h	1781	5106	1585				0	1319	467	1309	1870	0
Grp Volume(v), veh/h	5	928	23				0	0	88	38	7	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1585				0	0	1786	1309	1870	0
Q Serve(g_s), s	0.1	8.6	0.6				0.0	0.0	3.1	1.9	0.2	0.0
Cycle Q Clear(g_c), s	0.1	8.6	0.6				0.0	0.0	3.1	5.0	0.2	0.0
Prop In Lane	1.00		1.00				0.00		0.26	1.00		0.00
Lane Grp Cap(c), veh/h	1019	2922	907				0	0	586	463	613	0
V/C Ratio(X)	0.00	0.32	0.03				0.00	0.00	0.15	0.08	0.01	0.00
Avail Cap(c_a), veh/h	1019	2922	907				0	0	586	463	613	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	8.3	10.1	8.4				0.0	0.0	21.4	23.2	20.4	0.0
Incr Delay (d2), s/veh	0.0	0.3	0.1				0.0	0.0	0.5	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	2.8	0.2				0.0	0.0	1.4	0.6	0.1	0.0
Unsig. Movement Delay, s/veh		10.4	0.4				0.0	0.0	21.0	22.5	20.4	0.0
LnGrp Delay(d),s/veh	8.3	10.4	8.4				0.0	0.0	21.9	23.5	20.4 C	0.0
LnGrp LOS	A	В	A				A	A	С	С		A
Approach Vol, veh/h		956						88			45	
Approach Delay, s/veh		10.3						21.9			23.0	
Approach LOS		В						С			С	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		56.0		34.0				34.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		51.5		29.5				29.5				
Max Q Clear Time (g_c+l1), s		10.6		7.0				5.1				
Green Ext Time (p_c), s		7.1		0.1				0.4				
Intersection Summary												
HCM 6th Ctrl Delay			11.8									
HCM 6th LOS			В									

	•	-	•	†	-	. ↓
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Configurations	*	^	7	1	ች	†
Traffic Volume (vph)	10	2134	61	39	100	22
Future Volume (vph)	10	2134	61	39	100	22
Turn Type	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2		8		4
Permitted Phases	2		2		4	
Detector Phase	2	2	2	8	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	65.0	65.0	65.0	25.0	25.0	25.0
Total Split (%)	72.2%	72.2%	72.2%	27.8%	27.8%	27.8%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max
Act Effct Green (s)	60.5	60.5	60.5	20.5	20.5	20.5
Actuated g/C Ratio	0.67	0.67	0.67	0.23	0.23	0.23
v/c Ratio	0.01	0.67	0.06	0.14	0.35	0.06
Control Delay	4.9	10.1	1.5	24.9	26.6	21.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	4.9	10.1	1.5	24.9	26.6	21.5
LOS	А	В	Α	С	С	С
Approach Delay		9.8		24.9		25.6
Approach LOS		А		С		С
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 0 (0%), Referenced	to phase 2	EBTL, S	tart of Gr	een		
Natural Cycle: 60	•					
Control Type: Actuated-Coo	ordinated					
Mandana da Datia 0 (7						

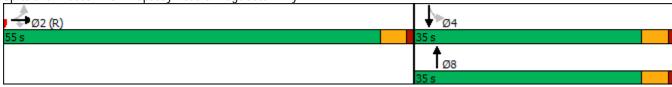
Maximum v/c Ratio: 0.67

Intersection Signal Delay: 10.9 Intersection LOS: B Intersection Capacity Utilization 62.2% ICU Level of Service B

Analysis Period (min) 15

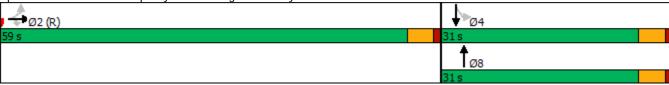
	۶	→	*	•	←	4	4	†	<i>></i>	/	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7					₽		ሻ	•	
Traffic Volume (veh/h)	10	2134	61	0	0	0	0	39	14	100	22	0
Future Volume (veh/h)	10	2134	61	0	0	0	0	39	14	100	22	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	11	2295	66				0	42	15	108	24	0
Peak Hour Factor	0.93	0.93	0.93				0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1197	3432	1066				0	300	107	352	426	0
Arrive On Green	0.67	0.67	0.67				0.00	0.23	0.23	0.23	0.23	0.00
Sat Flow, veh/h	1781	5106	1585				0	1316	470	1346	1870	0
Grp Volume(v), veh/h	11	2295	66				0	0	57	108	24	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1585				0	0	1786	1346	1870	0
Q Serve(g_s), s	0.2	24.1	1.3				0.0	0.0	2.3	6.3	0.9	0.0
Cycle Q Clear(g_c), s	0.2	24.1	1.3				0.0	0.0	2.3	8.6	0.9	0.0
Prop In Lane	1.00		1.00				0.00	_	0.26	1.00		0.00
Lane Grp Cap(c), veh/h	1197	3432	1066				0	0	407	352	426	0
V/C Ratio(X)	0.01	0.67	0.06				0.00	0.00	0.14	0.31	0.06	0.00
Avail Cap(c_a), veh/h	1197	3432	1066				0	0	407	352	426	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	4.9	8.8	5.0				0.0	0.0	27.7	31.1	27.2	0.0
Incr Delay (d2), s/veh	0.0	1.1	0.1				0.0	0.0	0.7	2.2	0.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0 2.2	0.0	0.0
%ile BackOfQ(50%), veh/ln	0.1	6.8	0.4				0.0	0.0	1.0	2.2	0.4	0.0
Unsig. Movement Delay, s/veh	4.9	9.8	5.2				0.0	0.0	28.4	33.4	27.4	0.0
LnGrp Delay(d),s/veh LnGrp LOS	4.9 A	9.0 A	3.2 A				0.0 A	0.0 A	20.4 C	33.4 C	27.4 C	
	A		A				A	<u>57</u>	<u> </u>	<u> </u>		A
Approach Vol, veh/h		2372									132	
Approach LOS		9.7						28.4			32.3	
Approach LOS		А						С			С	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		65.0		25.0				25.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		60.5		20.5				20.5				
Max Q Clear Time (g_c+l1), s		26.1		10.6				4.3				
Green Ext Time (p_c), s		23.8		0.3				0.2				
Intersection Summary												
HCM 6th Ctrl Delay			11.3									
HCM 6th LOS			В									

	٠	→	•	†	>	ļ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Configurations	ሻ	ተተተ	7	₽	ሻ	†
Traffic Volume (vph)	55	1198	130	140	57	93
Future Volume (vph)	55	1198	130	140	57	93
Turn Type	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2		8		4
Permitted Phases	2		2		4	
Detector Phase	2	2	2	8	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	55.0	55.0	55.0	35.0	35.0	35.0
Total Split (%)	61.1%	61.1%	61.1%	38.9%	38.9%	38.9%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	None	Max	Max
Act Effct Green (s)	50.5	50.5	50.5	30.5	30.5	30.5
Actuated g/C Ratio	0.56	0.56	0.56	0.34	0.34	0.34
v/c Ratio	0.06	0.44	0.15	0.36	0.18	0.16
Control Delay	9.2	12.1	2.1	21.4	25.0	24.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.2	12.1	2.1	21.4	25.0	24.0
LOS	А	В	Α	C	С	С
Approach Delay		11.1		21.4		24.4
Approach LOS		В		С		С
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90)					
Offset: 80 (89%), Referen		e 2:EBTL	, Start of	Green		
Natural Cycle: 45						
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 0.44						
Intersection Signal Delay:	13.5			lı	ntersectio	n LOS: B
Intersection Capacity Utiliz		6			CU Level	
Analysis Period (min) 15						
Splits and Phases: 3: R	idgeGate P	kwy EB &	Rhapsoo	dy Road		
Ø2 (R)						
55 s						


	۶	→	*	•	←	4	1	†	<i>></i>	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7					₽		*	+	
Traffic Volume (veh/h)	55	1198	130	0	0	0	0	140	69	57	93	0
Future Volume (veh/h)	55	1198	130	0	0	0	0	140	69	57	93	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	58	1261	141				0	152	75	60	101	0
Peak Hour Factor	0.95	0.95	0.92				0.92	0.92	0.92	0.95	0.92	0.95
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1000	2865	889				0	401	198	358	634	0
Arrive On Green	0.56	0.56	0.56				0.00	0.34	0.34	0.11	0.11	0.00
Sat Flow, veh/h	1781	5106	1585				0	1182	583	1154	1870	0
Grp Volume(v), veh/h	58	1261	141				0	0	227	60	101	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1585				0	0	1765	1154	1870	0
Q Serve(g_s), s	1.3	13.0	3.9				0.0	0.0	8.8	4.4	4.4	0.0
Cycle Q Clear(g_c), s	1.3	13.0	3.9				0.0	0.0	8.8	13.2	4.4	0.0
Prop In Lane	1.00		1.00				0.00		0.33	1.00		0.00
Lane Grp Cap(c), veh/h	1000	2865	889				0	0	598	358	634	0
V/C Ratio(X)	0.06	0.44	0.16				0.00	0.00	0.38	0.17	0.16	0.00
Avail Cap(c_a), veh/h	1000	2865	889				0	0	598	358	634	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	0.33	0.33	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	0.00	1.00	0.91	0.91	0.00
Uniform Delay (d), s/veh	9.0	11.5	9.5				0.0	0.0	22.6	36.4	28.4	0.0
Incr Delay (d2), s/veh	0.1	0.5	0.4				0.0	0.0	0.4	0.9	0.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0 1.2				0.0	0.0	0.0	0.0 1.4	0.0 2.1	0.0
%ile BackOfQ(50%), veh/ln		4.3	1.2				0.0	0.0	3.6	1.4	Z. I	0.0
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh	9.1	12.0	9.9				0.0	0.0	23.0	37.3	28.9	0.0
LnGrp LOS	9.1 A	12.0 B	9.9 A				0.0 A	0.0 A	23.0 C	37.3 D	20.9 C	
	<u> </u>		A				A		<u> </u>	U		A
Approach Vol, veh/h		1460						227			161	
Approach LOS		11.7						23.0			32.0	
Approach LOS		В						С			С	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		55.0		35.0				35.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		50.5		30.5				30.5				
Max Q Clear Time (g_c+l1), s		15.0		15.2				10.8				
Green Ext Time (p_c), s		11.3		0.6				1.2				
Intersection Summary												
HCM 6th Ctrl Delay			14.8									
HCM 6th LOS			В									

	۶	→	*	†	/	↓	
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT	
Lane Configurations	ň	ተተተ	7	f)	7	†	
Traffic Volume (vph)	155	2628	175	190	123	128	
Future Volume (vph)	155	2628	175	190	123	128	
Turn Type	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		2		8		4	
Permitted Phases	2		2		4		
Detector Phase	2	2	2	8	4	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	59.0	59.0	59.0	31.0	31.0	31.0	
Total Split (%)	65.6%	65.6%	65.6%	34.4%	34.4%	34.4%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag							
Lead-Lag Optimize?	C Mass	C Mass	C Mari	Nama	N.A	N /	
Recall Mode	C-Max	C-Max	C-Max	None	Max	Max	
Act Effct Green (s)	54.5 0.61	54.5 0.61	54.5 0.61	26.5 0.29	26.5 0.29	26.5 0.29	
Actuated g/C Ratio v/c Ratio	0.01	0.01	0.01	0.29	0.29	0.29	
Control Delay	8.2	22.1	3.3	30.7	41.3	28.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	8.2	22.1	3.3	30.7	41.3	28.8	
LOS	0.2 A	ZZ.1	3.3 A	30.7 C	41.3 D	20.0 C	
Approach Delay	A	20.2	A	30.7	U	34.9	
Approach LOS		20.2 C		30.7 C		34.7 C	
		C		C		C	
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90		O EDTI	Cl	^			
Offset: 85 (94%), Reference	ed to phase	e 2:EBIL	, Start of	Green			
Natural Cycle: 65	and the second						
Control Type: Actuated-Coo	rainatea						
Maximum v/c Ratio: 0.92	0.1					- LOC O	
Intersection Signal Delay: 2		/				n LOS: C	
Intersection Capacity Utiliza	ition 83.0%	6		Į!	CU Levei	of Service	еĿ
Analysis Period (min) 15							
Splits and Phases: 3: Rid	lgeGate P	kwy EB &	Rhapsoo	dy Road			
A.				<u> </u>			
₩ Ø2 (R)							
59 S							

	۶	→	*	•	←	4	1	†	<i>></i>	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7					₽		*	•	
Traffic Volume (veh/h)	155	2628	175	0	0	0	0	190	68	123	128	0
Future Volume (veh/h)	155	2628	175	0	0	0	0	190	68	123	128	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	167	2826	190				0	207	74	132	139	0
Peak Hour Factor	0.93	0.93	0.92				0.92	0.92	0.92	0.93	0.92	0.93
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1079	3092	960				0	387	138	259	551	0
Arrive On Green	0.61	0.61	0.61				0.00	0.29	0.29	0.59	0.59	0.00
Sat Flow, veh/h	1781	5106	1585				0	1315	470	1098	1870	0
Grp Volume(v), veh/h	167	2826	190				0	0	281	132	139	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1585				0	0	1786	1098	1870	0
Q Serve(g_s), s	3.7	44.0	4.8				0.0	0.0	11.9	9.6	3.2	0.0
Cycle Q Clear(g_c), s	3.7	44.0	4.8				0.0	0.0	11.9	21.5	3.2	0.0
Prop In Lane	1.00		1.00				0.00		0.26	1.00		0.00
Lane Grp Cap(c), veh/h	1079	3092	960				0	0	526	259	551	0
V/C Ratio(X)	0.15	0.91	0.20				0.00	0.00	0.53	0.51	0.25	0.00
Avail Cap(c_a), veh/h	1079	3092	960				0	0	526	259	551	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	2.00	2.00	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	0.00	1.00	0.98	0.98	0.00
Uniform Delay (d), s/veh	7.7	15.7	8.0				0.0	0.0	26.6	22.7	13.7	0.0
Incr Delay (d2), s/veh	0.3	5.4	0.5				0.0	0.0	1.1	6.9	1.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0 1.5				0.0	0.0	0.0 5.1	0.0	0.0 1.4	0.0
%ile BackOfQ(50%), veh/ln		14.8	1.5				0.0	0.0	5.1	2.4	1.4	0.0
Unsig. Movement Delay, s/veh	8.0	21.1	8.4				0.0	0.0	27.6	29.6	14.8	0.0
LnGrp Delay(d),s/veh LnGrp LOS	6.0 A	21.1 C	0.4 A				0.0 A	0.0 A	27.0 C	29.0 C	14.0 B	
	<u> </u>		A				A	281	<u> </u>	<u> </u>	271	A
Approach Vol, veh/h		3183 19.7						27.6			22.0	
Approach LOS											22.0 C	
Approach LOS		В						С			C	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		59.0		31.0				31.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		54.5		26.5				26.5				
Max Q Clear Time (g_c+l1), s		46.0		23.5				13.9				
Green Ext Time (p_c), s		8.1		0.4				1.3				
Intersection Summary												
HCM 6th Ctrl Delay			20.4									
HCM 6th LOS			С									


	•	→	``	†	\	Ţ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Configurations	ሻ	^	7	1	<u> </u>	<u> </u>
Traffic Volume (vph)	55	1205	130	140	60	95
Future Volume (vph)	55	1205	130	140	60	95
Turn Type	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2		8		4
Permitted Phases	2		2		4	
Detector Phase	2	2	2	8	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	55.0	55.0	55.0	35.0	35.0	35.0
Total Split (%)	61.1%	61.1%	61.1%	38.9%	38.9%	38.9%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max
Act Effct Green (s)	50.5	50.5	50.5	30.5	30.5	30.5
Actuated g/C Ratio	0.56	0.56	0.56	0.34	0.34	0.34
v/c Ratio	0.06	0.44	0.14	0.36	0.18	0.16
Control Delay	9.2	12.2	2.1	21.1	31.3	29.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.2	12.2	2.1	21.1	31.3	29.9
LOS	Α	В	Α	С	С	С
Approach Delay		11.1		21.1		30.4
Approach LOS		В		С		С
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 84 (93%), Reference		e 2:EBTL	, Start of	Green		
Natural Cycle: 45						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.44						
Interception Cinnel Delay	110			1.		1 00 0

Intersection Signal Delay: 14.0 Intersection LOS: B Intersection Capacity Utilization 82.2% Analysis Period (min) 15 ICU Level of Service E

	۶	→	•	•	←	•	1	†	/	/	+	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7					₽		*	+	
Traffic Volume (veh/h)	55	1205	130	0	0	0	0	140	70	60	95	0
Future Volume (veh/h)	55	1205	130	0	0	0	0	140	70	60	95	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1070	No	4070				•	No	4070	4070	No	0
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	58	1268	137				0	147	74	63	100	0
Peak Hour Factor	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2007	2				0	2	2	2	2	0
Cap, veh/h	1000	2865	889				0	398	200	363	634	0
Arrive On Green	0.56	0.56	0.56				0.00	0.34	0.34	0.11	0.11	0.00
Sat Flow, veh/h	1781	5106	1585				0	1173	591	1160	1870	0
Grp Volume(v), veh/h	58	1268	137				0	0	221	63	100	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1585				0	0	1764	1160	1870	0
Q Serve(g_s), s	1.3 1.3	13.0 13.0	3.7 3.7				0.0	0.0	8.5 8.5	4.6 13.1	4.4 4.4	0.0
Cycle Q Clear(g_c), s Prop In Lane	1.00	13.0	1.00				0.00	0.0	0.33	1.00	4.4	0.00
Lane Grp Cap(c), veh/h	1000	2865	889				0.00	0	598	363	634	0.00
V/C Ratio(X)	0.06	0.44	0.15				0.00	0.00	0.37	0.17	0.16	0.00
Avail Cap(c_a), veh/h	1000	2865	889				0.00	0.00	598	363	634	0.00
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	0.33	0.33	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	0.00	1.00	0.92	0.92	0.00
Uniform Delay (d), s/veh	9.0	11.5	9.5				0.0	0.0	22.5	36.2	28.4	0.00
Incr Delay (d2), s/veh	0.1	0.5	0.4				0.0	0.0	1.8	1.0	0.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	4.3	1.2				0.0	0.0	3.7	1.5	2.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	9.1	12.0	9.9				0.0	0.0	24.2	37.2	28.8	0.0
LnGrp LOS	Α	В	Α				Α	Α	С	D	С	Α
Approach Vol, veh/h		1463						221			163	
Approach Delay, s/veh		11.7						24.2			32.1	
Approach LOS		В						С			С	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		55.0		35.0				35.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		50.5		30.5				30.5				
Max Q Clear Time (g_c+l1), s		15.0		15.1				10.5				
Green Ext Time (p_c), s		11.4		0.6				1.2				
Intersection Summary												
HCM 6th Ctrl Delay			15.0									
HCM 6th LOS			В									

	•	→	*	†	/	ţ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Configurations	ሻ	^ ^	7	1	ሻ	+
Traffic Volume (vph)	155	2645	175	190	125	130
Future Volume (vph)	155	2645	175	190	125	130
Turn Type	Perm	NA	Perm	NA	Perm	NA
Protected Phases		2		8		4
Permitted Phases	2		2		4	
Detector Phase	2	2	2	8	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	59.0	59.0	59.0	31.0	31.0	31.0
Total Split (%)	65.6%	65.6%	65.6%	34.4%	34.4%	34.4%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	Max	Max	Max
Act Effct Green (s)	54.5	54.5	54.5	26.5	26.5	26.5
Actuated g/C Ratio	0.61	0.61	0.61	0.29	0.29	0.29
v/c Ratio	0.16	0.92	0.19	0.53	0.57	0.26
Control Delay	8.2	22.5	3.3	30.8	33.7	22.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	8.2	22.5	3.3	30.8	33.7	22.3
LOS	Α	С	Α	С	С	С
Approach Delay		20.7		30.8		27.9
Approach LOS		С		С		С
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90						
Offset: 85 (94%), Reference	ed to phase	e 2:EBTL	, Start of	Green		
Natural Cycle: 70	•					
Control Type: Actuated-Cod	ordinated					
Maximum v/c Ratio: 0.92						
Intersection Signal Delay: 2	21.9			lı	ntersectio	n LOS: C
Intersection Capacity Utiliza		6				of Service
Analysis Period (min) 15						
raidijoio i onou (iiiii) io						

	۶	→	*	•	←	4	4	†	<i>></i>	/	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተተ	7					₽		*	•	
Traffic Volume (veh/h)	155	2645	175	0	0	0	0	190	70	125	130	0
Future Volume (veh/h)	155	2645	175	0	0	0	0	190	70	125	130	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	167	2844	188				0	204	75	134	140	0
Peak Hour Factor	0.93	0.93	0.93				0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1079	3092	960				0	384	141	260	551	0
Arrive On Green	0.61	0.61	0.61				0.00	0.29	0.29	0.59	0.59	0.00
Sat Flow, veh/h	1781	5106	1585				0	1304	480	1100	1870	0
Grp Volume(v), veh/h	167	2844	188				0	0	279	134	140	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1585				0	0	1784	1100	1870	0
Q Serve(g_s), s	3.7	44.6	4.8				0.0	0.0	11.8	9.7	3.3	0.0
Cycle Q Clear(g_c), s	3.7	44.6	4.8				0.0	0.0	11.8	21.5	3.3	0.0
Prop In Lane	1.00		1.00				0.00		0.27	1.00		0.00
Lane Grp Cap(c), veh/h	1079	3092	960				0	0	525	260	551	0
V/C Ratio(X)	0.15	0.92	0.20				0.00	0.00	0.53	0.52	0.25	0.00
Avail Cap(c_a), veh/h	1079	3092	960				0	0	525	260	551	0
HCM Platoon Ratio	1.00	1.00	1.00				1.00	1.00	1.00	2.00	2.00	1.00
Upstream Filter(I)	1.00	1.00	1.00				0.00	0.00	1.00	0.98	0.98	0.00
Uniform Delay (d), s/veh	7.7	15.8	7.9				0.0	0.0	26.6	22.7	13.7	0.0
Incr Delay (d2), s/veh	0.3	5.8	0.5				0.0	0.0	3.8	7.0	1.1	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0 1.5				0.0	0.0	0.0	0.0	0.0 1.4	0.0
%ile BackOfQ(50%), veh/ln	1.3	15.1	1.5				0.0	0.0	5.4	2.5	1.4	0.0
Unsig. Movement Delay, s/veh	8.0	21.6	8.4				0.0	0.0	30.4	29.7	14.8	0.0
LnGrp Delay(d),s/veh LnGrp LOS	6.0 A	21.0 C	0.4 A				0.0 A	0.0 A	30.4 C	29.7 C	14.0 B	
	<u> </u>		A				A		<u> </u>	<u> </u>		A
Approach Vol, veh/h		3199						279			274	
Approach LOS		20.1						30.4			22.1	
Approach LOS		С						С			С	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		59.0		31.0				31.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		54.5		26.5				26.5				
Max Q Clear Time (g_c+l1), s		46.6		23.5				13.8				
Green Ext Time (p_c), s		7.6		0.4				1.3				
Intersection Summary												
HCM 6th Ctrl Delay			21.0									
HCM 6th LOS			С									

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	VVDI	WDIX	JDL	JUIN
Traffic Vol, veh/h	12	897	0	0	37	0
Future Vol, veh/h	12	897	0	0	37	0
-	0	097	0	0	0	0
Conflicting Peds, #/hr						
Sign Control RT Channelized	Free -	Free None	Free	Free None	Stop	Stop None
	150	None -			-	None -
Storage Length		108 2 94	20400	-	0	
Veh in Median Storage,				-		-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	975	0	0	40	0
Major/Minor Ma	ajor1			N	/linor2	
Conflicting Flow All	0	0			416	-
Stage 1	-	-			0	-
Stage 2	-	-			416	-
	5.34	_			5.74	_
Critical Hdwy Stg 1	-	_			-	-
Critical Hdwy Stg 2	_	_			6.04	_
	3.12	_			3.82	_
Pot Cap-1 Maneuver	-	_			600	0
Stage 1	_	_			-	0
Stage 2	_	_			580	0
Platoon blocked, %		_			300	U
Mov Cap-1 Maneuver	_				600	_
Mov Cap-1 Maneuver		-			600	-
	-					
Stage 1	-	-			-	-
Stage 2	-	-			580	-
Approach	EB				SB	
HCM Control Delay, s					11.4	
HCM LOS					В	
					_	
Minor Lang/Major Mumt		EDI	EDT	CDI n1		
Minor Lane/Major Mvmt		EBL		SBLn1		
Capacity (veh/h)		-	-	000		
HCM Lane V/C Ratio		-		0.067		
HCM Control Delay (s)		-		11.4		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)		-	-	0.2		

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WRT	WBR	SBL	SBR
Lane Configurations	T T	^	WDI	אטול	JDL Š	JUIN
Traffic Vol, veh/h	31	2169	0	0	20	0
Future Vol, veh/h	31	2169	0	0	20	0
·	0	0	0	0		0
Conflicting Peds, #/hr					O Cton	
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	150	-	-	-	0	-
Veh in Median Storage	e,# -	108204		-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	34	2358	0	0	22	0
Major/Minor	Major1			N	/linar?	
	Major1			I\	/linor2	
Conflicting Flow All	0	0			1011	-
Stage 1	-	-			0	-
Stage 2	-	-			1011	-
Critical Hdwy	5.34	-			5.74	-
Critical Hdwy Stg 1	-	-			-	-
Critical Hdwy Stg 2	-	-			6.04	-
Follow-up Hdwy	3.12	-			3.82	-
Pot Cap-1 Maneuver	-	-			307	0
Stage 1	-	-			-	0
Stage 2	_	_			282	0
Platoon blocked, %		_			202	Ū
Mov Cap-1 Maneuver	_	_			307	_
Mov Cap-1 Maneuver	-	_			307	_
Stage 1	-	-			-	-
Stage 2	-	-			282	-
Approach	EB				SB	
HCM Control Delay, s					17.6	
HCM LOS					С	
HOW LOS					U	
Minor Lane/Major Mvm	nt	EBL	EBT:	SBLn1		
Capacity (veh/h)		-	-	307		
				0.071		
HCM Lane V/C Ratio		-	-	U.U/ I		
HCM Lane V/C Ratio HCM Control Delay (s)	ı	-	-	0.071		
HCM Control Delay (s))	- -		17.6		
		-				

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	†††	WDI	WDIX	JDL Š	JUN
Traffic Vol, veh/h	19	897	0	0	45	0
Future Vol, veh/h	19	897	0	0	45	0
Conflicting Peds, #/hr	0	097	0	0	0	0
Sign Control	Free	Free	Stop	Stop	Stop	Stop
RT Channelized	-	None		None	310p	None
Storage Length	150	NONE -	_	-	0	NUITE -
Veh in Median Storage				-	0	
Grade, %	, π -	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
	2	2	2	2	2	2
Heavy Vehicles, % Mvmt Flow	20	944	0	0	47	0
WWITH FIOW	20	944	U	U	47	U
Major/Minor N	/lajor1			N	/linor2	
Conflicting Flow All	0	0			418	-
Stage 1	_	-			0	-
Stage 2	-	-			418	-
Critical Hdwy	5.34	_			5.74	_
Critical Hdwy Stg 1	-	-			-	-
Critical Hdwy Stg 2	_	_			6.04	_
Follow-up Hdwy	3.12	_			3.82	_
Pot Cap-1 Maneuver	-	_			599	0
Stage 1	_	_			-	0
Stage 2	_				579	0
Platoon blocked, %	-				317	U
Mov Cap-1 Maneuver					599	_
	-				599	-
Mov Cap-2 Maneuver	-	-				
Stage 1	-	-			-	-
Stage 2	-	-			579	-
Approach	EB				SB	
HCM Control Delay, s					11.5	
HCM LOS					В	
TIOWI LOO					U	
Minor Lane/Major Mvm	t	EBL	EBT:	SBLn1		
Capacity (veh/h)		-	-	599		
HCM Lane V/C Ratio		-	-	0.079		
HCM Control Delay (s)		-	-	11.5		
HCM Lane LOS		-	-	В		
HCM 95th %tile Q(veh)		-	-	0.3		

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ች	ተተተ			ች	
Traffic Vol, veh/h	46	2169	0	0	26	0
Future Vol, veh/h	46	2169	0	0	26	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Stop	Stop	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	150	-	-	-	0	-
Veh in Median Storage,	,# -	108204	39680	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	49	2332	0	0	28	0
Major/Minor N	/lajor1			١	/linor2	
Conflicting Flow All	0	0			1031	_
Stage 1	-	-			0	_
Stage 2	_	_			1031	_
Critical Hdwy	5.34	_			5.74	_
Critical Hdwy Stg 1	-	_			-	_
Critical Hdwy Stg 2	_	_			6.04	_
Follow-up Hdwy	3.12	_			3.82	_
Pot Cap-1 Maneuver	J. 1Z				300	0
Stage 1	_	_			-	0
Stage 1		-			275	0
Platoon blocked, %	-	-			213	U
Mov Cap-1 Maneuver	-	-			300	_
Mov Cap-1 Maneuver		-			300	-
Stage 1	-	-			300	-
ğ		-			275	-
Stage 2	-	-			2/5	-
Approach	EB				SB	
HCM Control Delay, s					18.2	
HCM LOS					С	
Minor Lane/Major Mvm	t	EBL	FRT	SBLn1		
Capacity (veh/h)		LDL	LDI	300		
HCM Lane V/C Ratio		-	-	0.093		
HCM Control Delay (s)		<u>-</u>	-			
HCM Lane LOS		-		10.2 C		
HCM 95th %tile Q(veh)		<u>-</u>	-	0.3		
HOW 75th 70the Q(Veh)			_	0.5		

	۶	→	†	/	ļ	
Lane Group	EBL	EBT	NBT	SBL	SBT	
Lane Configurations	*	ተተ _ጉ	f)		4	
Traffic Volume (vph)	54	1255	5	107	70	
Future Volume (vph)	54	1255	5	107	70	
Turn Type	Perm	NA	NA	Perm	NA	
Protected Phases		2	8		4	
Permitted Phases	2			4		
Detector Phase	2	2	8	4	4	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	53.0	53.0	37.0	37.0	37.0	
Total Split (%)	58.9%	58.9%	41.1%	41.1%	41.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	4.5	4.5	4.5		4.5	
Lead/Lag	.,.					
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	48.5	48.5	32.5		32.5	
Actuated g/C Ratio	0.54	0.54	0.36		0.36	
v/c Ratio	0.06	0.49	0.04		0.34	
Control Delay	3.0	5.5	9.6		21.9	
Queue Delay	0.0	0.0	0.0		0.0	
Total Delay	3.0	5.5	9.6		21.9	
LOS	Α	Α	А		С	
Approach Delay		5.4	9.6		21.9	
Approach LOS		Α	А		С	
Intersection Summary						
Cycle Length: 90 Actuated Cycle Length: 90						
	to phase S	LEDTI C	tort of Cr	000		
Offset: 2 (2%), Referenced	to phase z	EBIL, S	itani di Gi	een		
Natural Cycle: 45	rdinatad					
Control Type: Actuated-Coo	numated					
Maximum v/c Ratio: 0.49	Α				atoroo alla	n I OC. A
Intersection Signal Delay: 7		/			ntersection	
Intersection Capacity Utiliza Analysis Period (min) 15	1110N 48.4%	Ó		İ	JU Levei	of Service A
Analysis i Gilou (IIIIII) 13						
Splits and Phases: 4: Ric	dgeGate P	kwy EB &	N/S Roa	ıd		
	<u> </u>					h
Ø2 (R)						▼ Ø4
55 S						57 S
						Tø8
						37 s

	۶	→	•	•	•	•	1	†	/~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ነ	↑ ↑₽						Դ			र्स	
Traffic Volume (veh/h)	54	1255	15	0	0	0	0	5	20	107	70	0
Future Volume (veh/h)	54	1255	15	0	0	0	0	5	20	107	70	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	57	1321	11				0	5	21	113	74	0
Peak Hour Factor	0.95	0.95	0.95				0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	960	2815	23				0	113	476	387	239	0
Arrive On Green	0.18	0.18	0.18				0.00	0.36	0.36	0.60	0.60	0.00
Sat Flow, veh/h	1781	5223	43				0	314	1319	895	661	0
Grp Volume(v), veh/h	57	861	471				0	0	26	187	0	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1863				0	0	1633	1556	0	0
Q Serve(g_s), s	2.4	20.4	20.4				0.0	0.0	0.9	3.8	0.0	0.0
Cycle Q Clear(g_c), s	2.4	20.4	20.4				0.0	0.0	0.9	5.1	0.0	0.0
Prop In Lane	1.00		0.02				0.00		0.81	0.60		0.00
Lane Grp Cap(c), veh/h	960	1834	1004				0	0	590	626	0	0
V/C Ratio(X)	0.06	0.47	0.47				0.00	0.00	0.04	0.30	0.00	0.00
Avail Cap(c_a), veh/h	960	1834	1004				0	0	590	626	0	0
HCM Platoon Ratio	0.33	0.33	0.33				1.00	1.00	1.00	1.67	1.67	1.00
Upstream Filter(I)	0.91	0.91	0.91				0.00	0.00	1.00	0.94	0.00	0.00
Uniform Delay (d), s/veh	18.0	25.5	25.5				0.0	0.0	18.7	12.4	0.0	0.0
Incr Delay (d2), s/veh	0.1	0.8	1.4				0.0	0.0	0.1	1.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0 1.8	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.9	9.3	10.4				0.0	0.0	0.4	1.8	0.0	0.0
Unsig. Movement Delay, s/veh	18.2	26.2	26.9				0.0	0.0	18.8	13.5	0.0	0.0
LnGrp Delay(d),s/veh	16.2 B	20.2 C	20.9 C					0.0 A	10.0 B	13.5 B	0.0 A	
LnGrp LOS	D						A		D	D		A
Approach Vol, veh/h		1389						26			187	
Approach LOS		26.1						18.8			13.5	
Approach LOS		С						В			В	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		53.0		37.0				37.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		48.5		32.5				32.5				
Max Q Clear Time (g_c+I1), s		22.4		7.1				2.9				
Green Ext Time (p_c), s		9.6		1.0				0.1				
Intersection Summary												
HCM 6th Ctrl Delay			24.5									
HCM 6th LOS			С									

	۶	→	†	>	ļ		
Lane Group	EBL	EBT	NBT	SBL	SBT		
Lane Configurations	ሻ	ተተ _ጉ	ĵ»		ર્ન		
Traffic Volume (vph)	146	2693	20	93	35		
Future Volume (vph)	146	2693	20	93	35		
Turn Type	Perm	NA	NA	Perm	NA		
Protected Phases		2	8		4		
Permitted Phases	2			4			
Detector Phase	2	2	8	4	4		
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5		
Total Split (s)	67.0	67.0	23.0	23.0	23.0		
Total Split (%)	74.4%	74.4%	25.6%	25.6%	25.6%		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0		0.0		
Total Lost Time (s)	4.5	4.5	4.5		4.5		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	C-Max	C-Max	Max	Max	Max		
Act Effct Green (s)	62.5	62.5	18.5		18.5		
Actuated g/C Ratio	0.69	0.69	0.21		0.21		
v/c Ratio	0.13	0.82	0.30		0.50		
Control Delay	1.1	2.3	32.2		34.5		
Queue Delay	0.0	0.0	0.0		0.0		
Total Delay	1.1	2.4	32.2		34.5		
LOS	Α	Α	С		С		
Approach Delay		2.3	32.2		34.5		
Approach LOS		A	С		С		
•							
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90	ta nhaas (LEDTI C	tort of Cr				
Offset: 0 (0%), Referenced t	to phase z	EBIL, S	iari oi Gr	een			
Natural Cycle: 70	rdinatad						
Control Type: Actuated-Coo	rdinated						
Maximum v/c Ratio: 0.82	/			1.	ntoros al!	n I O C . A	
Intersection Signal Delay: 4.		/			ntersection		
Intersection Capacity Utiliza	tion /3.3%	6		10	CU Level	of Service D	
Analysis Period (min) 15							
Splits and Phases: 4: Rid	geGate P	kwy EB &	N/S Roa	ıd			
	300001	, <u></u>				l	
→ Ø2 (R)						▼ ™Ø4	
67 s						23 s	
						↑ ø8	
						22 -	

	۶	→	*	•	←	•	1	†	~	/	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑ ↑₽						₽			4	
Traffic Volume (veh/h)	146	2693	5	0	0	0	0	20	75	93	35	0
Future Volume (veh/h)	146	2693	5	0	0	0	0	20	75	93	35	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	157	2896	5				0	22	81	100	38	0
Peak Hour Factor	0.93	0.93	0.93				0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1237	3655	6				0	72	265	225	75	0
Arrive On Green	0.23	0.23	0.23				0.00	0.21	0.21	0.21	0.21	0.00
Sat Flow, veh/h	1781	5264	9				0	350	1288	758	365	0
Grp Volume(v), veh/h	157	1872	1029				0	0	103	138	0	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1869				0	0	1638	1123	0	0
Q Serve(g_s), s	6.3	46.6	46.7				0.0	0.0	4.8	7.2	0.0	0.0
Cycle Q Clear(g_c), s	6.3	46.6	46.7				0.0	0.0	4.8	11.9	0.0	0.0
Prop In Lane	1.00		0.00				0.00		0.79	0.72		0.00
Lane Grp Cap(c), veh/h	1237	2364	1298				0	0	337	300	0	0
V/C Ratio(X)	0.13	0.79	0.79				0.00	0.00	0.31	0.46	0.00	0.00
Avail Cap(c_a), veh/h	1237	2364	1298				0	0	337	300	0	0
HCM Platoon Ratio	0.33	0.33	0.33				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.39	0.39	0.39				0.00	0.00	1.00	0.97	0.00	0.00
Uniform Delay (d), s/veh	13.0	28.6	28.6				0.0	0.0	30.3	34.5	0.0	0.0
Incr Delay (d2), s/veh	0.1	1.1	2.0				0.0	0.0	2.3	4.9	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.1	21.0	23.5				0.0	0.0	2.1	3.2	0.0	0.0
Unsig. Movement Delay, s/veh		20.7	20.7				0.0	0.0	22.7	20.2	0.0	0.0
LnGrp Delay(d),s/veh	13.1	29.7 C	30.6				0.0	0.0	32.6	39.3	0.0	0.0
LnGrp LOS	В		С				A	A	С	D	A 120	<u>A</u>
Approach Vol, veh/h		3058						103			138	
Approach Delay, s/veh		29.1						32.6			39.3	
Approach LOS		С						С			D	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		67.0		23.0				23.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		62.5		18.5				18.5				
Max Q Clear Time (g_c+l1), s		48.7		13.9				6.8				
Green Ext Time (p_c), s		12.8		0.2				0.3				
Intersection Summary												
HCM 6th Ctrl Delay			29.7									
HCM 6th LOS			С									

Timings 4: RidgeGate Pkwy EB & N/S Road

	٠	→	†	/	ļ	
Lane Group	EBL	EBT	NBT	SBL	SBT	
Lane Configurations	¥	ተተ _ጉ	£		4	
Traffic Volume (vph)	65	1255	5	115	70	
Future Volume (vph)	65	1255	5	115	70	
Turn Type	Perm	NA	NA	Perm	NA	
Protected Phases		2	8		4	
Permitted Phases	2			4		
Detector Phase	2	2	8	4	4	
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	
Total Split (s)	53.0	53.0	37.0	37.0	37.0	
Total Split (%)	58.9%	58.9%	41.1%	41.1%	41.1%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	
Total Lost Time (s)	4.5	4.5	4.5		4.5	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	Max	Max	Max	
Act Effct Green (s)	48.5	48.5	32.5		32.5	
Actuated g/C Ratio	0.54	0.54	0.36		0.36	
v/c Ratio	0.07	0.49	0.04		0.36	
Control Delay	3.9	5.2	9.4		18.8	
Queue Delay	0.0	0.0	0.0		0.0	
Total Delay	3.9	5.2	9.4		18.8	
LOS	А	Α	А		В	
Approach Delay		5.2	9.4		18.8	
Approach LOS		Α	Α		В	
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 90 Offset: 3 (3%), Referenced).FDTI C	tort of Cr	oon		
	i to priase z	CEDIL, S	itali di Gi	een		
Natural Cycle: 45	ordinated					
Control Type: Actuated-Co Maximum v/c Ratio: 0.49	orumated					
	4.0			1.	ntores eti-	n I OC. A
Intersection Signal Delay: 6		/			ntersection	
Intersection Capacity Utiliz	alion 48.8%	o e		10	CU Level	of Service A
Analysis Period (min) 15						
Splits and Phases: 4: Ri	dgeGate P	kwy EB &	N/S Roa	d		
A (0)						↓ Ø4
J → Ø2 (R)						₹ 27 c
JJ 3						<u> </u>
						Tø8
						37 s

	۶	→	•	•	←	•	•	†	/	/	Ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑₽						₽			4	
Traffic Volume (veh/h)	65	1255	15	0	0	0	0	5	20	115	70	0
Future Volume (veh/h)	65	1255	15	0	0	0	0	5	20	115	70	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No						No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	68	1321	16				0	5	22	121	76	0
Peak Hour Factor	0.95	0.95	0.92				0.92	0.92	0.92	0.95	0.92	0.95
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	960	2802	34				0	109	480	392	232	0
Arrive On Green	0.18	0.18	0.18				0.00	0.36	0.36	0.60	0.60	0.00
Sat Flow, veh/h	1781	5200	63				0	302	1329	908	643	0
Grp Volume(v), veh/h	68	865	472				0	0	27	197	0	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1859				0	0	1631	1551	0	0
Q Serve(g_s), s	2.9	20.5	20.5				0.0	0.0	1.0	4.2	0.0	0.0
Cycle Q Clear(g_c), s	2.9	20.5	20.5				0.0	0.0	1.0	5.5	0.0	0.0
Prop In Lane	1.00		0.03				0.00		0.81	0.61		0.00
Lane Grp Cap(c), veh/h	960	1834	1002				0	0	589	625	0	0
V/C Ratio(X)	0.07	0.47	0.47				0.00	0.00	0.05	0.32	0.00	0.00
Avail Cap(c_a), veh/h	960	1834	1002				0	0	589	625	0	0
HCM Platoon Ratio	0.33	0.33	0.33				1.00	1.00	1.00	1.67	1.67	1.00
Upstream Filter(I)	0.90	0.90	0.90				0.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.2	25.5	25.5				0.0	0.0	18.7	12.4	0.0	0.0
Incr Delay (d2), s/veh	0.1	0.8	1.4				0.0	0.0	0.1	1.3	0.0	0.0
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln	1.1	0.0 9.3	0.0 10.4				0.0	0.0	0.0	0.0 2.0	0.0	0.0
Unsig. Movement Delay, s/veh		9.3	10.4				0.0	0.0	0.4	2.0	0.0	0.0
LnGrp Delay(d),s/veh	18.4	26.3	26.9				0.0	0.0	18.8	13.8	0.0	0.0
LnGrp LOS	10.4 B	20.3 C	20.9 C				0.0 A	0.0 A	10.0 B	13.0 B	0.0 A	Α
Approach Vol, veh/h	D	1405					^	27	D	D	197	
Approach Delay, s/veh		26.1						18.8			13.8	
Approach LOS		20.1 C						10.0 B			13.0 B	
											D	
Timer - Assigned Phs		2		4				8				
Phs Duration (G+Y+Rc), s		53.0		37.0				37.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		48.5		32.5				32.5				
Max Q Clear Time (g_c+l1), s		22.5		7.5				3.0				
Green Ext Time (p_c), s		9.7		1.1				0.1				
Intersection Summary												
HCM 6th Ctrl Delay			24.5									
HCM 6th LOS			С									

	٠	→	†	/	↓				
Lane Group	EBL	EBT	NBT	SBL	SBT				
Lane Configurations	ሻ	ተተኈ	ą.		4				
Traffic Volume (vph)	165	2695	20	100	35				
Future Volume (vph)	165	2695	20	100	35				
Turn Type	Perm	NA	NA	Perm	NA				
Protected Phases		2	8		4				
Permitted Phases	2			4					
Detector Phase	2	2	8	4	4				
Switch Phase									
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0				
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5				
Total Split (s)	67.0	67.0	23.0	23.0	23.0				
Total Split (%)	74.4%	74.4%	25.6%	25.6%	25.6%				
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5				
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0				
Lost Time Adjust (s)	0.0	0.0	0.0		0.0				
Total Lost Time (s)	4.5	4.5	4.5		4.5				
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Max	C-Max	Max	Max	Max				
Act Effct Green (s)	62.5	62.5	18.5		18.5				
Actuated g/C Ratio	0.69	0.69	0.21		0.21				
v/c Ratio	0.14	0.82	0.30		0.53				
Control Delay	1.1	2.3	32.2		31.8				
Queue Delay	0.0	0.1	0.0		0.0				
Total Delay	1.1	2.3	32.2		31.8				
LOS	Α	A	С		С				
Approach Delay		2.3	32.3		31.8				
Approach LOS		Α	С		С				
Intersection Summary									
Cycle Length: 90									
Actuated Cycle Length: 90									
Offset: 0 (0%), Referenced)·FRTI C	tart of Cr	een					
Natural Cycle: 70	i to priase z	LLDIL, S	nari di Gi	CCII					
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.82	orumated								
Intersection Signal Delay:	15			lı	ntersection	1 OS· A			
Intersection Capacity Utiliz		6			CU Level of				
Analysis Period (min) 15	.auvii 73.77	U		1	CO LEVELUI	Jeivice D			
mialysis reliuu (IIIIII) 13									
Splits and Phases: 4: Ri	idgeGate P	kwy EB &	N/S Roa	ıd					
ø2 (R)							Ι,	Ø4	
67 s							23		
J. J							20	4	
								Ø8	
1							22	c	

	۶	→	•	•	←	•	1	†	~	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	↑ ↑₽						₽			र्स	
Traffic Volume (veh/h)	165	2695	5	0	0	0	0	20	75	100	35	0
Future Volume (veh/h)	165	2695	5	0	0	0	0	20	75	100	35	0
Initial Q (Qb), veh	0	0	0				0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00				1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00				1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1070	No	4070				0	No	4070	4070	No	0
Adj Sat Flow, veh/h/ln	1870	1870	1870				0	1870	1870	1870	1870	0
Adj Flow Rate, veh/h	177	2898	5				0	22	82	108	38	0
Peak Hour Factor	0.93	0.93	0.92				0.92	0.92	0.92	0.93	0.92	0.93
Percent Heavy Veh, %	2	2	2				0	2	2	2	2	0
Cap, veh/h	1237	3655	6				0	71	265	227	70	0
Arrive On Green	0.23	0.23	0.23				0.00	0.21	0.21	0.21	0.21	0.00
Sat Flow, veh/h	1781	5264	9				0	346	1291	766	341	0
Grp Volume(v), veh/h	177	1874	1029				0	0	104	146	0	0
Grp Sat Flow(s), veh/h/ln	1781	1702	1869				0	0	1638	1107	0	0
Q Serve(g_s), s	7.1	46.7	46.7				0.0	0.0	4.8	7.8	0.0	0.0
Cycle Q Clear(g_c), s	7.1	46.7	46.7				0.0	0.0	4.8	12.7	0.0	0.0
Prop In Lane	1.00	22/4	0.00				0.00	0	0.79	0.74 297	0	0.00
Lane Grp Cap(c), veh/h	1237	2364	1298 0.79				0.00	0	337		0	
V/C Ratio(X)	0.14 1237	0.79 2364	1298				0.00	0.00	0.31 337	0.49 297	0.00	0.00
Avail Cap(c_a), veh/h HCM Platoon Ratio	0.33	0.33	0.33				1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.38	0.38	0.38				0.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.3	28.6	28.6				0.00	0.00	30.3	34.9	0.00	0.00
Incr Delay (d2), s/veh	0.1	1.1	2.0				0.0	0.0	2.4	5.7	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.5	21.0	23.4				0.0	0.0	2.1	3.4	0.0	0.0
Unsig. Movement Delay, s/veh		21.0	25.7				0.0	0.0	۷.۱	J.T	0.0	0.0
LnGrp Delay(d),s/veh	13.4	29.7	30.6				0.0	0.0	32.7	40.6	0.0	0.0
LnGrp LOS	В	C	C				Α	A	C	D	Α	A
Approach Vol, veh/h		3080						104			146	, ,
Approach Delay, s/veh		29.0						32.7			40.6	
Approach LOS		C						C			D	
				4								
Timer - Assigned Phs Phs Duration (G+Y+Rc), s		67.0		23.0				23.0				
Change Period (Y+Rc), s		4.5		4.5				4.5				
Max Green Setting (Gmax), s		62.5		18.5				18.5				
Max Q Clear Time (q_c+l1), s		48.7		14.7				6.8				
Green Ext Time (p_c), s		12.8		0.2				0.4				
<u> </u>		12.0		0.2				0.4				
Intersection Summary			20.7									
HCM 6th Ctrl Delay			29.7									
HCM 6th LOS			С									

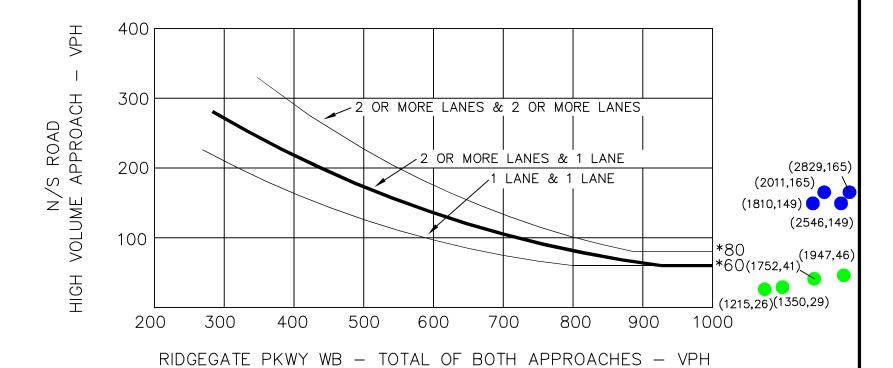
Intersection						
Int Delay, s/veh	2.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Vol, veh/h	8	14	12	7	4	37
Future Vol, veh/h	8	14	12	7	4	37
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		-	0	-	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	8	15	13	7	4	39
IVIVIIIL FIOW	0	13	13	1	4	37
Major/Minor 1	Minor1	N	Major1	N	Major2	
Conflicting Flow All	64	17	0	0	20	0
Stage 1	17	-	-	-	-	-
Stage 2	47	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	942	1062	-	-	1596	-
Stage 1	1006	-	_	-	_	-
Stage 2	975	_	-	_	-	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	939	1062	_	_	1596	_
Mov Cap-2 Maneuver	939	-	_	_	-	_
Stage 1	1006	_	_	_	_	_
Stage 2	972	_	_	_	_	_
Stage 2	712					
Approach	WB		NB		SB	
HCM Control Delay, s	8.6		0		0.7	
HCM LOS	Α					
Minor Lane/Major Mvm	nt	NBT	NRRV	VBLn1	SBL	SBT
	п	INDI	NDIN		1596	301
Capacity (veh/h) HCM Lane V/C Ratio		-	-	1014		-
		-	-	0.023		-
HCM Control Delay (s) HCM Lane LOS		-		8.6	7.3	0
	١	-	-	0.1	A	A
HCM 95th %tile Q(veh)	-		U. I	0	-

2.3					
WBL	WBR	NBT	NBR	SBL	SBT
					4
	12		15	8	20
					20
					0
					Free
					None
		_			-
		0			0
					0
					93
					2
6	13	33	16	9	22
Minor1	N	Major1	ľ	Major2	
81	41		0	49	0
	-	-	-	-	-
	-	-	-	-	-
	6.22	_	_	4.12	-
	_	-	-	_	_
	_	_	_	_	_
	3.318	_	_	2.218	_
		_	_		_
	-	_	_	-	_
	_	_	_	_	_
702					_
015	1030			1550	_
		-			-
		-			
		-	-		-
9/6	-	-	-	-	-
WB		NB		SB	
8.7		0			
	NET	NDDV	VDI 4	001	ODT
it	NRT	NBKV			SBT
		-	989	1558	-
	-				
	-	-		0.006	-
)	- -	-	8.7	7.3	0
)	- - -	- - -			
	WBL 6 6 0 Stop 0 93 2 6 Minor1 81 41 40 6.42 5.42 5.42 5.42 3.518 921 981 982 915 981 976	WBL WBR 6 12 6 12 0 0 0 Stop Stop - None 0 - 9, # 0 - 93 93 2 2 6 13 Minor1 N 81 41 41 - 40 - 6.42 6.22 5.42 - 5.42 - 3.518 3.318 921 1030 981 - 982 - 915 1030 915 - 981 - 976 - WB 8.7 A	WBL WBR NBT 6 12 31 6 12 31 0 0 0 0 Stop Stop Free - None - 0 2 # 0 - 0 93 93 93 2 2 2 2 6 13 33 Minor1 Major1 81 41 0 41 40 5.42 5.42 5.42 5.42 5.42 5.42 915 1030 - 981 9881	WBL WBR NBT NBR 6 12 31 15 6 12 31 15 0 0 0 0 Stop Stop Free Free - None - None - None 0 - 0 O 2, # 0 - 0 - O 93 93 93 93 2 2 2 2 2 6 13 33 16 Minor1 Major1 I I 81 41 0 0 41 - - - 6.42 6.22 - - 5.42 - - - 5.42 - - - 981 - - - 982 - - - 915 1030 - - 976 - - - <td>WBL WBR NBT NBR SBL ↑ ↓ ↓ ↓ ↓ 8 6 12 31 15 8 0</td>	WBL WBR NBT NBR SBL ↑ ↓ ↓ ↓ ↓ 8 6 12 31 15 8 0

Intersection								
Int Delay, s/veh	0.9							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		ĵ.			4		
Traffic Vol, veh/h	10	15	65	10	5	180		
Future Vol, veh/h	10	15	65	10	5	180		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	- -	None	-	None	-	None		
Storage Length	0	-	_	-	_	-		
Veh in Median Storage		-	0	-	_	0		
Grade, %	0	_	0	_	_	0		
Peak Hour Factor	95	95	95	95	95	95		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	11	16	68	11	5	189		
IVIVIIIL I IUW	11	10	00	- 11	3	107		
Major/Minor	Minor1		Major1	ı	Major2			
Conflicting Flow All	273	74	0	0	79	0		
Stage 1	74	- 74	-	-	19	-		
Stage 2	199	-	-	-	-	-		
Critical Hdwy	6.42	6.22	-	-	4.12	-		
	5.42	0.22			4.12			
Critical Hdwy Stg 1	5.42		-	-		-		
Critical Hdwy Stg 2		2 210	-	-	2 210	-		
Follow-up Hdwy	3.518		-	-	2.218	-		
Pot Cap-1 Maneuver	*813	1024	-	-	1533	-		
Stage 1	*968	-	-	-	-	-		
Stage 2	*881	-	-	-	-	-		
Platoon blocked, %	1	1	-	-	1	-		
Mov Cap-1 Maneuver	*810	1024	-	-	1533	-		
Mov Cap-2 Maneuver	*810	-	-	-	-	-		
Stage 1	*968	-	-	-	-	-		
Stage 2	*878	-	-	-	-	-		
Approach	WB		NB		SB			
HCM Control Delay, s			0		0.2			
HCM LOS	А							
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT		
Capacity (veh/h)		-	-	926	1533	-		
HCM Lane V/C Ratio		-	-	0.028		-		
HCM Control Delay (s))	-	-	9	7.4	0		
		-	-	Α	Α	A		
HCM Lane LOS				-				
	1)	-	-	0.1	0	-		
HCM Lane LOS HCM 95th %tile Q(veh	1)	-	-	0.1	0	•		
HCM Lane LOS		¢. D.	-	0.1 ceeds 3			nputation Not Defined	*: All major volume in platoon

0.9					
WBL	WBR	NBT	NBR	SBL	SBT
					4
	15		15	10	130
					130
					0
					Free
					None
		_			TVOTIC
		0			0
					0
					93
					2
- 11	16	1//	16	П	140
Minor1	N	Major1	N	Major2	
347	185	0	0	193	0
185	-	-	-	-	-
	-	-	-	-	-
	6.22	-	-	4.12	-
	_	-	-	_	_
	-	-	-	-	-
	3.318	_	_	2.218	_
		_	_		_
		_	_	-	_
		_	_	_	_
					_
					_
		-			
		-	-		
		-	-		-
889	-	-	-	-	-
WB		NB		SB	
9.4		0			
	NDT	NDD	VDI 4	001	ODT
it	NBT	NBKV			SBT
	-	-	843		-
			0.022	800.0	-
	-	-			
)	-	-	9.4	7.6	0
)	- - -	- - -			0 A
	WBL 10 10 0 Stop 0 93 2 11 Minor1 347 185 162 6.42 5.42 5.42 5.42 3.518 740 888 896 1 734 734 888 889	WBL WBR 10 15 10 15 10 0 Stop Stop - None 0 - 9, # 0 - 93 93 2 2 11 16 Minor1	WBL WBR NBT 10 15 165 10 15 165 0 0 0 Stop Stop Free None - 0 0 - 0 93 93 93 2 2 2 11 16 177 Minor1 Major1 347 185 0 185 - - 6.42 6.22 - 5.42 - - 5.42 - - 5.42 - - 888 - - 888 - - 734 935 - 734 - - 888 - - 888 - - 888 - - 888 - - 888 - -	WBL WBR NBT NBR 10 15 165 15 10 15 165 15 0 0 0 0 Stop Stop Free Free - None - None 0 - - - 0 - 0 - 93 93 93 93 2 2 2 2 11 16 177 16 Minor1 Major1 I 347 185 0 0 185 - - - 6.42 6.22 - - 5.42 - - - 5.42 - - - 888 - - - 888 - - - 734 935 - - 888 - - -<	WBL WBR NBT NBR SBL Y Image: Control of the control of t

APPENDIX E


Signal Warrant Analysis Worksheets

Scale: 1=100

WARRANT 2 - FOUR HOUR VEHICULAR VOLUME (70% FACTOR)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h (40 mph) ON MAJOR STREET)

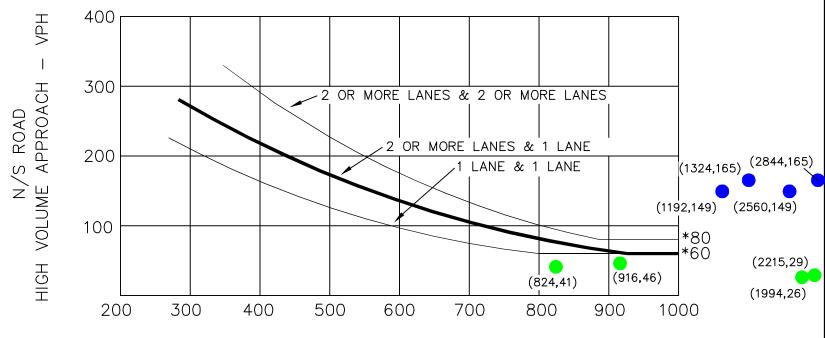
RIDGEGATE PKWY WB & N/S RD (#2)
SIGNAL WARRANT ANALYSIS

APPROACH WITH TWO OR MORE LANES AND 60 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

* NOTE: 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET

FOUR HOUR VOLUME WARRANT | 0 2028 TOTAL TRAFFIC DATA POINT

2045 BACKGROUND TRAFFIC DATA POINT


Source: Manual of Uniform Traffic Control Devices 2009

Scale: 1=100

WARRANT 2 - FOUR HOUR VEHICULAR VOLUME (70% FACTOR)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h (40 mph) ON MAJOR STREET)

RIDGEGATE PKWY EB - TOTAL OF BOTH APPROACHES - VPH

RIDGEGATE PKWY EB & N/S RD (#4)
SIGNAL WARRANT ANALYSIS

* NOTE: 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 60 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

FOUR HOUR VOLUME WARRANT

2028 TOTAL TRAFFIC DATA POINT

2045 BACKGROUND TRAFFIC DATA POINT

Source: Manual of Uniform Traffic Control Devices 2009

APPENDIX F

Queue Analysis Worksheets

1: Rhapsody Road & RidgeGate Pkwy WB

	€	—	4
Lane Group	WBL	WBT	NBL
Lane Group Flow (vph)	77	2043	72
v/c Ratio	0.06	0.60	0.22
Control Delay	5.2	9.0	16.3
Queue Delay	0.0	0.0	0.0
Total Delay	5.2	9.0	16.3
Queue Length 50th (ft)	13	204	15
Queue Length 95th (ft)	27	243	22
Internal Link Dist (ft)		820	
Turn Bay Length (ft)	150		150
Base Capacity (vph)	1189	3418	321
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.06	0.60	0.22
Intersection Summary			

	•	←	1
Lane Group	WBL	WBT	NBL
Lane Group Flow (vph)	128	1351	60
v/c Ratio	0.12	0.42	0.16
Control Delay	7.1	9.0	12.2
Queue Delay	0.0	0.0	0.0
Total Delay	7.1	9.0	12.2
Queue Length 50th (ft)	26	128	12
Queue Length 95th (ft)	48	157	20
Internal Link Dist (ft)		820	
Turn Bay Length (ft)	150		150
Base Capacity (vph)	1111	3192	383
Starvation Cap Reductn	0	0	0
Spillback Cap Reductn	0	0	0
Storage Cap Reductn	0	0	0
Reduced v/c Ratio	0.12	0.42	0.16
Intersection Summary			

	•	•	•	1	†	ļ
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT
Lane Group Flow (vph)	100	2826	84	126	79	226
v/c Ratio	0.09	0.89	0.08	0.50	0.16	0.48
Control Delay	3.7	9.2	0.6	26.3	17.4	31.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	3.7	9.2	0.6	26.3	17.4	31.4
Queue Length 50th (ft)	9	94	0	32	20	107
Queue Length 95th (ft)	m12	101	m1	82	37	177
Internal Link Dist (ft)		820			658	464
Turn Bay Length (ft)	150		150	150		
Base Capacity (vph)	1111	3192	1016	250	507	466
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.89	0.08	0.50	0.16	0.48
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	•	←	•	4	†	ļ
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT
Lane Group Flow (vph)	151	1817	124	204	188	204
v/c Ratio	0.16	0.66	0.14	0.53	0.28	0.32
Control Delay	6.2	8.1	0.6	24.3	19.1	21.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.2	8.1	0.6	24.3	19.1	21.3
Queue Length 50th (ft)	18	80	0	59	52	78
Queue Length 95th (ft)	m30	90	m4	120	104	134
Internal Link Dist (ft)		820			658	464
Turn Bay Length (ft)	150		150	150		
Base Capacity (vph)	953	2740	905	386	672	639
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.66	0.14	0.53	0.28	0.32
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	•	•	•	†	↓
Lane Group	WBL	WBT	WBR	NBT	SBT
Lane Group Flow (vph)	84	2853	49	107	179
v/c Ratio	0.07	0.80	0.04	0.42	0.51
Control Delay	4.4	11.5	1.6	36.4	37.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	4.4	11.5	1.6	36.4	37.2
Queue Length 50th (ft)	13	347	1	59	89
Queue Length 95th (ft)	26	413	10	112	154
Internal Link Dist (ft)		408		266	230
Turn Bay Length (ft)	150		150		
Base Capacity (vph)	1239	3559	1121	254	351
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.80	0.04	0.42	0.51
Intersection Summary					

	•	←	•	†	ļ
Lane Group	WBL	WBT	WBR	NBT	SBT
Lane Group Flow (vph)	70	1984	120	173	179
v/c Ratio	0.06	0.61	0.11	0.41	0.38
Control Delay	6.3	10.6	1.5	25.1	27.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	6.3	10.6	1.5	25.1	27.7
Queue Length 50th (ft)	13	219	0	83	76
Queue Length 95th (ft)	28	261	18	132	135
Internal Link Dist (ft)		408		266	230
Turn Bay Length (ft)	150		150		
Base Capacity (vph)	1130	3248	1054	425	466
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.06	0.61	0.11	0.41	0.38
Intersection Summary					

3: Rhapsody Road & RidgeGate Pkwy EB

	۶	→	\rightarrow	†	>	ļ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	5	928	23	88	38	7
v/c Ratio	0.00	0.32	0.03	0.15	0.09	0.01
Control Delay	8.4	10.4	3.6	17.4	16.6	16.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	8.4	10.4	3.6	17.4	16.6	16.1
Queue Length 50th (ft)	1	93	0	26	15	3
Queue Length 95th (ft)	6	118	10	60	37	12
Internal Link Dist (ft)		554		198		658
Turn Bay Length (ft)	190		190		150	
Base Capacity (vph)	1012	2909	915	603	427	610
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.00	0.32	0.03	0.15	0.09	0.01
Intersection Summary						

3: Rhapsody Road & RidgeGate Pkwy EB

	۶	→	•	†	>	ļ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	11	2295	66	57	108	24
v/c Ratio	0.01	0.67	0.06	0.14	0.35	0.06
Control Delay	4.9	10.1	1.5	24.9	26.6	21.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	4.9	10.1	1.5	24.9	26.6	21.5
Queue Length 50th (ft)	2	250	0	21	52	11
Queue Length 95th (ft)	7	297	12	53	100	31
Internal Link Dist (ft)		554		198		658
Turn Bay Length (ft)	190		190		150	
Base Capacity (vph)	1189	3418	1085	416	305	424
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.01	0.67	0.06	0.14	0.35	0.06
Intersection Summary						

	•	→	`	†	\	Ţ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	58	1268	137	221	63	100
v/c Ratio	0.06	0.44	0.14	0.36	0.18	0.16
Control Delay	9.2	12.2	2.1	21.1	31.3	29.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	9.2	12.2	2.1	21.1	31.3	29.9
Queue Length 50th (ft)	14	143	0	80	30	48
Queue Length 95th (ft)	31	177	24	140	m60	m88
Internal Link Dist (ft)		554		198		658
Turn Bay Length (ft)	150		150		150	
Base Capacity (vph)	993	2853	948	622	342	631
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.44	0.14	0.36	0.18	0.16
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

3: Rhapsody Road & RidgeGate Pkwy EB

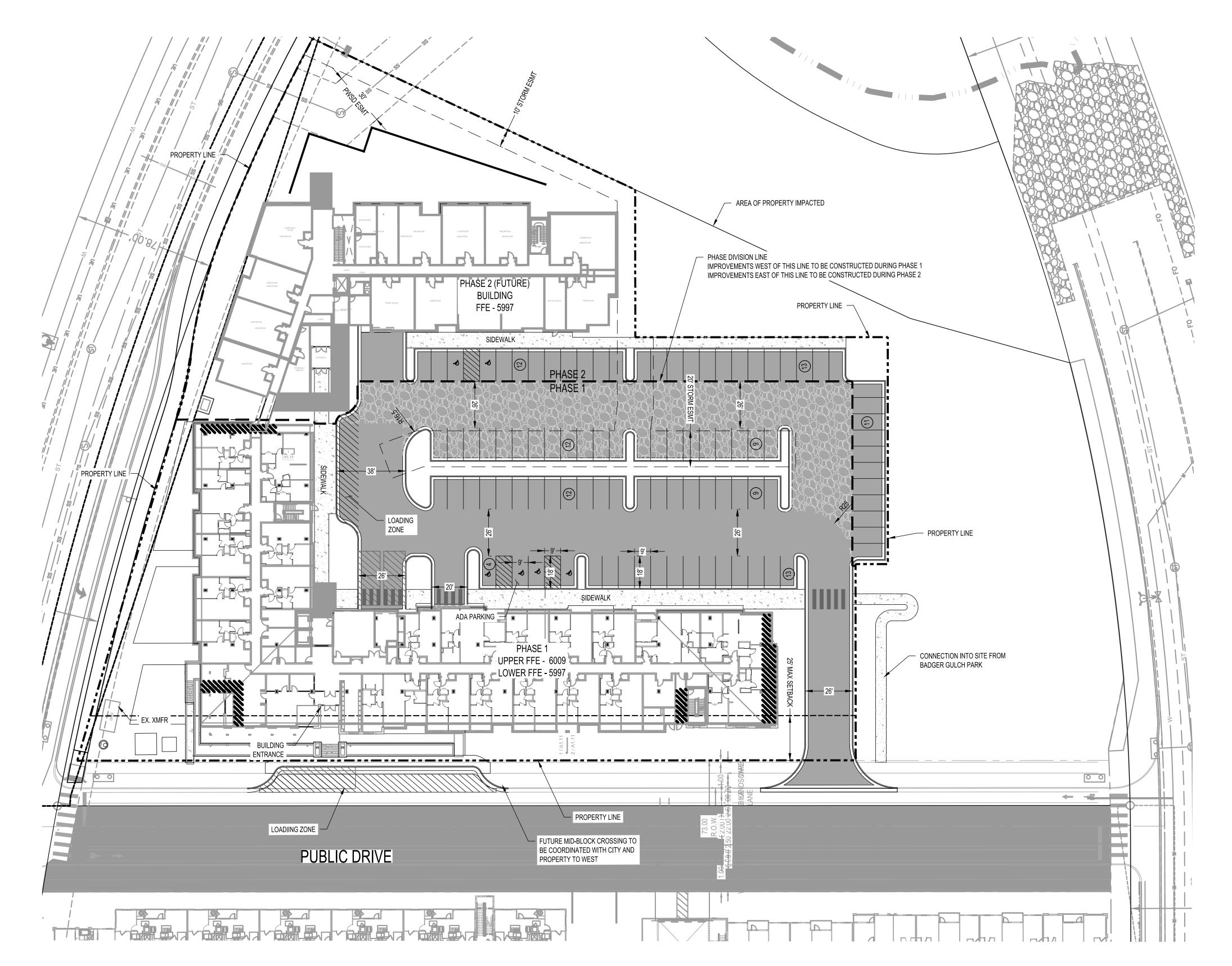
	۶	→	•	†	>	ļ
Lane Group	EBL	EBT	EBR	NBT	SBL	SBT
Lane Group Flow (vph)	167	2844	188	279	134	140
v/c Ratio	0.16	0.92	0.19	0.53	0.57	0.26
Control Delay	8.2	22.5	3.3	30.8	33.7	22.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	8.2	22.5	3.3	30.8	33.7	22.3
Queue Length 50th (ft)	38	484	13	131	54	53
Queue Length 95th (ft)	66	576	39	210	114	108
Internal Link Dist (ft)		554		198		658
Turn Bay Length (ft)	150		150		150	
Base Capacity (vph)	1071	3079	1009	529	235	548
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.16	0.92	0.19	0.53	0.57	0.26
Intersection Summary						

Queues 4: RidgeGate Pkwy EB & N/S Road

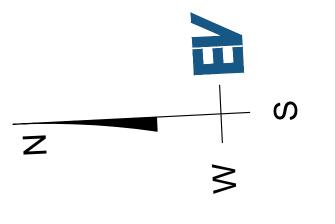
	•	→	†	ļ
Lane Group	EBL	EBT	NBT	SBT
Lane Group Flow (vph)	68	1337	27	197
v/c Ratio	0.07	0.49	0.04	0.36
Control Delay	3.9	5.2	9.4	18.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	3.9	5.2	9.4	18.8
Queue Length 50th (ft)	5	37	2	57
Queue Length 95th (ft)	11	43	19	94
Internal Link Dist (ft)		583	180	245
Turn Bay Length (ft)	150			
Base Capacity (vph)	953	2736	612	541
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.07	0.49	0.04	0.36
Intersection Summary				

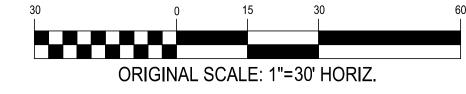
	•	→	†	ļ
Lane Group	EBL	EBT	NBT	SBT
Lane Group Flow (vph)	177	2903	104	146
v/c Ratio	0.14	0.82	0.30	0.53
Control Delay	1.1	2.3	32.2	31.8
Queue Delay	0.0	0.1	0.0	0.0
Total Delay	1.1	2.3	32.2	31.8
Queue Length 50th (ft)	7	42	49	49
Queue Length 95th (ft)	m7	45	95	81
Internal Link Dist (ft)		583	180	245
Turn Bay Length (ft)	150			
Base Capacity (vph)	1229	3531	344	274
Starvation Cap Reductn	0	41	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.14	0.83	0.30	0.53
Intersection Summary				

m Volume for 95th percentile queue is metered by upstream signal.

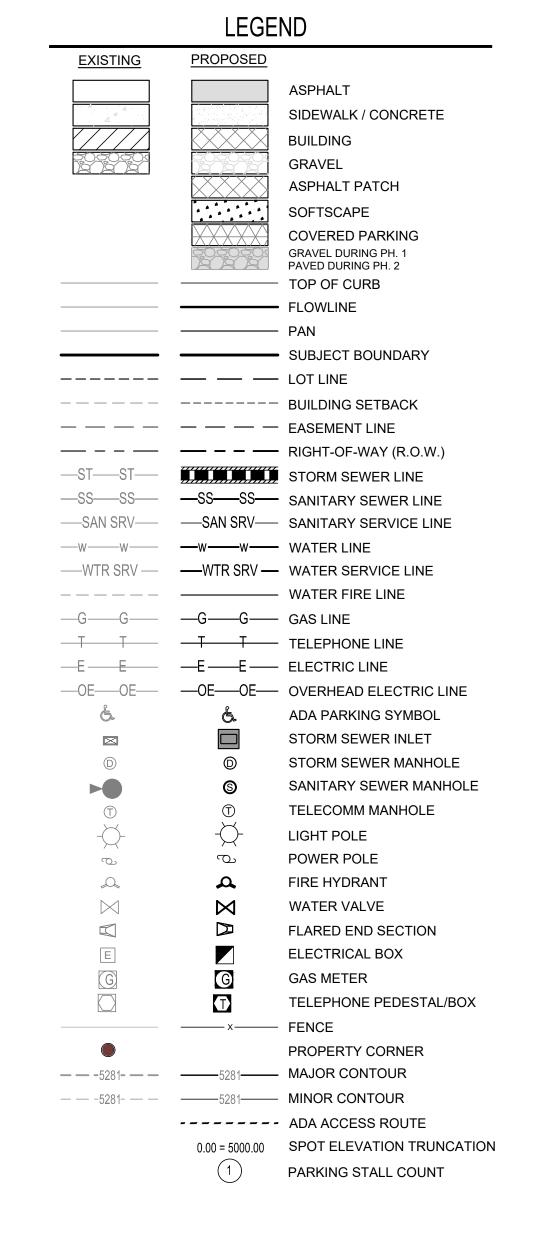

APPENDIX G

Conceptual Site Plan and Turn Lane Exhibit



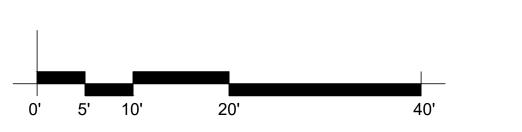

RIDGEGATE SENIOR HOUSING

LOT 2231-242-00-006 LOT 7
RIDGEGATE EAST COUPLET DISTRICT MASTERPLAN
CENTRAL VILLAGE EAST COUPLET DISTRICT (MU CORE AREA)
2.857 ACRES
SIP-SPXX-XX

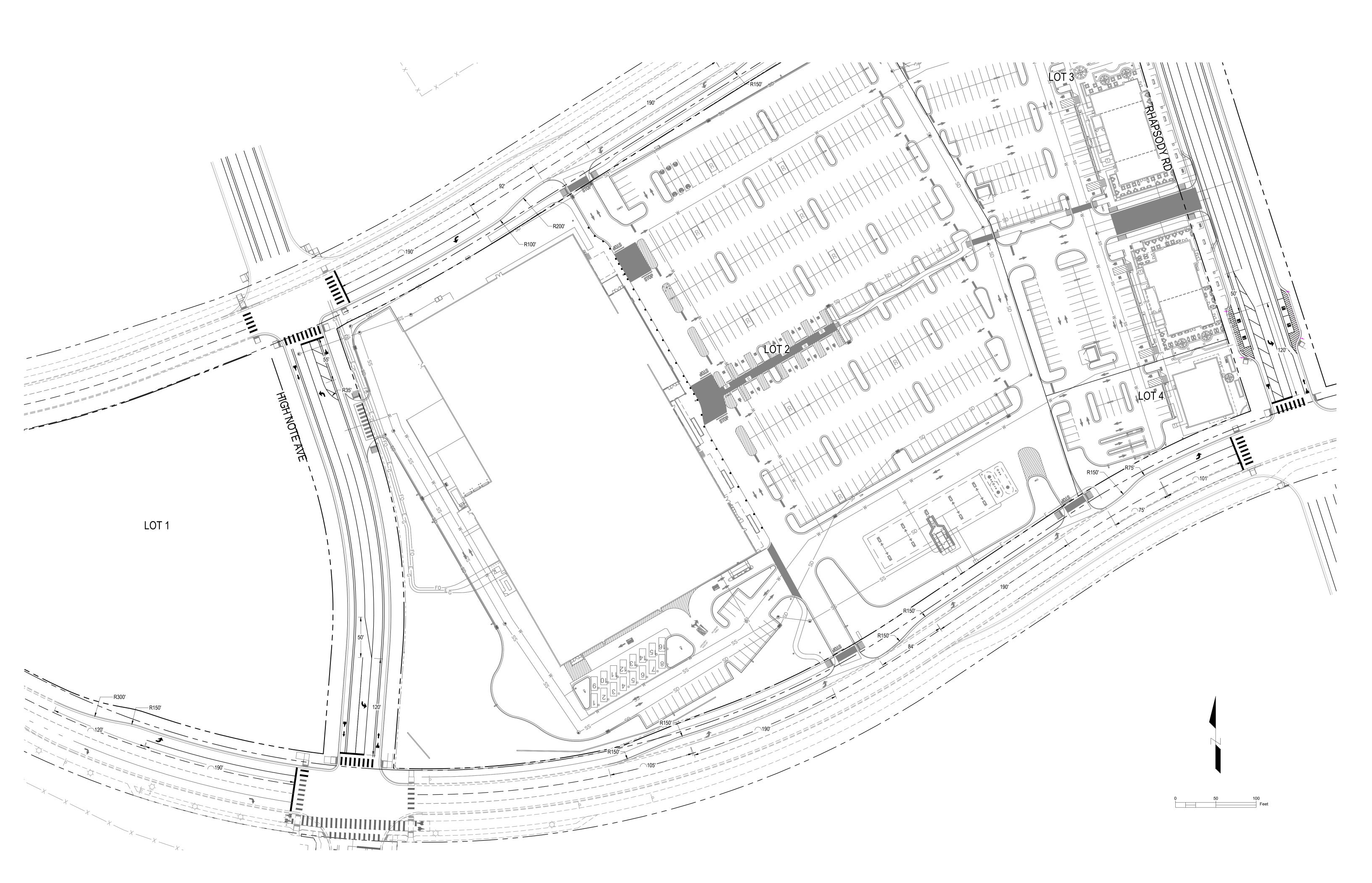


SITE D	ATA CHART (PHASE 1 8	<u>k 2)</u>
TOTAL PROJECT	SITE AREA = 124,475 S	SF / 2.857 AC
	IMPERVIOUS	
TYPE	AREA	%
SIDEWALK	5,934 SF	4.77
ASPHALT	36,429 SF	29.27
CONCRETE (C&G)	3,791 SF	3.05
BUILDINGS	42,914 SF	34.40
EX. IMPERVIOUS	21,529 SF	17.30
	PERVIOUS	
LANDSCAPE	13,978 SF	11.23
	PARKING	
STANDARD PARKING	159	
COMPACT PARKING	2	
ADA PARKING	7	
TOTAL	168	

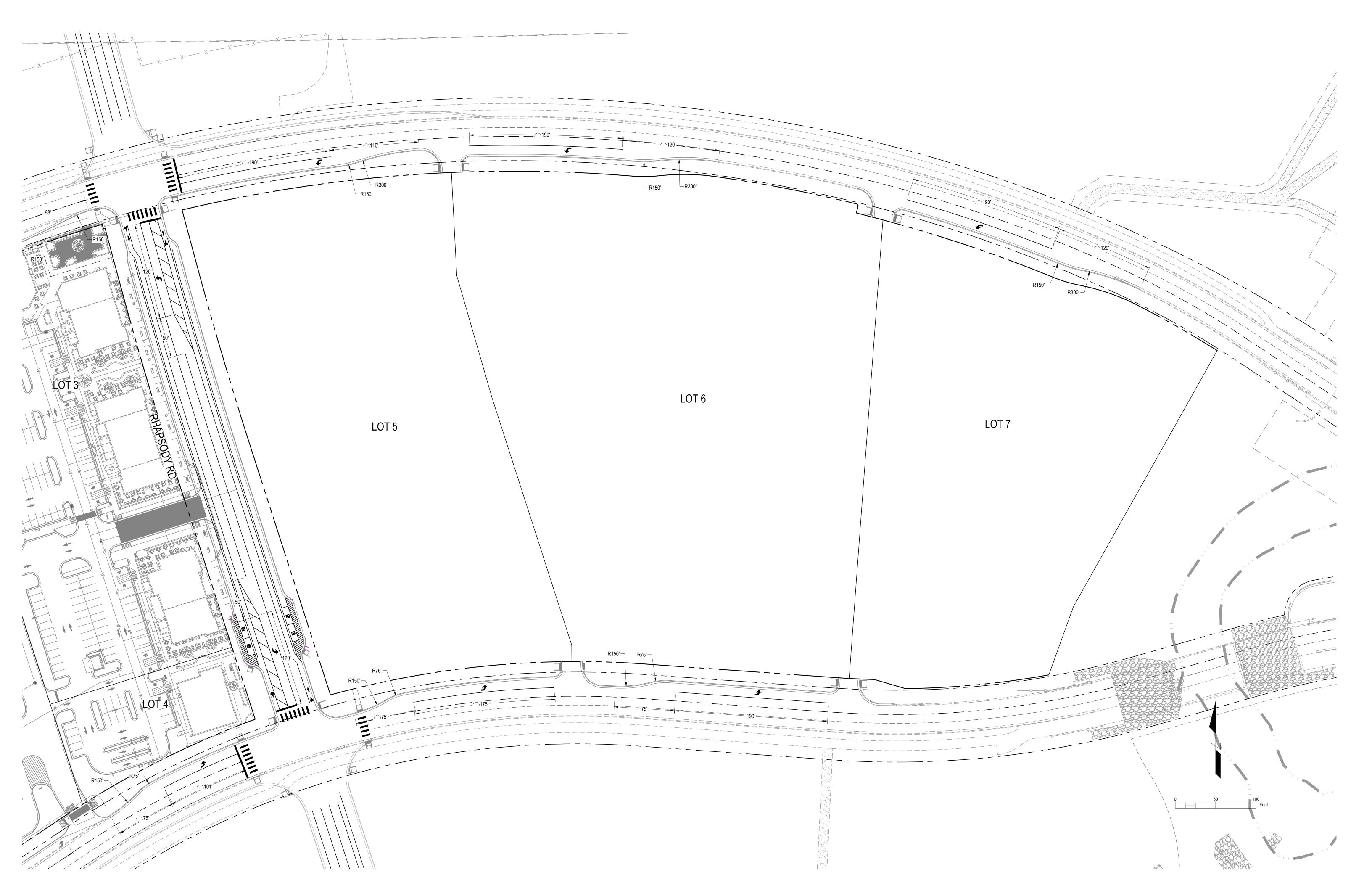
PLAN TRUE



BRYANT FLINK ARCHITECTURE & DESIGN 2700 S. BROADWAY, SUITE 303 ENGLEWOOD, CO 80113


(303) 209-0073

www.bryantflink.com


CONTACT:
Rebecca Wilson
rwilson@bryantflink.com
(720) 638-9921

PREPAR	REPARATION DATE:								
REVISION / COMMENTS									
NO.	DATE		DESCRIPTION						
\dashv									
\dashv									
	OVE	RALL SITE PLAN	C.2						

