

Structure Selection Report Lone Tree Mobility Hub: Pedestrian Bridge over I-25 CDOT Project Number: 267-0252-499 (24278) Structure Number: F-17-QX

April 2024

PREPARED FOR:

Colorado Department of Transportation, Region 1 2829 West Howard Place Denver, CO 80204

PREPARED BY:

Mike Patton, PE RS&H 4582 South Ulster Street, Suite 1100 Denver, CO 80237

RS&H

Table of Contents

1	EXEC	UTIVI	E SUMMARY1
	1.1	Proje	ect Description1
	1.2	Stru	cture Recommendations1
2	SITE I	DESCI	RIPTION AND DESIGN FEATURES2
	2.1	Exist	ting Structures2
	2.2	Vicir	nity Map2
	2.3	Righ	t-of-Way Impact
	2.4	Traff	fic Detour4
	2.5	Cons	structability & Construction Phasing4
	2.6	Utili	ties4
	2.7	Geo	technical Report
	2.8	Hydı	raulics Summary
	2.9	Envi	ronmental Concerns5
	2.10	Brid	ge Design Features
	2.10.	1	Cross-Section
	2.10.	2	Vertical Alignment
	2.10.	3	Horizontal Alignment
3	STRU	CTUF	AL DESIGN CRITERIA
	3.1	Desi	gn Specifications
	3.2	Loac	Jing6
	3.2.1	C	ollision Load (CT)7
	3.2.2	Ea	arthquake Load (EQ)7
	3.3	Aest	hetic Requirements7
	3.4	Futu	re Widenings7
4	STRU	CTUF	RE SELECTION
	4.1	Sele	ction Criteria7
	4.1.1	A	esthetics
	4.1.2	C	ost7
	4.1.3	C	onstructability
	4.2	Stru	cture Layout Alternatives
	4.2.1	Ve	ertical Clearances
	4.2.2	Н	orizontal Clearances8

4.2.3	Skew8
4.2.4	Span Configurations8
4.3	Superstructure Alternatives9
4.3.1	Concrete Alternatives9
4.3.2	Steel Alternatives9
4.4	Substructure Alternatives
4.4.1	Abutment Alternatives
4.4.2	Pier Alternatives
4.5	Wall Alternatives
4.6	Deck Drainage
4.7	Expansion Joints
4.8	ABC Design
4.9	Maintenance and Durability11
4.10	Corrosive Resistance
4.11	Summary of Structure Type Evaluation Table12
4.12	Construction Costs
Appendix	A: FIR Level Plans
Appendix	B: Summary of Quantities and Cost Estimate Tables

Appendix C: Structure Selection Report QA Checklist

1 EXECUTIVE SUMMARY

1.1 Project Description

This project will create a new mobility hub for use by Bustang and other transit services along the northbound and southbound ramps of I-25 between Lincoln Ave and Sky Ridge Ave in Lone Tree, CO. A new pedestrian bridge accessed by approach ramps will provide access across I-25. The City of Lone Tree (Lone Tree) anticipates that the pedestrian bridge will divert pedestrian and bike traffic away from Lincoln Ave. The pedestrian bridge will be enclosed with a roof and glazing panels. There will be uncovered approach ramp bridges from the mobility hub to the pedestrian bridge on both sides of I-25. Due to maintenance concerns, there will not be an elevator on either side of I-25 to access the pedestrian bridge.

RS&H was selected by the Colorado Department of Transportation (CDOT) to complete the design for the pedestrian bridge over I-25. This includes completing preliminary design to determine feasible alternatives and developing plans, calculating quantities and cost estimates for feasible alternatives to include in this Structure Selection Report.

The Division of Transit and Rail (DTR) within CDOT will be the owner of the structure. Along with CDOT, Lone Tree and Coventry Development (Coventry) are major stakeholders in the project.

Following is the team involved in developing this document and its approval:

CDOT Region 1:

Program Engineer:	Stephanie Alanis, PE
Resident Engineer:	Nyssa Beach, PE
Project Manager:	Jiovanna Topi, EIT
Staff Bridge Unit Leader:	Tristan Siegel, PE
Staff Bridge Engineer:	Amanda Mascarenas, PE

<u>RS&H:</u>

Project Manager:	David Woolfall, PE
Deputy Project Manager:	Mary Duke, PE
Structures Lead:	Mike Patton, PE

Subconsultants:

Pinyon Environmental Inc: Environmental Assessment Geocal Inc: Geotechnical Recommendations Lamb-Star Engineering: SUE Investigation

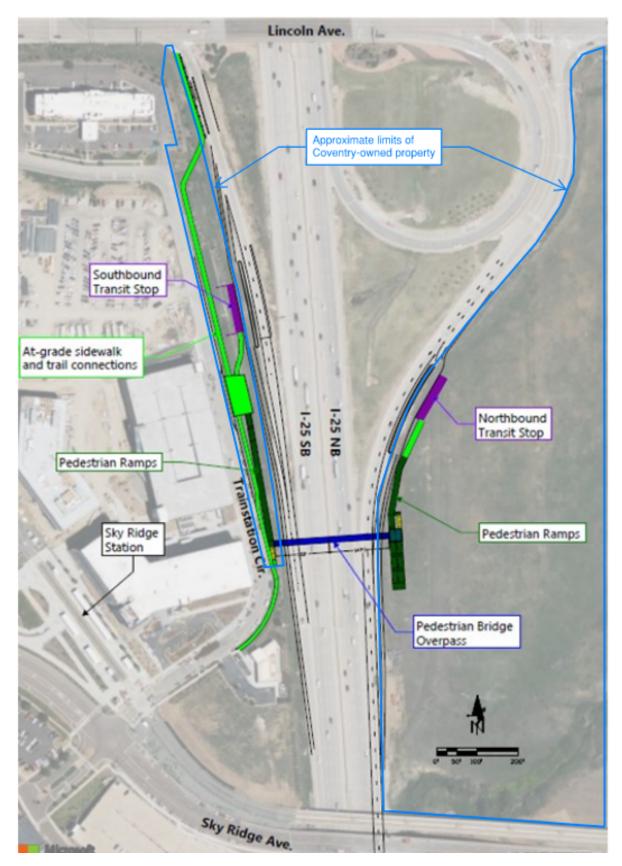
1.2 Structure Recommendations

This Structure Selection Report discusses the design considerations as well as evaluates and compares the structure alternatives investigated for the proposed pedestrian bridge over I-25 as required by the Colorado Department of Transportation (CDOT) *Bridge Design Manual (BDM), Section 2.10.* In addition to the discussing the structural aspects of the project, this report will also provide information related to the roadway, traffic, drainage, utilities, and any conflicts within the project limits.

The proposed structure for this site is a two-span tied-arch through-truss. This structure type is the most cost effective which also meets the stakeholder aesthetic requirements. See the "Structure Selection" chapter of this report for a detailed discussion of the various structure alternatives considered for this project.

The approach ramp structures will be covered in a separate Structure Selection Report.

2 SITE DESCRIPTION AND DESIGN FEATURES


2.1 Existing Structures

There are existing bridges north and south of the proposed structure. To the north, Lincoln Ave. spans over I-25. To the south, there are adjacent bridges spanning over I-25: an RTD light rail bridge and Sky Ridge Ave. These structures do not pose any conflicts within the project limits or with the proposed structure.

There are no other structures in the vicinity of the project.

2.2 Vicinity Map

The vicinity map below shows the locations of the transit stops (purple), approach ramps (dark green), and pedestrian bridge over I-25 (dark blue) as well as at-grade sidewalk and trail connections (light green). The sidewalk and trail connections show the path pedestrians and cyclists will take from Lincoln Ave south to the pedestrian bridge over I-25.

<u>Vicinity Map</u>

2.3 Right-of-Way Impact

The land between I-25 and Trainstation Circle to the west is owned by Coventry. Coventry also owns the land east of I-25. CDOT is in the process of acquiring the required land west of I-25 and a small parcel of the land adjacent to I-25 on the east side. This acquisition will allow the entire project to be located within CDOT ROW.

2.4 Traffic Detour

All bridge alternatives considered would require a temporary detour of I-25 during bridge erection during a night closure of the highway.

For the two-span through-truss alternative, a single night closure is anticipated to set the truss.

For the single-span and two-span tied-arch through-truss alternatives, two full night closures are anticipated. One night would be to set the through-truss, the second would be to set the arches and install the hangars.

2.5 Constructability & Construction Phasing

Temporary lane closures will be required during pier construction in the median of I-25 for the two-span alternatives. This is anticipated to last 2 to 3 weeks.

Temporary lane closures will also be required during the deck pour. These closures will only last the duration of the deck pouring operation and will involve shifting traffic as the deck pour progresses to avoid pouring concrete over live traffic.

Additional lane closures may be required for other construction activities.

2.6 Utilities

Lamb-Star Engineering is responsible for the SUE investigation. Quality Level B has been completed on the west side. The east side survey and test holes on both sides still need to be completed.

On the west side of I-25, there are existing utilities owned by CDOT for the ramp lighting and ramp meter equipment. These utilities are near the proposed foundation but will be reset as part of the ramp widening which will eliminate any potential conflicts.

On the east side of I-25, there are existing utilities owned by CDOT for the ramp lighting and ramp meter equipment. There are also several fiber optic lines in CDOT's ROW owned by CDOT and ZAYO. None of these utilities are near the proposed foundation but several will be reset due to conflicts with the transit stop platform.

There are no plans to install any utilities on the bridge except for electrical conduit for the lighting.

2.7 Geotechnical Report

A site-specific geotechnical investigation to provide structural recommendations for the bridge foundation has not been completed at the time of this report. Geocal is on the project team and is responsible for performing a field investigation and preparing a report that includes recommendations for foundation design. Based on the current project schedule, a geotechnical report is not expected to be prepared in time for the development of this structure selection report.

For the purpose of this report, foundation design will be assumed based on similar nearby projects.

2.8 Hydraulics Summary

The structure does not span any waterways and is not near a floodplain; therefore, no hydraulic investigation will be performed and no accommodations for water crossings will be required.

2.9 Environmental Concerns

Pinyon Environmental is responsible for NEPA conformance and environmental design. There is potential for the discovery of fossils, particularly on the east side of I-25. This will be closely monitored throughout construction. The primary concern arises during open excavation, and the proposed foundations involve drilled shafts to minimize subsurface disturbance as much as possible.

2.10 Bridge Design Features

2.10.1 Cross-Section

The structure will provide a 14'-0" width between handrails and have a 1% cross-slope.

2.10.2 Vertical Alignment

At the time of this report, the vertical alignment of the structure has not been determined. A minimum of a 0.5% longitudinal grade will be provided.

2.10.3 Horizontal Alignment

The horizontal alignment of the structure is based upon the ramp lengths required to get from the transit platforms to the pedestrian bridge.

3 STRUCTURAL DESIGN CRITERIA

3.1 Design Specifications

The following design specifications will be utilized in the design of the proposed structure as applicable. The current edition of each of these references at the time of final design will be used for final design.

- American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications, 9th Edition
- AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges, 2nd Edition
- AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, 1st Edition including 2020 Interim Revisions
- American Institute of Steel Construction (AISC) Steel Construction Manual, 15th Edition
- AISC Hollow Structural Section Connections, 2nd Edition
- American Society of Civil Engineers (ASCE) Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE 7-22
- CDOT Bridge Design Manual (BDM)
- CDOT Bridge Detail Manual
- CDOT Bridge Rating Manual
- CDOT Staff Bridge Worksheets
- CDOT Standards Plans
- CDOT CADD manuals, workflows, and details

The current edition of the following construction specifications at the time of final design will be used in the design documents as applicable.

- CDOT Standard Specifications for Road and Bridge Construction
- CDOT Standard Special Provisions
- CDOT Project Special Provision

3.2 Loading

The project will be designed for applicable strength, service, and extreme event limit states as defined by the load combinations in the AASHTO LRFD Bridge Design Specifications.

Permanent Loads (DC)

Dead loads shall be as specified in the AASHTO LRFD Bridge Design Specifications. Dead loads include self-weight of steel and concrete elements as well as railings, glazing, roofing, and any other required attachments. A 5 psf load will be applied to the structure for future utilities per CDOT BDM.

Railing and Glazing	300 lb/ft
Roof	500 lb/ft

Live Loads (LL)

Applied live loads include an H-5 truck and pedestrian loading of 90 psf as specified by AASHTO LRFD. Both live loads will be applied separately

Earth Loads (EH, LS, EV)

There are no anticipated earth loads on the structure. It will be founded on drilled shafts and does not have wingwalls.

<u>Wind Loads (WS, WL)</u> Wind loads will be applied and analyzed as specified by AASHTO LRFD specifications and the CDOT BDM.

Thermal Forces (TU)

Thermal loading will be based on steel material properties. The temperature range will be based on AASHTO LRFD Procedure B.

Thermal Coefficient (Steel)	0.0000065/°F
Temperature Range	-20°F to 110°F

<u>Water Loads (WA)</u> Water loads are not applicable to this structure.

<u>Ice Loads (IC)</u> Ice loads are assumed to not control any designs.

Snow Loads (Snow)

Snow loads will be investigated for the design of the roof support members per ASCE 7-22. ASCE load combinations will also be compared to AASHTO load combinations for truss and arch design.

Creep and Shrinkage (CR, SH)

Creep and shrinkage loading and effects on the structure will be analyzed and designed in accordance with AASHTO LRFD.

3.2.1 Collision Load (CT)

Columns will be located in the clear zone and are subject to vehicle collision loads. Design will be in accordance with ASHTO LRFD and CDOT BDM.

3.2.2 Earthquake Load (EQ)

Earthquake load will be analyzed and designed in accordance with AASHTO LRFD and the recommendations of the Geotechnical Report.

3.3 Aesthetic Requirements

See Section 4.1.1 of this report for a detailed description of the aesthetic requirements.

3.4 Future Widenings

None of the structure alternatives investigated are capable of being widened in the future.

There are existing structures north and south of the project site with pier columns in the I-25 median, so a median pier column at this location does not limit the future I-25 widening options. The end piers will also be located outside of any I-25 widening option limits.

4 STRUCTURE SELECTION

The structure selection process focused on identifying a structure type and location that meets aesthetic goals, is cost effective, meets serviceability and longevity goals, and would accommodate site constraints.

4.1 Selection Criteria

Factors contributing to the decision-making process are discussed below.

4.1.1 Aesthetics

There is an existing CDOT report titled <u>I-25 South Aesthetic Guidelines</u> that was developed as part of the Colorado Springs Denver South Connection PEL. This report does not consider the type of superstructure being proposed for this project, and the colors recommended for the substructure will potentially clash with the colors of the superstructure. Preliminary discussions have indicated a matte black finish will be used on the steel elements.

Lone Tree and Coventry want the proposed structure to have an appearance similar to the nearby RTD pedestrian bridges over I-25 north of this project. Based on those structures, the aesthetic requirements for this structure include:

- simple-span through-truss with tied arch superstructure
- painted steel truss and arch members
- painted steel roof
- glazing panels

4.1.2 Cost

As with most projects, the overall project cost is a driving factor in the decision-making process. Long-term maintenance costs as well as structure and construction costs will be considered.

The proposed structure type is not the lowest cost alternative, but it meets the aesthetic requirements of the stakeholders. Lone Tree is contributing funds to the project which will help cover the cost of the more expensive structure.

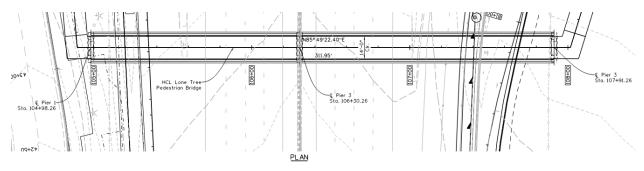
4.1.3 Constructability

All options under consideration utilize standard structural elements, details, and materials that are typical in the region, and are considered constructable. Since the proposed bridge spans over I-25 traffic, there are several construction challenges and restrictions to be considered such as difficulty of construction and driver impact during construction.

4.2 Structure Layout Alternatives

The structure is on a tangent alignment. Based on structure locations and project requirements, the following layout alternatives are considered.

4.2.1 Vertical Clearances


CDOT BDM Section 2.2.2 states that the minimum vertical clearance for pedestrian bridges over roadways is 17.50 ft. This value accounts for future overlays, structural deflections, etc. Live load deflections at the service level will be limited to L/360

4.2.2 Horizontal Clearances

There are no horizontal clearance requirements to be considered for structure selection. Horizontal deflections due service level wind loads will be limited to L/360.

4.2.3 Skew

There will not be a skew on the proposed structure.

4.2.4 Span Configurations

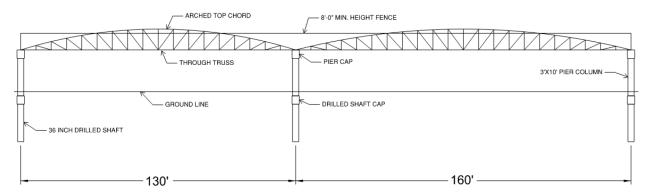
There are two span configurations considered for this report that accommodate the existing and future configurations of I-25; a single-span and a two-span structure. The single-span configuration would be 190.0 ft long, and the two-span configuration would have spans of 130.0 ft, and 160.0 ft. The location of the end piers was set to balance the distance from the center of the ramp bridge platforms to the bridge and ramp piers. The center pier is set by the location of the I-25 median. The single-span configuration has a single longitudinal grade which causes the west pier to be higher and the west ramp to be longer than in the two-span configuration which can accommodate a grade break at the median pier. For these reasons, the two-span configuration is the proposed span configuration.

4.3 Superstructure Alternatives

The preferred structure alternative will meet the selection criteria above. The proposed structure will minimize total project costs while meeting the aesthetic requirements of the stakeholders. Typical girder superstructures are not feasible for this project due to not meeting the aesthetics requirements. Several steel truss alternatives were investigated as the structure types that meet the aesthetic requirements. Weathering steel is not being considered for this project. All structure alternatives anticipate the structure to be painted with a two-coat epoxy paint system.

4.3.1 Concrete Alternatives

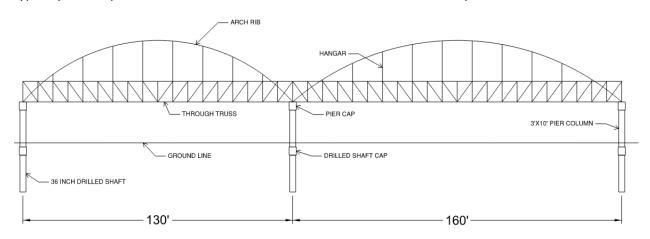
There are no concrete structures considered for this project.


4.3.2 Steel Alternatives

There are 3 steel structure alternatives considered for this project.

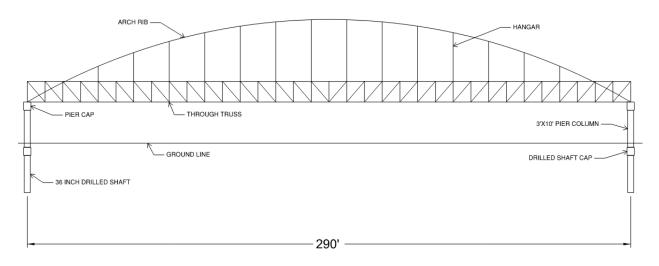
Two-Span Arched Through-Truss

This alternative considered a two-span arched through-truss. The top chord of this structure would be an arch. The structure would be composed of rectangular hollow structural shape (HSS) members, a concrete deck, and stay-in-place steel deck forms. Since the structure spans over I-25, a fence meeting the requirements of Section 2.4.2.1 of the CDOT BDM is required; this will be an 8'-0" tall pedestrian railing. This structure type does not easily accommodate glazing panels or a roof which are required per the aesthetic requirements; this precluded this alternative from further consideration. A typical through-truss with a horizontal top chord could more easily accommodate glazing panels and a roof but ultimately does not meet the aesthetic requirements.


Through-trusses are considered fracture critical structures due to the non-redundancy in the bottom chord. This results in more stringent Charpy-V notch and weld testing as well as regular inspections which increases fabrication and maintenance costs.

Two-Span Tied-Arch Through-Truss

This alternative considered a two-span through-truss with a tied-arch. The through-truss would be composed of rectangular HSS members, a concrete deck, and stay-in-place steel deck forms. The arch would be either a W shape or round HSS member and use threaded bars as the hangars to tie the through-truss to the arch. This alternative would have a roof and transparent glazing along the length of the structure. Since it is an enclosed structure, a typical pedestrian railing will not be needed, but a hand rail will be attached to the steel truss at a height of 3'-0" above the concrete deck.


A benefit of this alternative is that the tied-arch provides redundancy to the through-truss. This means the through-truss is not considered fracture critical which eliminates the testing and inspection requirements associated with fracture critical structures. Another benefit is that the through-truss can typically be composed of smaller member sizes since the tied-arch carries a portion of the load.

Single-Span Tied-Arch Through-Truss

This alternative considered a single-span through-truss with a tied-arch. This alternative would be similar to the two-span through-truss with tied-arch alternative but would require larger member sizes due to increased loads from the larger span.

This alternative requires the approach ramp on the west side of I-25 to be roughly 30.0 ft longer than the two-span alternatives.

4.4 Substructure Alternatives

Final design of the substructure elements will be in accordance with AASHTO LRFD, CDOT BDM, the recommendations of the Geotechnical Report, and the current CDOT structural worksheets.

4.4.1 Abutment Alternatives

No traditional, backfilled abutment alternatives were investigated for this structure.

4.4.2 Pier Alternatives

The proposed substructures will be rectangular pier columns with a hammerhead pier cap. Each pier column will be founded on 2 drilled shafts with a rectangular cap.

In lieu of designing for the 600 kip collision load, the columns will meet the minimum thickness and cross-section requirements to be considered having adequate structural resistance to bridge collapse due to vehicular impacts as specified in AAHTO LRFD 3.6.5.1. Barrier protection for the end pier columns will be provided along the I-25 on and off ramps. The middle column will be in the median of I-25 and will include a tapered median section to eliminate a blunt transition.

The following assumptions for each pier were made for quantity calculations and cost estimation:

- 3'-6" wide x 4'-0" deep (min.) x 20'-6" long pier cap
- 3'-0" wide x 10'-0" long x 18'-0" tall columns
- 3'-6" wide x 4'-0" deep x 16'-0" drilled shaft cap
- (2) 36" diameter x 40'-0" long drilled shafts

4.5 Wall Alternatives

There are no wall structures associated with the proposed structure.

4.6 Deck Drainage

The proposed structure will be covered with a roof. There will not be any deck drainage on this structure, but the roof will have gutters and downspouts.

4.7 Expansion Joints

Coordination will be required to determine the joints details required between the proposed structure over I-25 and the approach ramps.

4.8 ABC Design

An Accelerated Bridge Construction (ABC) approach will not be applicable for the proposed structure. The majority of the structure can be constructed with minimal impact to the traveling public. The end piers are outside of the travelway. The steel truss and arch members will be delivered to the site in segments and can be constructed off-line. Erection of the steel truss and arches will likely require two (2) night closures of I-25. Other construction operations such as the concrete deck pour will require shifting traffic.

The construction of the median pier is estimated to take 3-4 weeks and will require a longer-term traffic shift.

4.9 Maintenance and Durability

The DTR will be responsible for maintenance of the structure.

Based on similar nearby structures, the proposed structure will require minimal maintenance and is considered very durable. The roof will keep snow off the structure; therefore, snow removal and deicing salts will not be necessary.

There will not be any vehicle access to the structure.

The paint is anticipated to have a 30-year life span. Similar nearby structures have not needed to be repainted and are approximately 20 years old.

4.10 Corrosive Resistance

The roof and glazing on the proposed structure will eliminate exposure to rain, snow, and deicing salts. Mag-Chloride overspray from I-25 traffic below may reach the underside of the truss and steel deck forms. The structural steel elements will receive an epoxy paint finish which will protect the steel from corrosion. Steel deck forms are required to be galvanized to protect the steel against corrosion.

Epoxy coated rebar will be used in all concrete elements.

4.11 Summary of Structure Type Evaluation Table

The following table was created to summarize the comparison of the structure selection criteria. Each selection criteria is on a scale of 1 to 10, with 10 being the best, and is based on factors including cost, aesthetic criteria, and constructability concerns. The weighted average is a sum of the factored criteria values. Weight factors are shown below the table. Since aesthetics are a driving factor in the structure selection process, their weight factor is equal to the project cost weight factor with the remaining portion being accounted for with the constructability values.

The constructability scale is based on the number of piers, construction time frame, crane lifts, and road closures. The aesthetics scale is based on the aesthetics requirements highlights in Section 4.1.1. The cost scale is set using an estimated lowest and highest costs that could be considered feasible for the project and comparing the alternative costs to that range.

This shows that all 3 options are close once the selection factors are weighted and combined, but that the 2-span tied-arch through-truss alternative is the preferred alternative because it balances the aesthetic requirements with cost and constructability concerns to produce the highest weighted average.

	Constructability	Aesthetics	Cost	Weighted Average
Through-Truss	6.63	1.38	9.12	5.38
2-Span Tied-Arch	3.25	7.00	4.84	5.65
1-Span Tied-Arch	5.50	8.50	2.30	5.41

Structure Alternative Selection Criteria Evaluation Table

- Weight Factors: Constructability = 10%, Aesthetics = 45%, Cost = 45%

- Scale is out of 10

4.12 Construction Costs

The following table summarizes the estimated construction costs for each bridge alternative investigated. For a more detailed breakdown of the quantities and cost estimates, see Appendix B.

	Estimated Project Cost		
Through-Truss	\$2,197,000		
2-Span Tied-Arch	\$3,146,000		
1-Span Tied-Arch	\$3,710,000		

Structure Alternative Cost Comparison

Appendix A: FIR Level Plans

GENERAL NOTES

All work shall be done in accordance with the Colorado Department of Transportation 2023 Standard Specifications for Road and Bridge Construction.

Structure excavation and backfillshall be as shown on the plans.

Expansion joint material shall meet AASHTD Specification M213.

All exposed concrete surfaces shall receive a Class 2 final finish to one foot below the ground line.

Deck concrete shall receive a final transverse broom finish.

A colored Structural Concrete Coating finish will be required as shown on the plans and on all exposed concrete surfaces to 2 feet below finished ground. The color shall be xxxx, equivalent to Federal Standard 595 Color No. xxxx, and shall be selected from test panels provided by the Contractor.

All structural steel not otherwise noted shall be painted in accordance with Section 509 of the Specifications. The color shall be xxxx, equivalent to Federal Standard 595 Color No. xxxx.

All plate steel shall be ASTM A572, Gr. 50 unless otherwise noted.

All rectangular HSS shall be ASTM A500, Gr B.

All bolts shall ASTM A325, 7/8" diameter, high strength, unless otherwise noted. All bolt holes shall be 13/16" diameter unless noted otherwise. Provide one hex nute and washer with each bolt.

Field welding of any kind shall not be permitted on the steel superstructure.

Grade 60 reinforcing steel is required.

All reinforcing steel shall be epoxy coated.

The Contractor shall be responsible for the stability of the structure during construction.

Permanent Steel Deck Forms are allowed.

For structure number installation, see Standard S-614-12.

Stations, Elevations, and Dimensions contained in these plans are calculated from a recent field survey. The Contractor shall verify all dependent dimensions in the field before ordering or fabricating any material.

All longitudinal and transverse dimensions are measured horizontally and include no correction for grade.

The information shown on these plans concerning the type and location of underground utilities is not guaranteed to be accurate or all inclusive. The Contractor is responsible for making their own determination as to the type and location of underground utilities as may be necessary to avoid damage thereto. The Contractor shall contact the Utility Notification Center of Colorado at 811 (1-800-922-1987) at least 3 days (2 days not including the day of notification) prior to any excavation or other earthwork.

DESIGN DATA

AASHTD LRFD Bridge Design Specifications, 9th Edition, 2020 AASHTD LRFD Guide Specifications for the Design of Pedestrian Bridges, 2nd Edition, 2009 AASHTD LRFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic Signals

Design Method: Load and Resistance Factor Design

Pedestrian Live Load: 90 psf Vehicular Live Load: None Dead Load: Assumes 5 psf for permanent deck forms

Reinforced		Concrete:	f'c = 4,500 psi fy = 60,000 psi
Drilled Sha	ft Concret	e:	
	Class BZ	Concrete:	f'c= 4,000 psi
	Reinforci	ng Steel:	fy= 60,000 psi
		5	
StructuralS	Steel:		
	ASTM A5	72 Grade 50	fy = 50,000 psi
	ASTM A5	00 Grade B	fy = 46,000 psi
	ASTM A3	6	fy = 36,000 psi

BRIDGE DESCRIPTION

Two-simple span (130'-0", 160'-0") bridge Enclosed steel through-truss and steel tied-arch Pedestrian path over I-25 14'-0" walkway rail-to-rail 90° 00'00" skew 36" tall handrail

	Print Date: 1/4/2024				Sheet Revisions		Colorado Depar	tment of Transportatio	on	As Constructed	I-25
	File Name: 24278-RSH-HW	/-025A-ST-DR-GNNT.dgn		Date:	Comments	Init.	•	18500 E. Colfax Ave.		-	
	Horiz. Scale: 1"=XX'	Vert. Scale: As Noted	\bigcirc					Aurora, CO 80011		No Revisions:	
drawings are applied to the cover page(s)	Unit Information	JT	\bigcirc					Phone: (303) 746-8639		Revised:	Designe
	RS&H	0					Fax: N/A			Detailer	
	КЭСТІ		\bigcirc				Region 1-South	Program	NB	Void:	Sheet S

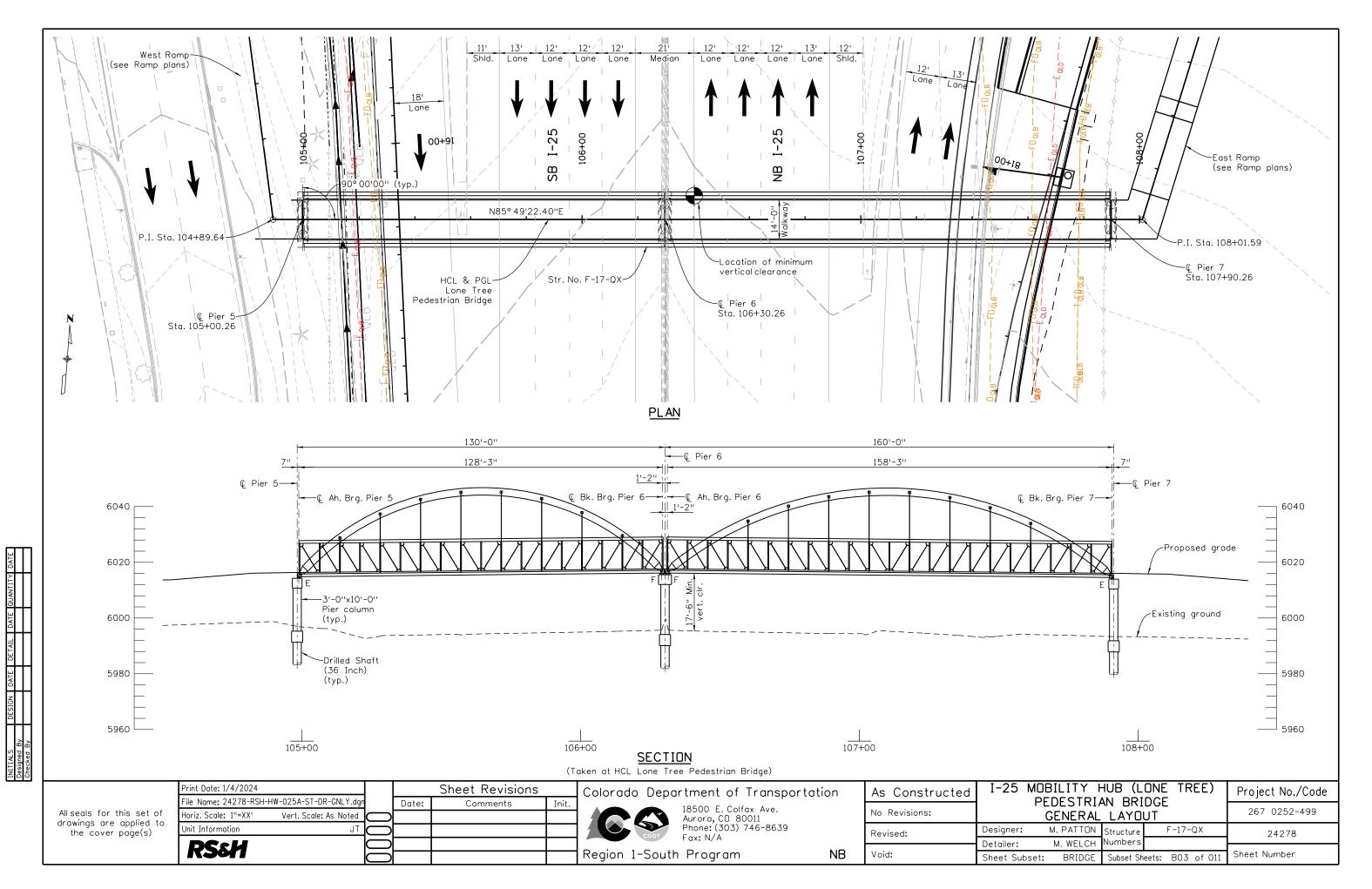
DATE QUANTITY DATE

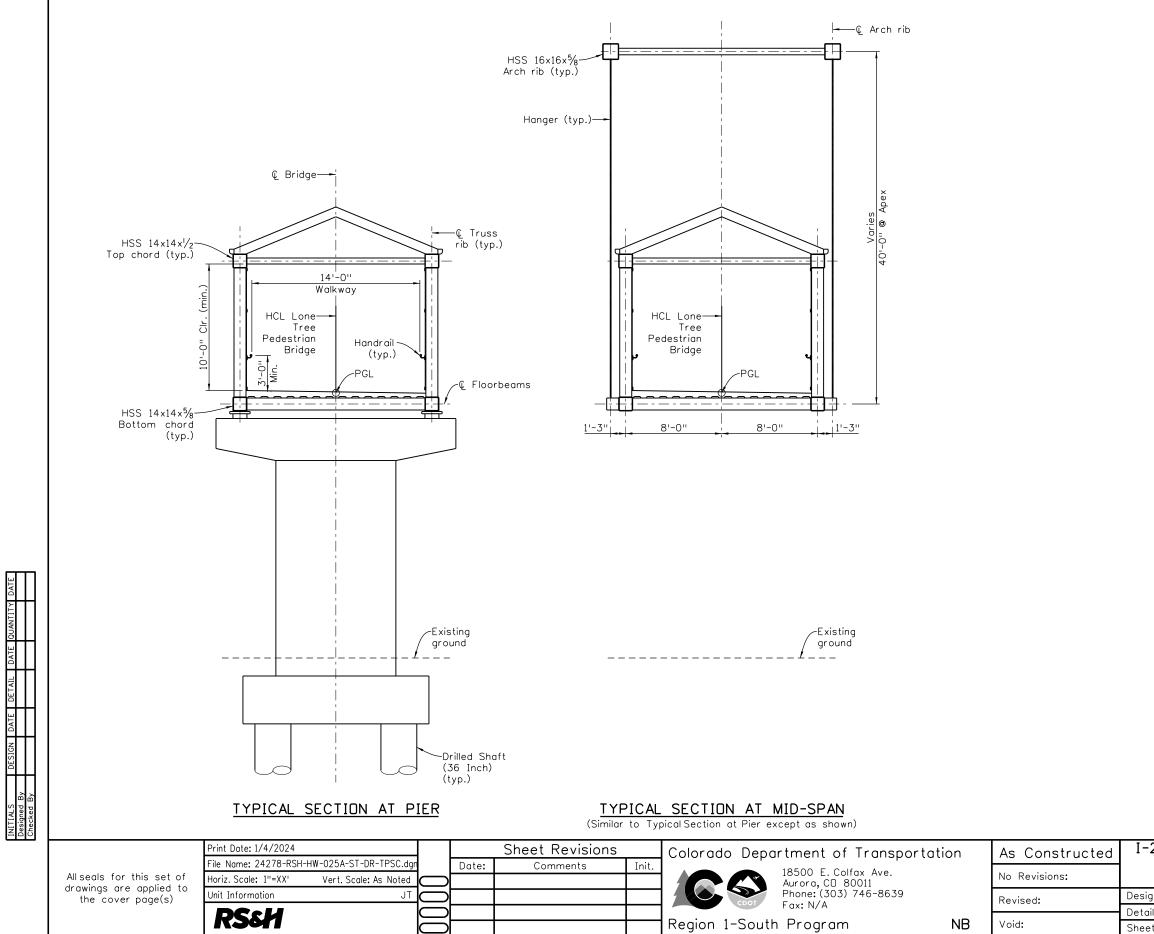
INDEX OF DRAWINGS

• B01	GENERAL INFORMATION
• B02	SUMMARY OF QUANTITIES
• B03	GENERAL LAYOUT
• B04	TYPICAL SECTION
B05	ENGINEERING GEOLOGY
B06	CONSTRUCTION LAYOUT
B07	FOUNDATION LAYOUT
B08	FOUNDATION DETAILS
B09	PIER DETAILS (1 OF 2)
B10	PIER DETAILS (2 OF 2)
B11	THROUGH-TRUSS GEOMETRIC LAYOUT (1 OF 2)
B12	THROUGH-TRUSS GEOMETRIC LAYOUT (2 OF 2)
B13	THROUGH-TRUSS ELEVATION (1 OF 2)
B14	THROUGH-TRUSS ELEVATION (2 OF 2)
B15	TOP CHORD FRAMING PLAN (1 OF 2)
B16	TOP CHORD FRAMING PLAN (2 OF 2)
B17	BOTTOM CHORD FRAMING PLAN (1 OF 2)
B18	BOTTOM CHORD FRAMING PLAN (2 OF 2)
B19	
B20	
B21	
B22	
B23	
B24	
B25	
B26	
B27	
B28	
B29	
B30	
B31	
B32	DECK DETAILS
833	BEARING DEVICE (TYPE I)
B34	HAND RAIL DETAILS
	ICATES DRAWINGS INCLUDED IN THIS SUBMITTAL

• INDICATES DRAWINGS INCLUDED IN THIS SUBMITTAL. REMAINING DRAWINGS WILL BE INCLUDED IN A SEPARATE SUBMITTAL. INDEX IS PRELIMINARY AND SUBJECT TO CHANGE.

25 MOB	ILITY H DESTRIA	Project No./Code		
	ERAL IN	267 0252-499		
	M. PATTON Structure F-17-QX			24278
iler:	M. WELCH	Numbers		
et Subset:	BRIDGE	Sheet Number		
Lone Tree	See	Station 105+00.26 to Station 107+90.26		


SUMMARY OF QUANTITIES


TEM NO.	DESCRIPTION	UNIT	F-17-QX
503	Drilled Shaft (36 Inch)	LF	240
509	Paint Structural Steel	LS	1
512	Bearing Device (Type I)	EACH	8
514	Hand Rail	LF	386
601	Concrete Class D (Bridge)	СҮ	156
601	Structural Concrete Coating	SY	211
602	Reinforcing Steel (Epoxy Coated)	LB	38131
628	Bridge Girder And Deck Unit	EACH	2

	Print Date: 1/4/2024			Sheet Revisions		Colorado Department of Transportation	As Constructed	I-25
All seals for this set of drawings are applied to	File Name: 24278-RSH-HW-025A-ST-DR-SMQT.dg		Date:	Comments	Init.	18500 E. Colfax Ave.		
	Horiz. Scale: 1"=XX' Vert. Scale: As Noted	\square				Aurora, CD 80011	No Revisions:	
	Unit Information JT					Phone: (303) 746-8639	Revised:	Designer
	RS&H	\square				Coor Fax: N/A		Detailer:
	NJOT I	\Box				Region 1-South Program NB	Void:	Sheet Su

ı,

25 MOBILITY HUB (LONE TREE) Project No./Code PEDESTRIAN BRIDGE				
	IARY OF	267 0252-499		
gner:	M. PATTON	Structure	F-17-QX	24278
iler:	M. WELCH	Numbers		
et Subset:	BRIDGE	Subset Sh	eets: BO2 of O11	Sheet Number

-PR--ST **025A** Projects/CD01 Minor \02 N

	BILITY H EDESTRIA	Project No./Code		
	TYPICAL	267 0252-499		
gner:	M. PATTON	Structure	F-17-QX	24278
iler:	M. WELCH	Numbers		
et Subset	BRIDGE	Subset Sh	eets: BO4 of O11	Sheet Number

Appendix B: Summary of Quantities and Cost Estimate Tables

ITEM NO.	DESCRIPTION	UNIT	UNIT COST	Quantities	Cost Estimate
503	DRILLED SHAFT (36 INCH)	LF	\$600	240	\$144,000
509	PAINT STRUCTURAL STEEL	LS	-	1	\$326,300
512	BEARING DEVICE (TYPE I)	EACH	\$5,000	8	\$40,000
514	PEDESTRIAN RAILING (STEEL)	LF	\$350	386	\$135,100
601	CONCRETE CLASS D (BRIDGE)	СҮ	\$590	156	\$92,300
601	STRUCTURAL CONCRETE COATING	SY	\$18	211	\$3,800
602	REINFORCING STEEL (EPOXY COATED)	LB	\$2.10	38131	\$80,100
628	BRIDGE GRIDER AND DECK UNIT	EACH	-	2	\$1,088,000
edestrian Railing	g (Steel) needs to meet the requirements of CDOT BDN	1 Section 2.4.2.1		Subtota	= \$1,910,000

2-Span Through-Truss Alternative Quantity and Cost Estimate

\$287,000 15% Contigency = Cost Estimate =

\$2,197,000

2-Span Tied-Arch Alternative Quantity and Cost Estimate

ITEM NO.	DESCRIPTION	UNIT	UNIT COST	Quantities	Cost Estimate
503	DRILLED SHAFT (36 INCH)	LF	\$600	240	\$144,000
509	PAINT STRUCTURAL STEEL	LS	-	1	\$541,500
512	BEARING DEVICE (TYPE I)	EACH	\$5,000	8	\$40,000
514	HAND RAIL	LF	\$75	386	\$29,000
601	CONCRETE CLASS D (BRIDGE)	CY	\$590	156	\$92,300
601	STRUCTURAL CONCRETE COATING	SY	\$18	211	\$3,800
602	REINFORCING STEEL (EPOXY COATED)	LB	\$2.10	38131	\$80,100
628	BRIDGE GRIDER AND DECK UNIT	EACH	-	2	\$1,805,000
- Hand Rail is pipe	rail attached to steel truss			Subtotal =	\$2,736,000

15% Contigency = Cost Estimate =

\$410,000 \$3,146,000

1-Span Tied-Arch Alternative Quantity and Cost Estimate

DESCRIPTION	UNIT	UNIT COST	Quantities	Cost Estimate
DRILLED SHAFT (36 INCH)	LF	\$600	160	\$96,000
PAINT STRUCTURAL STEEL	LS	-	1	\$590,900
BEARING DEVICE (TYPE I)	EACH	\$5,000	4	\$20,000
HAND RAIL	LF	\$75	386	\$29,000
01 CONCRETE CLASS D (BRIDGE)		\$590	116	\$68,700
STRUCTURAL CONCRETE COATING	SY	\$18	139	\$2,600
REINFORCING STEEL (EPOXY COATED)	LB	\$2.10	26153	\$55,000
BRIDGE GRIDER AND DECK UNIT	EACH	-	1	\$2,364,000
	DRILLED SHAFT (36 INCH) PAINT STRUCTURAL STEEL BEARING DEVICE (TYPE I) HAND RAIL CONCRETE CLASS D (BRIDGE) STRUCTURAL CONCRETE COATING REINFORCING STEEL (EPOXY COATED)	DRILLED SHAFT (36 INCH) LF PAINT STRUCTURAL STEEL L S BEARING DEVICE (TYPE I) EACH HAND RAIL LF CONCRETE CLASS D (BRIDGE) CY STRUCTURAL CONCRETE COATING SY REINFORCING STEEL (EPOXY COATED) LB	DRILLED SHAFT (36 INCH) LF \$600 PAINT STRUCTURAL STEEL L S - BEARING DEVICE (TYPE I) EACH \$5,000 HAND RAIL LF \$75 CONCRETE CLASS D (BRIDGE) CY \$590 STRUCTURAL CONCRETE COATING SY \$18 REINFORCING STEEL (EPOXY COATED) LB \$2.10	DRILLED SHAFT (36 INCH) LF \$600 160 PAINT STRUCTURAL STEEL L S - 1 BEARING DEVICE (TYPE I) EACH \$5,000 4 HAND RAIL LF \$75 386 CONCRETE CLASS D (BRIDGE) CY \$590 116 STRUCTURAL CONCRETE COATING SY \$18 139 REINFORCING STEEL (EPOXY COATED) LB \$2.10 26153

- Hand Rail is pipe rail attached to steel truss

Subtotal = \$3,226,000 \$484,000

15% Contigency = Cost Estimate =

\$3,710,000

Appendix C: Structure Selection Report QA Checklist

Structure Selection Report QA Checklist

This checklist is to serve as quality assurance of the structure selection process. The sections in the report need not be in the same order as this checklist. This checklist must be signed by Staff Bridge Unit Leader or designee prior to submittal of FIR documents to the Region.

Structure Number(s): F-17-QX

Cover Sheet	
Name of the Project and Site Address	
□Structure Number(s)	
Property Owner Name and Contact Information	
Report Preparer Name and Contact Information	
Submittal and Revision Dates as Applicable	
Executive Summary	
Project Description	
Structure Recommendations	
Site Description and Design Features	
Existing Structure(s)	□N/A:
EVicinity Map	
ROW Impact	□N/A:
Traffic Detour	□N/A:
Constructability & Construction Phasing	□N/A:
■Utilities	□N/A:
Geotechnical Summary	
Hydraulics Summary	□N/A:
Environmental Concerns	□N/A:
Roadway Design Features	
Cross Section	
■Vertical Alignment	
Horizontal Alignment	
Structural Design Criteria	
Design Specifications	
■Loading	□N/A:
Collision Load	
Earthquake Load	
Aesthetic Requirements	□N/A:
Possible Future Widenings	□N/A:
Structure Selection	
Selection Criteria	
□ Rehabilitation Alternatives	■N/A:
□ Inspection Summary	
□Load Testing Requirements	■ N/A:
Add figures/sketches to the following topics as needed to cla	
Structure Layout Alternatives	,
Vertical Clearances	
Horizontal Clearances	
■Skew	
Span Configurations	
Superstructure Alternatives	□N/A:
EConcrete Girder Alternatives	
Steel Girder Alternatives	

Substructure Alternatives	□N/A:
Abutment Alternatives (GRS, Integral, Set	emi-integral, etc.)
Pier Alternatives	
Wall Alternatives	□N/A:
Deck Drainage	□N/A:
Expansion Joints	
ABC Design (include pre-scoping ABC rating)	results from spreadsheet found on the CDOT website)
Maintenance and Durability	
Corrosive Resistance	
Summary of Structure Type Evaluation Table	
Construction Costs (including costs of alternal	ives)

Other

Figures and Appendices

General Layout of the Selected Structure
 Alternative Typical Sections (if not provided in the report)
 Summary of Quantities and Cost Estimate Tables
 ABC Rating spreadsheet

List of Variances

Requested Variance:					
Approved?□Yes	□No				
Requested Variance:					
Approved?□Yes	□No				
Requested Variance:					
Approved?□Yes	□No				
10 1					

If you need more space, use an additional sheet(s) of paper.

CDOT Staff Bridge Quality Assurance Sign-off

By signing this checklist Staff Bridge Unit Leader acknowledges approval of the Structure Selection Report findings, recommendations, and all design deviations from the CDOT Structural Standards and design criteria.

Amanda Mascarenas

Print Name

Signature

4-10-2024

Date